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Abstract—We consider the energy harvesting two user Gaus-
sian multiple access channel (MAC), where both of the users
harvest energy from nature and their data packets arrive
intermittently over time. We find the optimal offline transmit
power and rate allocations that maximize the sum rate. First,
we show that the optimization problem can be formulated in
terms of the data rates only, instead of both transmission powers
and data rates. Next, we show that the optimal sum rates
are non-decreasing in time, similar to the single-user optimal
powers. Then, we use a dual decomposition method to solve this
problem efficiently. Specifically, we show that this problem is
equivalent to three subproblems where each subproblem is a
throughput maximization problem with fading, data and energy
arrival constraints. We decompose the problem into inner and
outer optimization problems and solve the overall problem using
the subgradient descent method. Finally, we consider a relaxed
problem where the data and energy arrivals to both of the users
are merged into single energy and data queues and show that
the optimal sum rates of the original problem are majorized by
the solution to this relaxed problem.

I. INTRODUCTION

We consider the energy harvesting multiple access channel
(MAC), Fig. 1, where data packets as well as harvested
energies arrive at the transmitters intermittently over time. We
determine the optimum power and rate allocation policies of
the users in order to maximize the sum rate of the system.

There has been a considerable amount of recent work in
power control for energy harvesting communications [1]–[22].
In [1], the transmission completion time minimization problem
is solved for an unlimited-sized battery. In [2], the through-
put maximization problem is solved and its equivalence to
the transmission completion time minimization problem is
shown for an arbitrarily-sized battery. In [3], [5]–[10] the
problem is extended to fading, broadcast, multiple access and
interference channels. Throughput maximization problem with
battery imperfections is considered in [11], [12] and processing
costs are incorporated in [13]–[15]. Two-hop communication
is considered with energy harvesting nodes for half- or full-
duplex relay settings in [16]–[21]. Energy cooperation is
introduced in [22]. Of particular relevance to us are references
[8], [9], [23] where optimal scheduling problems on a MAC
are investigated. In [23], minimum energy scheduling problem
over a MAC where data packets arrive over time is solved.
In [8], a MAC with energy arrivals is considered but it is
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Fig. 1. Multiple access channel (MAC) with energy and data arrivals

assumed that the users are infinitely backlogged, i.e., the data
packets do not arrive over time. In [9], an energy harvesting
MAC with additional maximum power constraints on each
user is considered. These previous works consider either data
arrivals or energy arrivals but not both; in our current work,
we consider both constraints.

In this paper, we first show that the optimization problem
can be formulated in terms of the data rates only, instead
of both transmission powers and data rates. Next, we show
that the optimal sum rate is non-decreasing in time; this is
similar to the single-user optimal powers [1]. Then, we use a
dual decomposition method to solve this problem efficiently.
Specifically, we show that this problem is equivalent to
three subproblems where each subproblem is a throughput
maximization problem with fading, data and energy arrival
constraints. We decompose the problem into inner and outer
optimization problems and solve the overall problem using the
subgradient descent method.

Finally, we consider a relaxed problem where the data and
energy arrivals to both of the users are merged into single
energy and data queues. Without the data arrivals, it was
observed in [8], that the optimal sum rates are equal to the
single-user optimal rates with the energies from both users
merged. This may naturally suggest that, with the presence
of data causality constraints, the optimal sum rates may be
given by the single-user optimal rates with both data and



energy arrivals merged. We show that this suggestion is not
entirely valid, but a majorization relationship exists between
these two solutions. In particular, we show that at every slot,
the optimal rates for the MAC problem transmit less total data
than the single user rates with data and energy arrivals merged.
Furthermore, we show that, if there exists a slot such that the
optimal rates for the MAC problem and the single user relaxed
problem transmit the same amount of data, then the vector of
single-user rates are majorized by the optimal MAC rates.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the energy harvesting MAC with intermittent
data and energy arrivals as shown in Fig. 1. The harvested
energies are saved in the corresponding batteries. The physical
layer is a Gaussian MAC with unit-variance Gaussian noise,
whose capacity region with transmitter powers p1, p2 is given
by [8]

