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Abstract—We consider the delay minimization problem in an
energy harvesting communication network with energy coopera-
tion. We investigate the problems of optimal energy management
at each node and optimal energy routing between nodes through
energy cooperation. For the case without energy cooperation,
each node needs to distribute its harvested energy over its
outgoing links. For this problem, we show that each node should
allocate more power to links with more noise power and to
links through which more data flow. For the case with energy
cooperation, each node needs to distribute its harvested energy
among its outgoing links, and in addition, each node may transfer
a portion of its harvested energy to neighboring nodes through
energy cooperation. For this problem, we develop an iterative
algorithm to determine the optimal energy routes in the network.
We numerically observe that energy is routed from nodes with
lower data loads to nodes with higher data loads.

I. INTRODUCTION

We consider an energy harvesting communication network
with energy cooperation as shown in Fig. 1. Each node
harvests energy from nature and all nodes may share a portion
of their harvested energies with neighboring nodes through
energy cooperation [1]. We focus on the delay minimization
problem for this network. The delay on each link depends on
the information carrying capacity of the link, and in particular,
it decreases monotonically with the capacity of the link for
a fixed data flow through it; see e.g., [2, Eqn. (5.30)]. The
capacity, in turn, is a function of the power allocated to the
link, and in particular, it is a monotonically increasing function
of the power, for instance, through a logarithmic Shannon type
capacity-power relationship [3].

We consider the capacity assignment problem for this set-
ting [2, Section 5.4.2]. We control the energies allocated to in-
dividual outgoing links for all nodes and the energies shared by
the nodes through energy cooperation [1] in order to optimize
the link capacity allocations over the entire network with the
goal of minimizing the overall network delay. Specifically, we
consider a network with non-interfering orthogonal Gaussian
links in the physical layer. We assume that the data routing
topology and the data flows through the links are fixed. When
energy cooperation is possible, we also assume that the energy
routing topology is fixed as well. We determine the optimum
energies allocated to outgoing links of the nodes and optimum
amounts of energy transferred between the nodes.
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Fig. 1. System model.

We first focus on the optimal energy management problem
at the nodes without energy cooperation. We show that this
problem can be decomposed into individual problems, each
one to be solved for a single node. For this problem, we show
that more power should be allocated to links with more noise
power and more data flow through them, resembling channel
inversion type of power control [4]. Next, we consider the
case with energy cooperation, where nodes transfer a portion
of their own energies to neighboring nodes. In this case, we
have the joint problem of energy routing among the network
nodes and energy allocation among the outgoing links at each
node. For this problem, we develop an iterative algorithm that
visits all energy links sufficiently many times and decreases
the network delay monotonically. We numerically observe that
energy flows from nodes with lightly loaded data links to
nodes with heavily loaded data links. Our work is related to
and builds upon classical works on routing in communication
networks [2], [5]–[9], and recent works on energy harvesting
communications [10]–[12] and energy cooperation [1].

II. NETWORK FLOW AND ENERGY MODEL

We use directed graphs to represent the network topology,
and data and flow through the network. All nodes are energy
harvesting, and all nodes are equipped with separate wireless
energy transfer units. In this paper, for simplicity, we assume
that each node harvests energy only once.



A. Network Data Topology
We represent the data topology of the network by a directed

graph which we assume is always connected. In this model, a
collection of nodes, labeled n = 1, . . . , N , can send and re-
ceive data across communication links. A data communication
link is represented as an ordered pair (i, j) of distinct nodes.
The presence of a link (i, j) means that the network is able
to send data from the start node i to the end node j. We label
the data links as l = 1, . . . , L. The network data topology can
be represented by an N × L matrix, A, in which every entry
Anl is associated with node n and link l via

Anl =


1, if n is the start node of data link l
−1, if n is the end node of data link l
0, otherwise

(1)

