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G. Kalai and N. Linial (1995, IEEE Trans. Inform. Theory 41, 1467-1472) put
forward the following conjecture: Let {C,} be a sequence of binary linear codes
of distance d, and 4, be the number of vectors of weight d, in C,. Then
log, 4;, = o(n). We disprove this by constructing a family of linear codes from
geometric Goppa codes in which the number of vectors of minimum weight grows
exponentially with the length. © 2001 Academic Press

1. INTRODUCTION

Let C be a code over F, of length n and distance d=d(C). The
(Hamming) distance distribution of the code is an (n+ 1)-vector (4, =
1,4,,..,4,), where A4,=A4,(C):=#C)"|{(x,x")eC*:d(x,x")=w}|
Of course 4, =0 if 1 <w<d—1. If C is linear then 4, is the number of
vectors of weight w in it.

Let {C, } be a family of binary linear codes of growing length n, and
let d,, =d(C,) (below we omit the subscript 7). Kalai and Linial [2]
conjectured that for any such family the number 4, is subexponential in n,
i.e., that for any o > 0 there is a number N(a) such that for all n > N(a) we
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have log 4, < an (if the base of logarithms is missing, it is 2 throughout).
They also made a similar conjecture about unrestricted (i.e., not necessarily
linear) codes and wrote, “The [asymptotic] distance distribution near the
minimum distance remains a great mystery.”’

While we now know a little more about the distance distribution of codes
for larger w [ 1, 3], this claim is still very much true. The above conjectures,
however, are not as will be shown below. Let

1
0284 0 4
V-1 g—1

where H(y)=—ylog y—(1—y)log(1—y). For g >49 the function E, (J)
has two zeros 0 < J; < d, < (¢—1)/q and is positive for §;, < < J,.

E,(6):= H(5)—

THEOREM 1. Let q=2%,5=23,4, ... be fixed. Then for any 5, < < J,
there exists a sequence of binary linear codes {C,} of length n=qN, N — o0
and distance d,, = nd /2 such that

log A;, > NE,(6)—o(N). €))

2. PROOF

We will first construct a sequence of g-ary linear (geometric Goppa)
codes. Background information on coding theory and geometry of curves
can be looked up in [5].

Let X be a (smooth projective absolutely irreducible) curve of genus g
over F,, where ¢>49 is an even power of a prime. Let N=
N(X) :=#%#X(F,) be the number of [, -rational points of X and suppose
that X is such that N > g(\/z;— 1) (e.g., X is a suitable modular curve).
The set of F,-rational effective divisors of degree @ >0 on X is denoted by
Div}(X). Recall that Div} (X) is a finite set. For D € Div}(X) let L(D) be
the corresponding linear system (the linear space of rational functions
associated with D). Denote by ¥ = ¢(D) the geometric Goppa code on X
defined by the triple (X, D, X(F,)) in the usual way. % is a linear code of
length N, dimension dim(%) > a—g+ 1, and distance d(%¥) > N —a.

THEOREM 2. Let 0 = (N—a)/N satisfy the inequality 6, < < J,. Then
there exists D € Div} (X) such that the corresponding geometric Goppa code
€ = 6(D) has the minimum distance d = N —a = 0N and for the number A,
of vectors of weight d we have

log A; > NE,(6)—o(N).



398 NOTE

Proof. The proof follows the ideas of [6]. We set for an integer
re[0,a]

C,, = {De Div}(X): % <SuppD N X([Fq)>= r}.

We denote by J, =J,(X) the set of (linear) classes of degree a divisors.
Thus, J, is the quotient space of Div}(X) under the linear equivalence of
divisors. Recall that since Div}(X) is non-empty, J, is in a bijection with
the set Jy(F,) of F,-rational points on the Jacobian variety of X.

The following lemma from [4, Lemma A2] (see also [6]) is a key
ingredient in the proof.

LEmMaA 1.

tog, 27, = (1+(/g= 1 log, %5 )= o(e). @

Further, it is obvious that #C, , = (%) and so

log £C, . = NH 1 )-o(e) ®

Recall that the fibers of the canonical projection
n,: Divi (X) — J,(X)

are the projective spaces P(D) = P(L(D)), which are projectivizations of
linear systems L(D). For any D € Div} (X) the number of words of weight
d = N —a in the code €(D) equals

4D)=(g—1) ¥ <n;1(na(D)) N C>

Thus we have

#Ca, a
$,

a

A}y :=max{A4,(D): D e Div}(X)} >

Taking logarithms and using (2), (3) we obtain Theorem 2. ||

It remains to pass to binary codes. For g =2% take the binary linear
[n=¢g—1,n—2s,3] Hamming code and consider its orthogonal code, i.c.,
the simplex code. For simplicity let us augment each vector in it with a zero
coordinate. This results in a binary linear code S of length ¢, dimension 2s
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and distance ¢g/2 in which every nonzero vector has Hamming weight ¢/2.
Establish a linear bijection between [, and S and for a vector c € % replace
every coordinate by its image. We obtain a linear binary code C, of length
n=gN and minimum distance d, := gNJ/2. Note that pairwise distances
in ¥ change by a factor ¢/2 upon passing to C,, and so vectors of weight
d, in C, are obtained from vectors of weight d in ¥ and only from them.
Together with Theorem 2 this completes the proof of Theorem 1.

Remarks. (1) From the definition of E () we see that the interval
(,, 9,) for large q is arbitrarily close to (0, 1). Hence the result of Theorem
1 is valid for all values of d, /n between 0 and 1/2.

(2) There are many possible choices for the code S in the final step.
For instance, one could take S={e;, 1 <i<gq}, where ¢, is a binary
g-vector with e;; = J, ;, j=1, ..., g. Then the distances in % are doubled, and
the qualitative argument of the proof is preserved. This gives a sequence of
nonlinear codes C,.

(3) The rate of the code C, equals 2Rs/q, where for large N the value
R > 0 is given in the main theorem of [6].

(4) Upper bounds on the average weight spectrum of € over the
choice of D € Div} (X) for maximal curves were obtained in [7].
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