CMAC(p1, p2) =

{
r1 ≤ f(p1), r2 ≤ f(p2),

r1 + r2 ≤ f(p1 + p2)

}
(1)

where f(x) = 1
2 log(1+x). There are N unit-length slots. We

use subscripts 1 and 2 to denote the parameters of users 1 and
2. In slot i, there are energy and data arrivals to both users
with amounts E1i, E2i and d1i, d2i, respectively. We denote
the transmission powers and data rates of users 1 and 2 as
p1i, r1i and p2i, r2i, respectively. We denote these power and
rate sequences with the vectors p1,p2, r1, r2.

The energy that has not arrived yet cannot be used, leading
to the following energy causality constraints:

k∑
i=1

p1i ≤
k∑

i=1

E1i, 1 ≤ k ≤ N (2)

k∑
i=1

p2i ≤
k∑

i=1

E2i, 1 ≤ k ≤ N (3)

The data that has not arrived yet cannot be transmitted, leading
to the following data causality constraints:

k∑
i=1

r1i ≤
k∑

i=1

d1i, 1 ≤ k ≤ N (4)

k∑
i=1

r2i ≤
k∑

i=1

d2i, 1 ≤ k ≤ N (5)

The rate allocations must be achievable for the MAC in each
slot:

(r1i, r2i) ∈ CMAC(p1i, p2i), ∀i (6)

We aim to maximize the sum rate:

max
p1,p2,r1,r2

N∑
i=1

r1i + r2i

s.t. (2)-(6) (7)

III. FORMULATION IN TERMS OF RATES ONLY

We start this section by reformulating the problem in terms
of the rates only. We consider the following energy causality
constraints on the rates:

k∑
i=1

22r1i − 1 ≤
k∑

i=1

E1i, ∀k (8)

k∑
i=1

22r2i − 1 ≤
k∑

i=1

E2i, ∀k (9)

k∑
i=1

22(r1i+r2i) − 1 ≤
k∑

i=1

E1i + E2i, ∀k (10)

and the corresponding throughput maximization problem:

max
r1i,r2i

N∑
i=1

r1i + r2i

s.t. (4), (5), (8)-(10) (11)

The following lemma, proved in Appendix A, shows that this
is an equivalent representation for the problem in (7).

Lemma 1 The problems in (7) and (11) are equivalent.

We solve the problem in (11) in the remainder of this paper.
We denote the optimal solution to (11) as (r∗1i, r

∗
2i). We have

the following lemma.

Lemma 2 The optimal sum rate is non-decreasing in time,
i.e., r∗1i + r∗2i ≤ r∗1,i+1 + r∗2,i+1,∀i.

Proof: The proof follows by contradiction. Assume that there
is a slot k such that r∗1k + r∗2k > r∗1,k+1 + r∗2,k+1. We will
show that this policy cannot be optimal. There can be three
cases, case 1: r∗1k > r∗1,k+1, r

∗
2k ≤ r∗2,k+1, case 2: r∗2k >

r∗2,k+1, r
∗
1k ≤ r∗1,k+1 and case 3: r∗2k > r∗2,k+1, r

∗
1k > r∗1,k+1.

Assume that the first case happens. Consider the modified
policy r̂1k = r̂1,k+1 =

r∗1k+r∗1,k+1

2 . This modified policy is
feasible and transmits the same amount of data as r∗1i, r

∗
2i, but

due to the convexity of the functions 22(r1i+r2i) and 22r1i ,
consumes less energy. This additional energy can be used to
transmit more data and therefore the policy (r∗1i, r

