Clark School Home UMD
ECE

ECE News Story

Barg wins NSF grant for applications of coding theory to digital circuit design

Barg wins NSF grant for applications of coding theory to digital circuit design

Professor Alexander Barg (ECE/ISR) is the principal investigator for a new National Science Foundation Collaborative Research grant, Coding for Nano-Devices, Flash Memories, and VLSI Circuits. The three-year, $299K grant will explore applications of coding theory to digital circuit design.

Over the past 50 years, error-control coding has been employed with spectacular success by the communications and data storage industries to achieve performance trade-offs that would have been otherwise impossible. What has been recognized only recently is that coding theory could be just as useful in applications other than communications and storage.

The research will address a spectrum of technologies ranging from nanoscale circuits and memory chips to more conventional VLSI architectures. Problems in each technology are inherent to the physics of the underlying medium or system.

Barg will show that sophisticated coding—based upon methods and ideas deeply rooted in algebraic and combinatorial coding theory—offers a significant advantage that can enable circuit designers to achieve system trade-offs that would have been otherwise impossible.

Barg will develop new coding schemes for efficient addressing and correction of manufacturing defects in next-generation memory nano-devices, in particular the nano-wire crossbar. He also will come up with advanced coding techniques for high-density flash memories, based upon ground-breaking recent ideas of floating codes and rank-modulation coding. In addition, the research will develop coding schemes to reduce power dissipation and avoid cross-talk in VLSI circiuts, with particular emphasis on both on-chip and off-chip buses.

The techniques developed in a range of well-known combinatorial problems in coding theory, including covering arrays, separating codes, intersecting codes, and qualitatively independent set families will be applied to circuit design.

September 18, 2008


Prev   Next

Current Headlines

University of Maryland School of Engineering Announces Unprecedented Investment from A. James & Alice B. Clark Foundation

2018 Engineering Sustainability Day

Ulukus Named IEEE ITSOC Distinguished Lecturer for 2018-2019

Khaligh, McCluskey receive Boeing funding for more electric aircraft

UMD Awarded $1.4 Million to Design New Treatment for PCBs, Heavy Metals in Stormwater

Fischell Institute Now Accepting Fellowship Applications

Professor Salamanca-Riba receives $2M in Advanced Manufacturing Award

Scholarship Opportunity for Transfer Students

News Resources

Return to Newsroom

Search News

Archived News

Events Resources

Events Calendar

Additional Resources

UM Newsdesk

Faculty Experts