We define Od(n) as the set of outgoing data links from node
n, and Id(n) as the set of incoming data links to node n. We
define N -dimensional vector s whose nth entry sn denotes the
non-negative amount of exogenous data flow injected into the
network at node n. On each data link l, we let tl denote the
amount of flow and we call the L-dimensional vector t the
flow vector. At each node n, the flow conservation implies:∑

l∈Od(n)

tl −
∑

l∈Id(n)

tl = sn, ∀n (2)

The flow conservation law over all the network can be com-
pactly written as:

At = s (3)

We define cl as the information carrying capacity of link l.
Then, we require tl ≤ cl, ∀l.
B. Network Energy Topology

All nodes are equipped with energy harvesting units. Each
node n harvests energy in the amount of En. We use N -
dimensional vector E to denote the energy arrival vector for
the system. In the energy cooperation setting, there are energy
links similar to data links. An energy link is represented as
an ordered pair (i, j) of distinct nodes where the presence of
an energy link means that it is possible to send energy from
the start node to the end node. Energy links are labeled as
q = 1, . . . , Q. Energy transfer efficiency on each energy link
is denoted with 0 < αq ≤ 1 which means that when δ amount
of energy is transferred on link q from node i to node j, node j
receives αqδ amount of energy. The network energy topology
can be represented by an N × Q matrix, B, in which every
entry Bnq is associated with node n and energy link q via

Bnq =


1, if n is the start node of energy link q
−αq, if n is the end node of energy link q
0, otherwise

(4)

On each energy link q, we let yq be the amount of energy
transferred. We call the L-dimensional vector y the energy
flow vector. We denote by Oe(n) and Ie(n), respectively, the
sets of outgoing and incoming energy links at node n.

C. Communication Model and Delay Assumptions

We assume that the delay on data link l is

Dl =
tl

cl − tl
(5)

The delay expression in (5) is based on M/M/1 queueing
assumptions, see [2]. Each node n, on the transmitting edge
of data link l, enables a capacity cl by expanding power pl.
These quantities are related by the Shannon formula as [3]

cl =
1

2
log

(
1 +

pl
σl

)
(6)

where all logs in this paper are with respect to base e. At each
node n, the total power expanded on data and energy links are
constrained by the available energy, i.e.,∑

l∈Od(n)

pl +
∑

q∈Oe(n)

yq ≤ En +
∑

q∈Ie(n)

αqyq, ∀n (7)

Using L-dimensional vector p = (p1, . . . , pL) and F = A+

where (A+)nl = max{Anl, 0}, the energy availability con-
straints can be compactly written as:

Fp + By ≤ E (8)

We note that we use power and energy interchangeably in (8)
and in the rest of the paper by assuming slot lengths of 1 unit.

III. CAPACITY ASSIGNMENT PROBLEM

We assume that the flow assignments, tl, on all links are
fixed and are serviceable by the harvested energies and energy
transfers. The total delay in the network is:

D =
∑
l

tl
cl − tl

(9)

We formulate the capacity assignment problem, with the goal
of minimizing the total delay in the network as:

min
cl,pl,yq

∑
l

tl
cl − tl

s.t. Fp + By ≤ E

tl ≤ cl, ∀l (10)

By using the capacities cl in (6), we formulate the problem in
terms of the link powers pl and energy transfers yq only as:

min
pl,yq

∑
l

tl
1
2 log

(
1 + pl

σl

)
− tl

s.t. Fp + By ≤ E

pl ≥ σl
(
e2tl − 1

)
, ∀l (11)

We solve the problem in (11) in the rest of this paper.