∗
2i) cannot

be optimal. For the second case, we set r̂2k = r̂2,k+1 =
r∗2k+r∗2,k+1

2 and for the third case we modify both r1k, r1,k+1

and r2k, r2,k+1 to reach a similar contradiction. �

IV. ITERATIVE SOLUTION

In this section, we will solve the problem by utilizing a dual
decomposition method. The problem in (11) is equivalent to:

max
r1i,r2i,wi

N∑
i=1

wi

s.t. (4), (5), (8), (9)
k∑

i=1

22wi − 1 ≤
k∑

i=1

E1i + E2i, ∀k



wi = r1i + r2i, ∀i (12)

which can be relaxed to:

max
r1i,r2i,wi

N∑
i=1

wi

s.t. (4), (5), (8), (9)
k∑

i=1

22wi − 1 ≤
k∑

i=1

E1i + E2i, ∀k

wi ≤ r1i + r2i, ∀i (13)

since at slots where the last inequality is not satisfied with
equality, r1i and r2i can be decreased until equality is satisfied
without changing the throughput. The problem in (13) is
convex since the objective function is linear and the constraints
are convex constraints. Denote the following sets:

R1 = {r1i ∈ R+ : r1i satisfies (4), (8)} (14)

R2 = {r2i ∈ R+ : r2i satisfies (5), (9)} (15)

Rw = {wi ∈ R+ :

k∑
i=1

22wi − 1 ≤
k∑

i=1

E1i + E2i, ∀k} (16)

Now, we write the partial Lagrangian function corresponding
only to the last constraint in (13) as follows:

L(r1, r2,w,γ) =−
N∑
i=1

wi +

N∑
i=1

γi (wi − r1i − r2i) (17)

Now, the dual function is [24]:

g(γ) = min
r1i∈R1,r2i∈R2,wi∈Rw

L(r1, r2,w,γ) (18)

= min
r1i∈R1

−
N∑
i=1

γir1i + min
r2i∈R2

−
N∑
i=1

γir2i

+ min
wi∈Rw

N∑
i=1

(γi − 1)wi (19)

= − max
r1i∈R1

N∑
i=1

γir1i − max
r2i∈R2

N∑
i=1

γir2i

− max
wi∈Rw

N∑
i=1

(1− γi)wi (20)

For fixed γ, we define the following subproblems:

g1(γ) = max
r1i∈R1

N∑
i=1

γir1i (21)

g2(γ) = max
r2i∈R2

N∑
i=1

γir2i (22)

g3(γ) = max
wi∈Rw

N∑
i=1

(1− γi)wi (23)

Now, we show that in addition to γ ≥ 0, which follows since
γ is Lagrange multiplier, we must also have γ ≤ 1.

Lemma 3 An optimal dual variable γ∗ satisfies γ∗i ≤ 1, ∀i.

Proof: Assume otherwise that γ∗k > 1 for some k. This implies
from (23) that w∗k = 0. From duality w∗k also solves (13).
For fixed r1i, r2i, the optimal wi in (13) can be obtained by
directional waterfilling on energy levels E1i+E2i with ceiling
levels capped at r1i+r2i, which means w∗k = 0 is only possible
if r∗1k + r∗2k = 0. From Lemma 2, we have r∗1i + r∗2i non-
decreasing, thus r∗1k + r∗2k = 0 implies r∗1i + r∗2i = 0, ∀i ≤
k. This cannot be optimal if there is a non-zero energy and
data arrival in the first slot, which we assume to be the case.
Therefore, we have γ∗k ≤ 1,∀k. �

Slater’s condition holds for the problem in (13) [24]. There-
fore, there is no duality gap and the optimal values of the dual
problem and the primal problem are the same. This implies
that (13) is equivalent to the following problem:

max
0≤γ≤1

g(γ) (24)

or equivalently:

min
0≤γ≤1

h(γ) (25)

where h(γ) , g1(γ)+g2(γ)+g3(γ). We observe that for fixed
γ we can solve the subproblems independently. We solve the
problem in (25) by separately solving the outer minimization
and inner maximization problems.

