1. (5 points) For the following circuit the diode is described by \(I = I_S (\exp(V/V_T) - 1) \)
where \(V_T = 0.026 \text{V} \), \(I_S = 10^{-10} \text{A} \), \(V_{\text{bias}} = 5 \text{V} \) and \(V_{\text{in}}(t) = 0.001 \sin(0.001 \cdot 2\pi \cdot t) \).

 ![Circuit Diagram]

 a) Find \(R \) for a diode bias current of \(I = 3 \text{mA} \) as well as the Q point diode resistance, \(R_d \).
 b) Find \(V_{\text{out}}(t) \) for the given \(V_{\text{in}} \) when \(C = 0 \).

2. (5 points)
 For the following (which approximates a small signal equivalent circuit looking into the base-emitter of a BJT)
 a) Find the Thevenin’s equivalent impedance, \(Z(s) \), seen looking into the b-e port.
 b) Give the zeros and poles of \(Z(s) \).

 ![BJT Circuit Diagram]

3. (5 points)
 For the following circuit M2 has twice the width of M1 but the two transistors are otherwise identical. Assume no channel length modulation (that is, \(\lambda = 0 \)) and a positive threshold voltage, \(V_{\text{th}} > 0 \).
 If \(V_{\text{DD}} \) is much greater than twice the threshold voltage of M1 give the value of \(V_{\text{out}} \).

 ![CMOS Circuit Diagram]
4. (5 points)
Shown are two types of current mirrors.
Sketch (on the same graph) Iout1 & Iout2 for the same input current over the output voltage range $0 \leq V_{out} < V_{max}$, where V_{max} is the maximum op-amp bias voltage.
From the given data, $V_o = 0$, and

$$V = V_o = V_{in} - V_{out} = 5 - RI$$

1) $I = I_s \left(e^{\frac{V_{in}}{V_T}} - 1 \right) \Rightarrow I = I_s \left(e^{\frac{V_{in}}{V_T}} - 1 \right) + I_s = e^{\frac{V_{in}}{V_T}} \frac{V_{in} - IR}{V_T}$

$$V_{in} - R = V_T \ln \left(\frac{I_s}{I_s + 1} \right)$$

$$R = \frac{V_{in} - V_T \ln \left(\frac{I_s}{I_s + 1} \right)}{I}$$

$$= \left[5 - 2.6 \times 10^{-2} \times \left(\frac{3 \times 10^{-5}}{10^{-10} + 1} \right) \right] / 3 \times 10^{-3} \approx \left[5 - 2.6 \times 10^{-2} \times \ln 3 \times 10^{-7} \right] / 3 \times 10^{-3}$$

$$= \left[5 - 2.6 \times 10^{-2} \times (17.2167) \right] / 3 \times 10^{-3} = \left[5 - 0.4476 \right] / 3 \times 10^{-3} = \frac{4.552 \times 10^3}{3} = 1.517 \text{ KOhm}$$

For a point inside resistance, R_d

$$\frac{dI}{dV} = \frac{V_T}{R_d} = \frac{I_s}{V_T} \times \frac{V_T}{V_T} \approx \frac{I}{V_T} \Rightarrow V_d = \frac{V_T}{I}$$

$$R_d = \frac{V_T}{I} = \frac{2.6 \times 10^{-2}}{3 \times 10^{-3}} = 0.8667 \times 10^3 = 8.667 K\Omega$$

2) When $C = 0$, the signal current is from the $\frac{R_d}{R} \cdot \frac{V_{in}}{R}$

$$I = \frac{V_{in}}{R_d + R} \Rightarrow V_o = \frac{R}{R_d + R} \cdot V_{in}$$

$$= \frac{1.517 \times 10^3}{1.517 \times 10^3 + 8.667} \times V_{in}$$

$$\approx \frac{1.517}{1.526} V_{in} \approx 0.994 V_{in}$$

This is added to the bias, $V_{out} = RI = V_{{out}} = RI + 0.994 V_{in}$

$$= 1.551 + 2.000994 \cdot \sin (0.001 \times 18t)$$
3. Derive and solve for current I and voltage V and find I. By KCL

a) $I = \left(RC + \frac{1}{C} \right) V \quad \text{and} \quad V = \left(RC + G + \frac{2m}{C} \right) V, \quad G = \frac{1}{RC}$

$\Rightarrow \quad I = \frac{V}{RC + G + \frac{2m}{C}} = \frac{1}{RC + G + \frac{2m}{C}}$

$b) \quad \text{zero: } x + a = 0$

plote: $x = - \left(\frac{G + \frac{2m}{C}}{RC} \right)$
\[V_{DS} = V_{DS}' > V_{TH} - V_{PD} \text{ with } M_1 \text{ and } M_2 \text{ in saturation and always by KCL} \]
\[V_D = V_D' = V_S' \]
\[V_D' = \beta \left(V_{DD} - V_{OUT} - V_{PD} \right)^2 = V_D' = \beta \left(V_{OUT} - V_{PD} \right)^2 \]
\[\sqrt{2} \left(V_{DD} - V_{OUT} - V_{PD} \right) = \pm \left(V_{OUT} - V_{PD} \right) \]

As \(M_1 \) and \(M_2 \) are on their minima the + sign, giving

\[(1 + \sqrt{2}) V_{OUT} = \sqrt{2} V_{DD} + (1 - \sqrt{2}) V_{PD} \]

\[\Rightarrow \]
\[V_{OUT} = \frac{\sqrt{2}}{1 + \sqrt{2}} V_{DD} - \left(\frac{\sqrt{2} - 1}{\sqrt{2} + 1} \right) V_{PD} \]
In each circuit V_{DS} is the same for each transistor.

For the right set V_{DS} is the same for the two transistors giving $I_{out2} = I_{in}$ (when $V_{out} > 0$).

For the left set the two V_{DS} will differ for all but one V_{out}.