A. Properties of the Optimal Solution

First, we note that the objective function can be writ-
ten in the form

∑
i fi(g(xi)) where fi(xi) = ti

xi−ti and
g(xi) = 1

2 log (1 + xi). Since f is convex and non-increasing
and g is concave, the resulting composition function is convex



[13]. The constraint set is linear. Therefore, (11) is a convex
optimization problem. The Lagrangian function is:

L =
∑
l

tl
1
2 log

(
1 + pl

σl

)
− tl

+
∑
n

λn

 ∑
l∈Od(n)

pl

+
∑

q∈Oe(n)

yq − En −
∑

q∈Ie(n)

αqyq


−
∑
l

βl
[
pl − σl

(
e2tl − 1

)]
−
∑
q

θqyq (12)

The KKT optimality conditions are:

h′l(pl) + λn(l) − βl = 0, ∀l (13)
λm(q) − αqλk(q) − θq = 0, ∀q (14)

where hl(pl) , tl

(
1
2 log

(
1 + pl

σl

)
− tl

)−1

, n(l) is the be-
ginning node of data link l, m(q) and k(q) are the beginning
and end nodes of energy link q respectively. The additional
complementary slackness conditions are:

λn

 ∑
l∈Od(n)

pl +
∑

q∈Oe(n)

yq − En −
∑

q∈Ie(n)

αqyq

 = 0, ∀n

(15)

βl
[
pl − σl

(
e2tl − 1

)]
= 0, ∀l (16)

θqyq = 0, ∀q (17)

We now identify some properties of the optimal power allo-
cation in the following three lemmas.

Lemma 1 If the problem in (11) is feasible, then βl = 0, ∀l.

Proof: If the problem in (11) is feasible, its objective function
must be bounded. Equality in the second set of constraints in
(11) for any l implies that the objective function is unbounded.
Therefore, we must have strict inequality in those constraints
for all l, and from (16) we conclude that βl = 0,∀l. �

Lemma 2 At every node n, the optimal power allocation
amongst different outgoing data links satisfies

h′l(pl) = h′m(pm), ∀l,m ∈ Od(n) (18)

Proof: From (13) and Lemma 1 we have,

h′l(pl) = −λn(l), ∀l (19)

For outgoing data links l, m that belong to the same node n,

h′l(pl) = −λn = h′m(pm) (20)

which gives the desired result. �

Lemma 3 If some energy is transferred through energy link
q across nodes (i, j), then,

h′l(pl) = αqh
′
m(pm), ∀l ∈ Od(i), ∀m ∈ Od(j) (21)

Proof: If some energy is transferred through energy link q,
then yq > 0, and from (17), θq = 0. From (14), we have,

λi = αqλj (22)

Writing (13) for nodes i and j, we have

h′l(pl) = −λi, ∀l ∈ Od(i) (23)
h′m(pm) = −λj , ∀m ∈ Od(j) (24)

and the result follows from combining (22), (23) and (24). �

In the following two sub-sections, we separately solve the
problem for the cases of no energy transfer and with energy
transfer.

B. Solution for the Case of No Energy Transfer

In the case of no energy transfer, we have yq = 0, ∀q, and
the problem becomes only in terms of pl as stated below:

min
pl

∑
l

tl
1
2 log

(
1 + pl

σl

)
− tl

s.t.
∑

l∈Od(n)

pl ≤ En, ∀n

pl ≥ σl
(
e2tl − 1

)
, ∀l (25)

This problem can be decomposed into N sub-problems as:

min
pl≥0

∑
n

∑
l∈Od(n)

tl
1
2 log

(
1 + pl

σl

)
− tl

s.t.
∑

l∈Od(n)

pl ≤ En, ∀n

pl ≥ σl(e2tl − 1), ∀l (26)

Since the constraint set depends only on the powers of node
n, there is no interaction between the nodes. Every node will
independently solve the following optimization problem:

min
pl≥0

∑
l∈Od(n)

tl
1
2 log

(
1 + pl

σl

)
− tl

s.t.
∑

l∈Od(n)

pl ≤ En

pl ≥ σl
(
e2tl − 1

)
, ∀l ∈ Od(n) (27)

The feasibility of (27) requires En ≥
∑
l∈Od(n) σl(e

2tl − 1)
which we assume holds. Similar to (11), (27) is a convex
optimization problem with the KKT optimality conditions:

h′l(pl) + λ = 0, ∀l ∈ Od(n) (28)

with the complementary slackness condition:

