Clark School Home UMD
ECE

ECE News Story

Ulukus to investigate rechargable networks with energy cooperation

Ulukus to investigate rechargable networks with energy cooperation

Professor Sennur Ulukus (ECE/ISR) is the principal investigator for a new NSF collaborative research grant, “Rechargeable Networks with Energy Cooperation.” The $230K, three-year grant is managed by NSF’s Division of Computer and Network Systems.

Wireless energy transfer for energy harvesting communications will introduce a new breed of wireless networks with extended lifetime, deployable in challenging conditions or locations including in-infrastructure and in-body applications. Such nodes will not only harvest energy from nature to continually recharge their batteries but will be able to share energy with similar devices in the network via wireless energy transfer for uninterrupted and perpetual operation.

Energy cooperation through wireless energy transfer adds a significant new dimension on top of energy harvesting from natural resources, by giving nodes the ability to transfer some of their energies to neighboring nodes as needed. This technology enables the energy-receiving nodes to harvest energy from a man-made source via a targeted and optimized energy transfer process. As such, this technology is useful as an additional source of energy and as a mechanism to regulate the pace of incoming energy when ambient resources fluctuate. It also could be the only dependable energy source when ambient resources are not sufficient.

Ulukus will investigate communication theory, optimization and networking aspects of energy harvesting wireless networks with wireless energy transfer to determine the optimum transmission, scheduling, reception and networking methods for such systems. Her team will determine optimum wireless energy transfer times and amounts, on top of the energy harvesting profile of the user from natural energy sources, so as to optimize the overall energy arrival profile at the energy receiving node, to maximize the given objective of the user.

In addition, the Ulukus team will investigate energy cooperation schemes at the battery level that together with signal cooperation schemes at the physical layer improve the end-to-end throughput of the system in small to medium size networks. Finally, the researchers will study joint energy and information routing in multi-hop cooperative wireless networks, where energy and information flow together in the system due to wireless energy transfer. They will develop practical, distributed, local measurement-based, back-pressure type algorithms for the control of both data and energy queues in the network.

Related Articles:
Alumna Jing Yang begins tenure-track position at Penn State
Ulukus is PI for NSF grant on energy harvesting wireless communication devices
Alumna Jing Yang wins NSF CAREER Award
Ulukus to exploit wireless network interference in new NSF grant
Alum Ravi Tandon joins University of Arizona's ECE Department
NSF Funds Novel Research to Create Scalable Wireless Networking, Averting Usage Crisis
Ephremides receives NSF grant to bridge wireless network theories
Ephremides, Rong issued patent for cooperative transmission in wireless networks
Five ECE Students Named Future Faculty Fellows
Ephremides is invited speaker at Workshop on Network Science

September 2, 2015


Prev   Next

Current Headlines

Papamanthou Receives NSF CAREER Award to Improve Security in Cloud Computing

UMD Students Take Top Prize in National Deloitte Case Competition

Hafezi and Munday Promoted to Associate Professors with Tenure 

UAS Test Site Seeks Summer 2017 Interns

13th ECE Spring Internship and Career Fair Attracts 34 Employers

Rethinking Coastal Retreat

Liu Gives Plenary Keynote Speech at ICASSP 2017

Alumni Cup 2017

News Resources

Return to Newsroom

Search News

Archived News

Events Resources

Events Calendar

Additional Resources

UM Newsdesk

Faculty Experts