A. Inner Maximization
Here we focus on the inner problems (21)-(23). We start by

analyzing (21), which is:

max
r1i

N∑
i=1

γir1i

s.t.
k∑

i=1

r1i ≤
k∑

i=1

d1i, ∀k

k∑
i=1

22r1i − 1 ≤
k∑

i=1

E1i, ∀k (26)

The problem in (26) is a single-user throughput maximiza-
tion problem with data arrivals d1i, energy arrivals E1i and
generalized fading levels as γi, similar to the problem in
[3]. This problem can be solved by directional waterfilling
the data arrivals with base levels γ−1i and then the energy
arrivals with base water levels γ−1i and finally taking the
minimum of the two solutions. Any unused data or energy
must be carried over to the future slots. The optimality of
this algorithm can be shown similar to [1, Theorem 3]. The
problem in (22) has the same structure and is similarly solved.
The problem in (23) has only energy harvesting constraints
and is solved directly using the approach in [3] with fad-
ing levels (1 − γi)

−1 and energy levels E1i + E2i. Since
0 ≤ γi ≤ 1, the base water levels are always non-negative.
Denote the solutions to g1(γ), g2(γ), g3(γ) as r∗1i(γ), r

∗
2i(γ)

and w∗i (γ), respectively. Once the optimal solutions are found,
we have g1(γ) =

∑
i γir

∗
1i(γ), and g2(γ) =

∑
i γir

∗
2i(γ), and

g3(γ) =
∑

i(1− γi)w∗i (γ).



B. Outer Minimiziation

The outer minimization problem is the problem of finding
optimal γ in (25). For this problem we will use the normalized
subgradient method, which is defined as

γk+1 = γk − αk
qk

‖qk‖
(27)

where γk+1 is the kth iterate, qk is any subgradient of h at
γk and αk > 0 is the kth step size. For completeness, first we
define the subgradient of a function: q is a subgradient of h
at x if [24, Eq. (6.20)]

h(y) ≥ h(x) + qT(y− x), ∀y (28)

Now we show that a subgradient for h(γ) is readily available
once the inner maximization problems are solved.

Lemma 4 The vector r∗1(γ
k) + r∗2(γ

k) − w∗(γk) is a sub-
gradient for h(γ) at γk.

Proof: Similar to the discussion that follows [25, Section 6.1,
Eq. (1.1)] we have:

h(γ) ≥
N∑
i=1

[
γir
∗
1i(γ

k) + γir
∗
2i(γ

k) + (1− γi)w∗i (γ(k))
]

=

N∑
i=1

[
γki r
∗
1i(γ

k) + γki r
∗
2i(γ

k) + (1− γki )w∗i (γ(k))
]

+

N∑
i=1

(γi − γki )
(
r∗1i(γ

k) + r∗2i(γ
k)− w∗i (γ(k))

)
= h(γk) + (r∗1(γ

k) + r∗2(γ
k)−w∗(γk))T(γ − γk)

(29)

where the inequality follows from the fact that r∗1i(γ
k) ∈ R1

so feasible for g1(γ) but may not solve g1(γ), r∗2i(γ
k) ∈ R2

but may not solve g2(γ), and w∗i (γ
(k)) ∈ Rw but may not

solve g3(γ). �

Using this subgradient, the method in (27) reduces to:

γk+1 =

{
γk − αk

r∗1(γ
k) + r∗2(γ

k)−w∗(γk)

‖r∗1(γk) + r∗2(γ
k)−w∗(γk)‖

}⊕
(30)

where the operator ⊕ is defined as x⊕ , max{0,min{x, 1}}
and it is the projection of x to the set 0 ≤ x ≤ 1. This is
done so that the updates of γ stay in the feasible range. We
note that the subgradient method is not a descent method, i.e.,
the iterations at every step do not necessarily decrease the
objective value. Therefore, it is necessary to keep track of the
best point found so far. At each step, we set:

hkbest = min{hk−1best , h(γ
k)} (31)

We denote γk
best as the argument of hkbest. It can be shown that

for appropriately selected αk, hkbest → h∗ [25, Section 6.3].
Furthermore, if the step size αk is chosen such that

∞∑
k=1

αk =∞ (32)

∞∑
k=1

α2
k <∞ (33)

then γk
best → γ∗ [26, Proposition 5.1]. Once the optimal

γ∗ is found, w∗i (γ
∗) is the optimal sum rate and we can

find r∗1i(γ
∗), r∗2i(γ

∗) as the optimal solutions. If r∗1k(γ
∗) +

r∗2k(γ
∗) > w∗k(γ

∗) for some slot k then we can decrease first
or second user rates until equality is achieved.