λ

 ∑
l∈Od(n)

pl − En

 = 0 (29)

The Lagrange multipliers for the second set of constraints in
(27) are not included, because similar to Lemma 1, they will



always be satisfied with strict inequality. From (28), we have

−λ = h′l(pl) (30)

=
−tl
2σl

[
1

2
log

(
1 +

pl
σl

)
− tl

]−2(
1 +

pl
σl

)−1

(31)

After some algebraic manipulations, we have:

pl(λ) = σl

(
e2(W (∆)+tl) − 1

)
(32)

where ∆ =
√

tle
−2tl

2λσl
and W (·) is the Lambert W function

defined as the inverse of the function w → wew [14].
Next, we prove some monotonicity properties for the opti-

mal solution, as a function of the qualities the channels and
the amounts of data flows through the channels.

Lemma 4 For fixed tl, pl is monotone increasing in σl.

Proof: By differentiating (32) and using the following [14]

dW (z)

dz
=

W (z)

z(1 +W (z))
(33)

it can be verified that

∂pl
∂σl

= e2tl
e2W (∆)

1 +W (∆)
− 1 > 0 (34)

where the last inequality follows from e2tl > 1, ∀tl > 0, and
e2W (∆)

1+∆ > 1, ∀∆ > 0, proving the lemma. �

This lemma shows that, for fixed data flows, more power
should be allocated to channels with more noise power, similar
to channel inversion power control [4].

Lemma 5 For fixed σl, pl is monotone increasing in tl.

Proof: By differentiating (32), it can be verified that

∂pl
∂tl

=
σl(W (∆) + 2tl) e

2(W (∆)+tl)

tl(1 +W (∆))
> 0 (35)

proving the lemma. �

This lemma shows that, for fixed channel qualities, more
power should be allocated to links with more data flow.

Finally, we solve (27) in the following way: From the total
energy constraint, we have

∑
l pl(λ

∗) = En. We perform a one
dimensional search on λ to find λ∗ that satisfies

∑
l pl(λ

∗) =
En. Once λ∗ is found, the optimal power allocations are found
by plugging λ∗ in (32).

C. Solution for the Case with Energy Transfer

In this section, we solve for the case with energy transfer,
i.e., yq ≥ 0 for some q. We assume that some energy yq > 0
is transferred from node i to node j on energy link q. Writing
(32) for the outgoing data links of node i and node j we have,

pl(λi) = σl

(
e2(W (∆i)+tl) − 1

)
, ∀l ∈ Od(i) (36)

pl(λj) = σl

(
e2(W (∆j)+tl) − 1

)
, ∀l ∈ Od(j) (37)

where ∆i =
√

tle
−2tl

2λiσl
and ∆j =

√
tle

−2tl

2λjσl
. From (22) we

have λi = αqλj . The energy causality constraints on node i
and j are ∑

l∈Od(i)

pl(λ
∗
i ) = Ei − yq (38)

∑
l∈Od(j)

pl(λ
∗
j ) = Ej + αqyq (39)

Equations (22), (38) and (39) imply

αq
∑

l∈Od(i)

pl(αqλ
∗
j ) +

∑
l∈Od(j)

pl(λ
∗
j ) = αqEi + Ej (40)

which can be solved by a one-dimensional search on λ∗j .
We solve (11) by iteratively allowing energy to flow through

a single link at a time provided all links are visited infinitely
often. Since we do not know which energy links will be
active in the optimal solution, we may need to call back any
transferred energy in the previous iterations. To perform this,
we keep track of transferred energy in each energy link by
means of meters as in [1]. In particular, we open only one
energy link q at a time and whenever energy flows through
link q, (40) must be satisfied. At every iteration, we search for
λ∗j that satisfies (40). If no solution to (40) can be found, then
previously transferred energy must be called back to the extent
possible according to the meter readings. Our algorithm will
converge to a local minimum because each iteration strictly
decreases the objective function and bounded real monotone
sequences always converge. This local minimum is the global
minimum due to the convexity of the problem.

