#1. (6 points) For the following circuit
 a) (3 points) Assume that the op-amp is ideal (linear, infinite gain, no input current). Find
 the transfer function \(\frac{v_o(s)}{v_i(s)} \).
 b) (3 points) Next assume that the op-amp gain, \(\frac{v_o}{v_d} \), rather than being infinite, has a first
 order pole and is given by
 \[K(s) = \frac{K_0}{s + s_0} \]
 where \(K_0 \) and \(s_0 \) are real positive constants. In this case find \(\frac{v_o(s)}{v_i(s)} \) and give its zeros
 and poles.

#2 (7 points) The standard form for a degree two bandpass filter is
 \[T(s, \zeta) = \frac{2\zeta}{s^2 + 2\zeta s + 1} \]
 where \(\zeta \) is the damping factor.
 a) (4 points) For sinusoidal excitations (that is, when \(s = j\omega \)) find the peak value of the magnitude
 \(|T(j\omega, \zeta)| \) for fixed \(\zeta \).
 b) (3 points) Obtain the sensitivity, \(S_{\zeta}^f \), of \(T(s, \zeta) \) to the damping factor \(\zeta \) and give its zeroes and
 poles. Here the sensitivity of a function \(f \) to a parameter \(x \) is defined as
 \[S_{\zeta}^f = \frac{\partial f}{\partial x}\frac{x}{f(x)} \] (Note: the
 physical meaning of \(S_{\zeta}^f \) is the relative change of \(f \) with respect to the relative change of \(x \)).

#3) (7 points) For the circuit below assume that when \(V_o = V_i \) both transistors are in saturation with the
 NMOS described by
 \[I_{on} = k_n(V_{GS} - V_{th})^2(1+\lambda V_{DS}) \]
 and matching PMOS (\(|V_{thp}| = V_{th}; \lambda_p = \lambda \)) except that \(k_p \neq k_n \).
 a) (3 points) Show that indeed the two transistors are in saturation when \(V_o = V_i \) (recall that
 saturation means that \(V_{GS} - V_{th} < V_{DS} \) for NMOS)
 b) (4 points) For \(V_{th} = 1 \text{Volt}, \lambda = 0.1 \) and \(VDD = 9 \text{Volts} \), find the ratio \(k_p/k_n \) such that \(V_i = V_o = 6 \text{Volts} \).
a) \(B_{0d}K_{V}V_{0} = V_{0} - V_{d} \) but \(V_{0} = 0 \) by op-amp virtual input connection

\[V_{0} = V_{d} \] or \(\frac{V_{0}}{V_{d}} = 1 \)

b) \(G_{0} = \frac{V_{0}}{V_{d}} = \frac{1}{k_{0}} \quad \Rightarrow \quad \frac{V_{0}}{V_{d}} = \frac{1}{k_{0}} = \frac{K_{0}}{1 + K_{0}} \quad \Rightarrow \quad \frac{V_{0}}{V_{d}} = \frac{K_{0}}{1 + K_{0}} \]

\[\frac{V_{0}}{V_{d}} = \frac{K_{0}}{1 + K_{0}} \]

\[\frac{V_{0}}{V_{d}} = \frac{K_{0}}{1 + K_{0}} \quad \Rightarrow \quad \text{Vout} @ V_{G} = V_{d} \quad (40 + K_{0}) \]

\[\text{Vout} @ V_{G} = \infty \]

2. \(\text{MacLeish} \) \(w_{m} \) for \(\omega_{m} \)

\[\left| T_{L}(\omega)\right| = \frac{(\omega_{m})^{2}}{(1 + (\omega_{m})^{2})} = \frac{G_{m} \omega_{m}}{1 + (\omega_{m})^{2}} \]

\[\left| T_{L}(\omega_{m})\right| = \frac{(\omega_{m})^{2}}{(1 + (\omega_{m})^{2})} = \frac{G_{m} \omega_{m}}{1 + (\omega_{m})^{2}} \]

\[\left| \omega_{m}\right| = \frac{2.5}{\omega_{m}} \left(\frac{2.5}{\omega_{m}} + 1 + \frac{1}{\omega_{m}} \right) = 2.5 \]

\[\left| \omega_{m}\right| = \frac{2.5}{\omega_{m}} \left(\frac{2.5}{\omega_{m}} + 1 + \frac{1}{\omega_{m}} \right) = 2.5 \]