V. RELAXED PROBLEM AND MAJORIZATION

Without the data causality constraints of (4) and (5) it was
observed in [8], that the optimal sum rate is equal to the
single-user optimal rate with the energies merged as E1i+E2i.
This may naturally suggest that, with the presence of the data
causality constraints, the optimal sum rate is given by the
single-user optimal rate with both data and energy causality
constraints. In this section, we show that this suggestion is not
entirely valid, but a majorization relationship exists between
these two solutions. Consider the following problem:

max
qi

N∑
i=1

qi

s.t.
k∑

i=1

22qi − 1 ≤
k∑

i=1

E1i + E2i, ∀k

k∑
i=1

qi ≤
k∑

i=1

d1i + d2i, ∀k (34)

This problem can be solved using the geometric approach in
[1] or the directional waterfilling with both data and energy
arrivals in [3]. We note that the problem in (34) is a relaxed
version of (11) where the energy arrivals and data arrivals
are merged to a single-user. I.e., we sum up (4) and (5) to
obtain a single data arrival constraint and remove (8) and (9).
We denote the solution to (34) as q∗i . Now, we show a weak
majorization result whose proof is provided in Appendix B.

Lemma 5 We must have
∑k

i=1 r
∗
1i + r∗2i ≤

∑k
i=1 q

∗
i ,∀k.

Lemma 6 If at any slot k, we have
∑k

i=1 r
∗
1i+r

∗
2i =

∑k
i=1 q

∗
i ,

then
∑k

i=1 2
2(r∗1i+r∗2i) ≥

∑k
i=1 2

2q∗i . If in addition, we have∑k
i=1 2

2q∗i − 1 =
∑k

i=1E1i + E2i, then we must have r∗1i +
r∗2i = q∗i for i = 1, . . . , k.

Proof: The proof follows from majorization theory. We know
that r∗1i+r

∗
2i and q∗i are non-decreasing in i, so they are ordered

vectors. From Lemma 5, we have
∑l

i=1 r
∗
1i + r∗2i ≤

∑l
i=1 q

∗
i

∀l < k and if in addition we have
∑k

i=1 r
∗
1i + r∗2i =

∑k
i=1 q

∗
i

this means that the vector q∗i is majorized by the vector
r∗1i + r∗2i. This means

∑k
i=1 g(r

∗
1i + r∗2i) ≥

∑k
i=1 g(q

∗
i ) for

any convex, increasing g and this is true for g = 2x [27,
Section I.3.C1B]. Furthermore, if we have

∑k
i=1 2

2q∗i − 1 =∑k
i=1E1i + E2i, then we have

∑k
i=1 2

2(r∗1i+r∗2i) − 1 ≥∑k
i=1E1i +E2i. From energy feasibility of r∗1i + r∗2i we also

have
∑k

i=1 2
2(r∗1i+r∗2i) − 1 ≤

∑k
i=1E1i + E2i. These two
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Fig. 2. Error between the best iteration so far and the optimal value

constraints are feasible if and only if
∑k

i=1 2
2(r∗1i+r∗2i) − 1 =∑k

i=1E1i + E2i =
∑k

i=1 2
2q∗i − 1. From the strict convexity

of 2x and therefore strict Schur-convexity of
∑

2x we must
have r∗1i + r∗2i = q∗i ,∀i ≤ k. �

In some special instances of the problem, Lemmas 5 and 6
can be utilized, by enforcing the constraint r1i + r2i = q∗i ,∀i,
replacing r2i = q∗i − r1i and solving a single-user problem.