IV. NUMERICAL RESULTS

In this section, we give simple numerical results to illustrate
the resulting optimal policies. We study two network topolo-
gies shown in Figs. 2 and 3. For all examples, we assume
σl = 0.1 units ∀l. The slot length is of 1 unit, so that we use
power and energy; rate and data interchangeably.

A. Network Topology 1

We first consider the network topology in Fig. 2 with
one source, one destination and three relays in between.
The data and energy links are shown and labeled as in
Fig. 2 where lis represent data links and yqs represent en-
ergy links. The fixed data flows are t = [t1, . . . , t7] =
[2, 1, 0.5, 0.125, 2.125, 0.375, 0.5] units. The energy arrival
vector is E = [E1, . . . , E4] = [15, 8, 5, 1] units and energy
transfer efficiencies are α = [α1, α2, α3] = [0.6, 0.5, 0.5].

The optimal energy transfer vector is found as y =
[y1, y2, y3] = [1.82, 4.75, 2.85] units and power alloca-
tion vector after energy transfer is p = [p1, . . . , p7] =
[11.01, 2.15, 0.67, 0.14, 9.42, 0.37, 0.67] units. Lemmas 2 and
3 can be verified numerically: h′l(pl) equalizes for different
outgoing links of the same node, for example, on links l1 and
l2 (Lemma 2); and where some energy is transferred, h′l(pl)
is proportional to the energy transfer efficiency of that energy
transfer link, for example, h′3(p3)/h′1(p1) = α1 (Lemma 3). It
is interesting to note that node 4 has transferred more energy
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Fig. 2. Network topology 1.

than it initially had, which means that most of the transferred
energy has been routed from other nodes. This is due to the
high data flow on link l5 which leads to a higher energy
demand at node 2.

B. Network Topology 2

We next consider the star topology in Fig. 3 where 5 sources
are communicating with one destination similar to a multiple
access scenario. The data flows are t = [0.5, 2, 0.5, 0.5, 2]
units. The energy arrivals to all the nodes are assumed to be
the same, i.e., En = 15 units, ∀n. The wireless energy transfer
efficiencies are αq = 0.5,∀q.

The optimal energy transfer vector is found as y =
[11.92, 0, 9.66, 16.29, 0] units and the power vector after en-
ergy transfer is p = [3.07, 20.96, 5.33, 3.53, 23.15] units. This
system is symmetric in terms of energy arrivals, channel noises
and energy transfer efficiencies, and furthermore t1 = t3 = t4
and t2 = t5. In this scenario, one might expect p1 = p3 = p4

and p2 = p5. However, in the optimal solution p5 > p2. We
explain the reason for this asymmetry as follows. Due to the
high data loads on links l2 and l5, there is no incentive for
these nodes to share their energy. Then, in the optimal solution,
y2 = y5 = 0 and nodes 2 and 5 act as energy sink nodes where
energy is collected and not sent out. We see that node 5 has
two nodes transferring energy to it while node 2 has only one
node transferring energy. Then, p5 > p2.

V. CONCLUSION

We considered the energy management and energy routing
problems for delay minimization in energy harvesting net-
works with energy cooperation. In this network, there are data
links where data flows and energy links where energy flows.
For the energy management problem at each node, we showed
that the allocated power increases with the noise power and the
data flow amount on the outgoing link. For the energy routing
problem among nodes, we developed an iterative algorithm
that determines the optimal capacity allocations and energy
routes in the network. In this work, we considered a single
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energy arrival at each node. Our work can be extended for
the case of multiple energy arrivals by modifying the network
graph in an appropriate manner and using the developed iter-
ative algorithm. Joint determination of data and energy routes
[15] in networks with energy cooperation can be considered
in future work.
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