Circuits

1. 7 points

For the following circuit the op-amp is ideal.

a) Set up the differential equation for $v_o(t)$ versus $v_i(t)$.

b) Give the voltage transfer function $V_o(s)/V_i(s)$.

c) Give the impulse response, $v_o(t)$ for $v_i(t) = \delta(t)$.

```
\[ \begin{array}{c}
R \\
L \\
C \\
\hline
\end{array} \]
```

2. 7 points

The following circuit has $i_D = 10^{-3}(v_{GS} - 1)^2$, $V_{DD} = 8V$, $V_G = 5V$ and v_i much smaller than 5V in magnitude.

a) Give the value of i_D for $v_i = 0$.

b) Find the range of values of R such that $V_0 \leq V_0 \leq 1$ (assuming $v_i = 0$).

c) Use V_{DD} and two resistors, R_1 & R_2, to replace V_G. Draw the new circuit and give some values for R_1 & R_2; show how v_i is coupled in.

```
\[ \begin{array}{c}
\text{VG} \\
\text{5Vdc} \\
\hline
\end{array} \]
```

3. 6 points

For the following circuit the diodes are ideal ($i = 0$ for $v < 0$ and $v = 0$ for $i > 0$). Assume that $v_i(t) = 2\sin(2t)$ for $0 \leq t$ and that at $t = 0$ the equal positive capacitors are uncharged.

a) Give $v_C(0+)$.

b) Sketch $v_C(t)$ and $v_o(t)$ for two periods of $v_i(t)$.

```
\[ \begin{array}{c}
\text{VI} \\
\hline
\end{array} \]
```
1. \(\text{at the input voltage of the op. amp } I = 0 \), \(v_i = R_i R + L R_i I d x \) and \(C I d v_i = -I \) (both currents, left to right) and at the input current to the op. amp \(I = 0 \) \(\Rightarrow i_R = i_C \Rightarrow v_C = -RC \frac{d q}{dt} = L \frac{d}{dt} \left(C \frac{d v_i}{dt} \right) \)

(a) \(\Rightarrow L \frac{d^2 v_C(t)}{dt^2} + RC \frac{d v_C(t)}{dt} = -v_i \)

Let \(v_i = v(t) = \left(L \frac{d^2}{dt^2} + RC \frac{d}{dt} \right) v(t) = -v(t) \)

(b) \(\Rightarrow v_C(t) = \frac{\frac{1}{L} \frac{d q}{dt}}{v_C(t)} = \frac{-1}{C (L + R)} \)

(c) \(\text{Then } v_1(t) = \delta(t), \ v_i(t) = 1 \), \(v_C(t) = \frac{\frac{1}{L} \frac{d q}{dt}}{v_C(t)} = \frac{-1}{R C} \frac{1}{1(t)} + \frac{1}{R C} E 1(t) \) where \(1(t) = \text{unit step} = \begin{cases} 0 & t < 0 \\ 1 & t > 0 \end{cases} \)

\#2 \(\text{So that } v_i = 0, \ v_0 = V_0 \Rightarrow v_i = 10 \times 10^{-3} (5 - 1) = 16 \times 10^{-3} \)

(a) \(\Rightarrow i_d = 16 \text{ mA} \)

\(v_0 = V_0 - R i_d = 8 - R \times 16 \times 10^{-3} \Rightarrow v_0 = 4 = 7 - R \times 16 \times 10^{-3} \geq 4 \)

(b) \(\Rightarrow R \leq \frac{1}{16 \times 10^{-3}} = 0.625 \times 10^3 \text{ Ohm} \leq 250 \text{ Ohm} \), \(0 < R \leq 250 \text{ Ohm} \)

(c) \(C_c \text{ large } \Rightarrow \text{allows } v_C \text{ to connect} \)

\(\text{voltage divides} \)

\(v_C = \frac{R_2}{R_1 + R_2} \frac{1}{v_{DD}} \)

\(\Rightarrow \frac{1 + R_2}{R_1} = \frac{R_2}{R_1} = \frac{8}{5} - 1 = 3/5 \)

\(\Rightarrow R_2 = \frac{3}{5} R_1 \). Choose \(R_1 \) large, such as 5 M\text{ Ohm} \Rightarrow R_2 = 3 \text{ M\text{ Ohm}}

\#3. \(\text{at } t = t_0, \ v_C(t_0) = 2 \sin t_0 = 0 \) appears \(v_i(t) \) after \(t_0 \) as well

(a) \(v_C(t_0) = 0 \)

(b) \(\text{The 1st half cycle } v_i(t) = v(t) \Rightarrow \frac{d}{dt} v_C(t) = 2 \sin 2t, 0 \leq t \leq t_0 \frac{1}{2} \)

Then, since the capacitors are charged and can not discharge

\(v_C(t) = 2, 2t > t_0 \frac{1}{2} \)

\(\Rightarrow \text{2nd cycle at } t = t_0 \frac{1}{2} \)