VI. NUMERICAL RESULTS

In this section we provide a numerical example over three
slots and illustrate the resulting optimal policies. Let E1 =
[2, 5, 5],E2 = [10, 3, 1],d1 = [2.6, 1.5, 2],d2 = [0.5, 3.25, 1].
The evolution of our iterative algorithm is shown in Fig. 2. The
step size is taken as αk = 0.1

k . The plot shows the gap between
the best iteration so far and the optimal value of the problem
(13), denoted by p∗. The algorithm converges after around 50
steps to reasonable accuracy. The optimal rates are then found
as w∗i = [1.29, 1.76, 1.76], r∗1i = [0.79, 0.86, 1.01], r∗2i =
[0.5, 1.07, 1]. We see that w∗i ≤ r∗1i + r∗2i,∀i and at slots 2
and 3 we have w∗i < r∗1i + r∗2i. Therefore, we can decrease
the rates at slots 2 and 3 to achieve equality, i.e., we set
r∗1i = [0.79, 0.69, 0.76] and this r∗1i, r

∗
2i is the optimal solution.

VII. CONCLUSIONS

We considered the multiple access energy harvesting chan-
nel with intermittent data and energy arrivals. We first showed
that the optimization problem can be formulated in terms of
data rates only, instead of both transmission powers and data
rates. Next, we showed that the optimal sum rate is non-
decreasing in time. Then, we proposed a dual decomposition
method to solve this problem efficiently. Specifically, we
showed that this problem is equivalent to three subproblems
where each subproblem is a throughput maximization problem
with fading, data and energy arrival constraints. We decom-
posed the problem into inner and outer optimization problems
and solved it using the subgradient descent method. Finally,
we considered a relaxed problem where the data and energy

arrivals to both users are merged into single energy and data
queues. In this case, we showed that at every slot, the optimal
sum rates of the original problem transmit less data than the
single-user rates of this relaxed problem. Furthemore, if there
exists a slot such that the optimal sum rates of the original
problem and the single-user rates of the relaxed problem
transmit the same amount of total data, then the single-user
rates are majorized by the optimal MAC rates.

APPENDIX A
PROOF OF LEMMA 1

Denote the feasible set and the optimal value of the problem
in (7) as (F1, T1) and that of the problem in (11) as (F2, T2).
First, we show T1 ≤ T2. For any (p1i, p2i, r1i, r2i) ∈ F1, from
(6) we have

p1i ≥ 22r1i − 1, p2i ≥ 22r2i − 1, (35)

p1i + p2i ≥ 22(r1i+r2i) − 1 (36)

These constraints imply
k∑

i=1

p1i ≥
k∑

i=1

22r1i − 1, ∀k (37)

k∑
i=1

p2i ≥
k∑

i=1

22r2i − 1, ∀k (38)

k∑
i=1

p1i + p2i ≥
k∑

i=1

22(r1i+r2i) − 1, ∀k (39)

Together with (2) and (3), (37)-(39) imply
k∑

i=1

22r1i − 1 ≤
k∑

i=1

E1i, ∀k (40)

k∑
i=1

22r2i − 1 ≤
k∑

i=1

E2i, ∀k (41)

k∑
i=1

22(r1i+r2i) − 1 ≤
k∑

i=1

E1i + E2i, ∀k (42)

This means (r1i, r2i) ∈ F2 and therefore T1 ≤ T2.
Now, we show T2 ≤ T1. For any (r1i, r2i) ∈ F2 we will

find p1i, p2i such that (p1i, p2i, r1i, r2i) ∈ F1. To accomplish
this, we solve the following feasibility problem:

max
p1i,p2i

1

s.t. p1i ≥ 22r1i − 1, ∀i
p2i ≥ 22r2i − 1, ∀i
p1i + p2i ≥ 22(r1i+r2i) − 1, ∀i
k∑

i=1

p1i ≤
k∑

i=1

E1i,

k∑
i=1

p2i ≤
k∑

i=1

E2i, ∀k (43)

