Part 1 (7 pts.)
Consider a $M \times M$ matrix. Each element of the matrix is either ♦ with probability p or ★ (with probability $q = 1 - p$), independently of all other elements.

(1a) (3 pts.) If A is the event that each row of the matrix contains at most one ♦, compute $P[A]$.

(1b) (4 pts.) If B is the event that each row and each column of the matrix contains exactly one ♦, compute $P[B]$.

Part 2 (6 pts.)
Let X be a random integer with probability mass function
\[(\forall x \in \mathbb{Z}) \quad P[X = x] = \frac{1}{3} \cdot 2^{-|x|}\]
Let Y be a noisy version of X; specifically,
\[Y = X + V,\]
where V is a random variable independent of X, having a triangular density:
\[f_V(v) = \begin{cases} \frac{2 - |v|}{4}, & |v| \leq 2 \\ 0, & |v| > 2 \end{cases}\]
Evaluate the conditional probability $P[X < 0 \mid Y = 0]$.

Part 3 (7 pts.)
Consider a circle of unit radius centered at point C. Let A be a fixed point on the circumference of the circle and B be a random point with a uniform distribution over the circumference.
Let S be the area of the triangle ABC.

(3a) (1 pt.) Determine the maximum possible value of S.

(3b) (4 pts.) Determine the expectation $E[S]$.

(3c) (2 pts.) Does the answer to (3b) change if A is also random, independent of B, and uniformly distributed over the circumference? Explain your answer.
Probability Fall 2015 - Solution

Part 1

1a) Each row has M elements which are independently diamond ("1") or asterisk ("0"). Thus for a given row,

$$P[\text{at most one } "1"] = q^M + M*p*q^{M-1}$$

Since there are M independently generated rows,

$$P[\text{each row contains at most one } "1"] = (q^M + M*p*q^{M-1})^M$$

1b) There are $M!$ configurations where each row and each column contains exactly one "1". Therefore

$$P[\text{each row and each column contains exactly one } "1"] = (M!)*(p*q^{M-1})^M$$

Part 2

Since Y has a continuous distribution, the conditional probability

$$P[X<0 \mid Y=0]$$

is the limit, as $d \rightarrow 0$, of

$$P[X<0 \mid Y \in D]$$,

where D is the event $\{ 0 < Y < d \}$. With $f(.)$ denoting the density of Y, we have the approximations

$$P[X<0, Y \in D] \sim \sum \{ P[X=x]*f(-x)*d , x<0 \}$$

and

$$P[Y \in D] \sim \sum \{ P[X=x]*f(-x)*d , \text{ all } x \}$$

Dividing and taking the limit as $d \rightarrow 0$, we have

$$P[X<0 \mid Y=0] = \frac{\sum \{ P[X=x]*f(-x) , x<0 \}}{\sum \{ P[X=x]*f(-x)*d , \text{ all } x \}}$$

With $f(.)$ as given, this reduces to a/b, where
\[a = P[X=-1]*f(1) = (1/3)*(1/2)*(1/4) = 1/24 \]

and
\[b = P[X=-1]*f(1) + P[X=0]*f(0) + P[X=1]*f(-1) = 1/4 \]

Thus \(P[X<0 \mid Y=0] = 1/6 \)

Part 3

If \(T \) (between \(-\pi\) and \(\pi\)) is the random angle corresponding to the arc \(AB \), then

- the conditional distribution of \(T \) given \(A \) is uniform over \((-\pi, \pi]\) and so is the (unconditional) distribution of \(T \);
- the area \(S \) of the triangle \(ABC \) equals \((1/2)*\sin(|T|)\)

3a) Maximum value of \(S \) is \(1/2 \)

3b) \(E[S] = \text{integral of } \sin(t)/(2\pi) \text{ over } [0,\pi] = 1/\pi \)

3c) If \(A \) is independent of \(B \), then the conditional distribution of \(B \) given a particular position \(Ao \) of \(A \) is the same as the unconditional (uniform) distribution of \(B \); thus

\[E[S|A=Ao] = 1/\pi \]

by the calculation above. Taking an expectation with respect to the distribution of \(A \) (which doesn't need to be uniform) results again in \(E[S] = 1/\pi \).