\[\left| \omega_{m}\right| = \frac{2.5}{\omega_{m}} \left(\frac{2.5}{\omega_{m}} + 1 + \frac{1}{\omega_{m}} \right) = 2.5 \]

\[\left| \omega_{m}\right| = \frac{2.5}{\omega_{m}} \left(\frac{2.5}{\omega_{m}} + 1 + \frac{1}{\omega_{m}} \right) = 2.5 \]

\[\left| \omega_{m}\right| = \frac{2.5}{\omega_{m}} \left(\frac{2.5}{\omega_{m}} + 1 + \frac{1}{\omega_{m}} \right) = 2.5 \]

\[\left| \omega_{m}\right| = \frac{2.5}{\omega_{m}} \left(\frac{2.5}{\omega_{m}} + 1 + \frac{1}{\omega_{m}} \right) = 2.5 \]

\[\left| \omega_{m}\right| = \frac{2.5}{\omega_{m}} \left(\frac{2.5}{\omega_{m}} + 1 + \frac{1}{\omega_{m}} \right) = 2.5 \]

\[\left| \omega_{m}\right| = \frac{2.5}{\omega_{m}} \left(\frac{2.5}{\omega_{m}} + 1 + \frac{1}{\omega_{m}} \right) = 2.5 \]

\[\left| \omega_{m}\right| = \frac{2.5}{\omega_{m}} \left(\frac{2.5}{\omega_{m}} + 1 + \frac{1}{\omega_{m}} \right) = 2.5 \]

\[\left| \omega_{m}\right| = \frac{2.5}{\omega_{m}} \left(\frac{2.5}{\omega_{m}} + 1 + \frac{1}{\omega_{m}} \right) = 2.5 \]

\[\left| \omega_{m}\right| = \frac{2.5}{\omega_{m}} \left(\frac{2.5}{\omega_{m}} + 1 + \frac{1}{\omega_{m}} \right) = 2.5 \]

\[\left| \omega_{m}\right| = \frac{2.5}{\omega_{m}} \left(\frac{2.5}{\omega_{m}} + 1 + \frac{1}{\omega_{m}} \right) = 2.5 \]

\[\left| \omega_{m}\right| = \frac{2.5}{\omega_{m}} \left(\frac{2.5}{\omega_{m}} + 1 + \frac{1}{\omega_{m}} \right) = 2.5 \]

\[\left| \omega_{m}\right| = \frac{2.5}{\omega_{m}} \left(\frac{2.5}{\omega_{m}} + 1 + \frac{1}{\omega_{m}} \right) = 2.5 \]

\[\left| \omega_{m}\right| = \frac{2.5}{\omega_{m}} \left(\frac{2.5}{\omega_{m}} + 1 + \frac{1}{\omega_{m}} \right) = 2.5 \]

\[\left| \omega_{m}\right| = \frac{2.5}{\omega_{m}} \left(\frac{2.5}{\omega_{m}} + 1 + \frac{1}{\omega_{m}} \right) = 2.5 \]

\[\left| \omega_{m}\right| = \frac{2.5}{\omega_{m}} \left(\frac{2.5}{\omega_{m}} + 1 + \frac{1}{\omega_{m}} \right) = 2.5 \]

\[\left| \omega_{m}\right| = \frac{2.5}{\omega_{m}} \left(\frac{2.5}{\omega_{m}} + 1 + \frac{1}{\omega_{m}} \right) = 2.5 \]

\[\left| \omega_{m}\right| = \frac{2.5}{\omega_{m}} \left(\frac{2.5}{\omega_{m}} + 1 + \frac{1}{\omega_{m}} \right) = 2.5 \]

\[\left| \omega_{m}\right| = \frac{2.5}{\omega_{m}} \left(\frac{2.5}{\omega_{m}} + 1 + \frac{1}{\omega_{m}} \right) = 2.5 \]

\[\left| \omega_{m}\right| = \frac{2.5}{\omega_{m}} \left(\frac{2.5}{\omega_{m}} + 1 + \frac{1}{\omega_{m}} \right) = 2.5 \]

\[\left| \omega_{m}\right| = \frac{2.5}{\omega_{m}} \left(\frac{2.5}{\omega_{m}} + 1 + \frac{1}{\omega_{m}} \right) = 2.5 \]