We can let p1i + p2i = 22(r1i+r2i)− 1,∀i without changing
the optimal value of the feasibility problem. Now, we have the
following set of inequalities to be satisfied:

p1i ≥ 22r1i − 1, ∀i (44)



p1i ≤ 22(r1i+r2i) − 22r2i , ∀i (45)
k∑

i=1

p1i ≤
k∑

i=1

E1i, ∀k (46)

k∑
i=1

p1i ≥
k∑

i=1

22(r1i+r2i) − 1− E2i, ∀k (47)

Now, we note that this set of inequalities is consistent by
showing every lower bound is no larger than every upper
bound. (44) is consistent with (45) since 22(x+y) − 22y ≥
22x − 1,∀x, y ≥ 0. (44) is consistent with (46) since r1i
satisfies (40). (45) is consistent with (47) since r2i satisfies
(41) and finally (46) is consistent with (47) since r1i, r2i
satisfy (42). We also have p1i ≥ 0 which is consistent
with both (45) and (46) since these lower bounds are non-
negative. This feasibility problem then has a solution and there
exists p1i, p2i that solve (43). This means that there exists
(p1i, p2i, r1i, r2i) ∈ F1 and T2 ≤ T1, proving the lemma.

APPENDIX B
PROOF OF LEMMA 5

The statement is true for k = N because the optimal value
of problem (34) is at least as large as that of (11) since any
profile that is feasible for (11) is also feasible for (34). We will
show that if the statement holds for slot k, i.e.,

∑k
i=1 r

∗
1i +

r∗2i ≤
∑k

i=1 q
∗
i then it also holds for slot k − 1. By induction

this will imply that it is true for all k. Assume on the contrary
that

∑k−1
i=1 r

∗
1i + r∗2i >

∑k−1
i=1 q

∗
i . Together with

∑k
i=1 r

∗
1i +

r∗2i ≤
∑k

i=1 q
∗
i this implies r∗1k + r∗2k < q∗k.

Now, we claim that we must have
∑k−1

i=1 22(r
∗
1i+r∗2i) >∑k−1

i=1 22q
∗
i . This is true because otherwise, up to slot k − 1,

the profile r∗1i+r
∗
2i sends more data than q∗i and in view of the

energy constraints in (34) leads to a more relaxed feasible set.
This means that, the profile q∗i can be replaced with r∗1i + r∗2i
for slots 1 to k − 1 and for the remaining slots k, . . . , N
more data can be transmitted because there is more energy
left. This contradicts the optimality of q∗i , therefore we must
have

∑k−1
i=1 22(r

∗
1i+r∗2i) ≤

∑k−1
i=1 22q

∗
i .

Note that this also means
∑k−1

i=1 22q
∗
i − 1 <

∑k−1
i=1 E1i +

E2i because otherwise r∗1i + r∗2i cannot be energy feasible.
From the assumption we have

∑k−1
i=1 r

∗
1i + r∗2i >

∑k−1
i=1 q

∗
i ,

which implies
∑k−1

i=1 q
∗
i <

∑k−1
i=1 d1i + d2i because otherwise

r∗1i+ r
∗
2i cannot be data feasible. These collectively mean that

slot k − 1 cannot be an energy or data exhausting slot for
q∗i and therefore q∗k−1 = q∗k. From this fact and r∗1i + r∗2i is
non-decreasing we have r∗1,k−1 + r∗2,k−1 ≤ r∗1k + r∗2k < q∗k =
q∗k−1 which implies r∗1,k−1 + r∗2,k−1 < q∗k−1. Together with∑k−1

i=1 r
∗
1i + r∗2i >

∑k−1
i=1 q

∗
i this implies

∑k−2
i=1 r

∗
1i + r∗2i >∑k−2

i=1 q
∗
i . Following the same reasoning as before, we have

that k− 2 is a non energy and data exhausting slot for q∗i and
therefore q∗k−2 = q∗k−1. We apply the same argument to reach
the conclusion that q∗1 = q∗2 = · · · = q∗k and r∗1i + r∗2i <

q∗i ,∀i ≤ k. This contradicts the assumption
∑k−1

i=1 r
∗
1i+ r

∗
2i >∑k−1

i=1 q
∗
i .
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