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G. Kalai and N. Linial (1995, IEEE Trans. Inform. Theory 41, 1467–1472) put
forward the following conjecture: Let {Cn} be a sequence of binary linear codes
of distance dn and Adn be the number of vectors of weight dn in Cn. Then
log2 Adn=o(n). We disprove this by constructing a family of linear codes from
geometric Goppa codes in which the number of vectors of minimum weight grows
exponentially with the length. © 2001 Academic Press

1. INTRODUCTION

Let C be a code over Fq of length n and distance d=d(C). The
(Hamming) distance distribution of the code is an (n+1)-vector (A0=
1, A1, ..., An), where Aw=Aw(C) :=(ÄC)−1 |{(x, xŒ) ¥ C2 : d(x, xŒ)=w}|.
Of course Aw=0 if 1 [ w [ d−1. If C is linear then Aw is the number of
vectors of weight w in it.
Let {Cni} be a family of binary linear codes of growing length ni and

let dni=d(Cni ) (below we omit the subscript i). Kalai and Linial [2]
conjectured that for any such family the number Adn is subexponential in n,
i.e., that for any a > 0 there is a number N(a) such that for all n > N(a) we



have log Adn [ an (if the base of logarithms is missing, it is 2 throughout).
They also made a similar conjecture about unrestricted (i.e., not necessarily
linear) codes and wrote, ‘‘The [asymptotic] distance distribution near the
minimum distance remains a great mystery.’’
While we now know a little more about the distance distribution of codes

for larger w [1, 3], this claim is still very much true. The above conjectures,
however, are not as will be shown below. Let

Eq(d) :=H(d)−
log q

`q−1
− log

q
q−1

,

where H(y)=−y log y−(1−y) log(1−y). For q \ 49 the function Eq(d)
has two zeros 0 < d1 < d2 < (q−1)/q and is positive for d1 < d < d2.

Theorem 1. Let q=22s, s=3, 4, ... be fixed. Then for any d1 < d < d2
there exists a sequence of binary linear codes {Cn} of length n=qN, NQ.
and distance dn=nd/2 such that

log Adn \NEq(d)−o(N). (1)

2. PROOF

We will first construct a sequence of q-ary linear (geometric Goppa)
codes. Background information on coding theory and geometry of curves
can be looked up in [5].
Let X be a (smooth projective absolutely irreducible) curve of genus g

over Fq, where q \ 49 is an even power of a prime. Let N=
N(X) :=ÄX(Fq) be the number of Fq-rational points of X and suppose
that X is such that N \ g(`q−1) (e.g., X is a suitable modular curve).
The set of Fq-rational effective divisors of degree a \ 0 on X is denoted by
Div+a (X). Recall that Div+a (X) is a finite set. For D ¥ Div+a (X) let L(D) be
the corresponding linear system (the linear space of rational functions
associated with D). Denote by C=C(D) the geometric Goppa code on X
defined by the triple (X, D, X(Fq)) in the usual way. C is a linear code of
length N, dimension dim(C) \ a−g+1, and distance d(C) \N−a.

Theorem 2. Let d=(N−a)/N satisfy the inequality d1 < d < d2. Then
there exists D ¥ Div+a (X) such that the corresponding geometric Goppa code
C=C(D) has the minimum distance d=N−a=dN and for the number Ad
of vectors of weight d we have

log Ad \NEq(d)−o(N).
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Proof. The proof follows the ideas of [6]. We set for an integer
r ¥ [0, a]

Ca, r :=3D ¥ Div+a (X) : Ä 1Supp D3 X(Fq)2=r4 .

We denote by Ja=Ja(X) the set of (linear) classes of degree a divisors.
Thus, Ja is the quotient space of Div+a (X) under the linear equivalence of
divisors. Recall that since Div+a (X) is non-empty, Ja is in a bijection with
the set JX(Fq) of Fq-rational points on the Jacobian variety of X.
The following lemma from [4, Lemma A2] (see also [6]) is a key

ingredient in the proof.

Lemma 1.

logq ÄJa=g 11+(`q−1) logq
q

q−1
2−o(g). (2)

Further, it is obvious that ÄCa, a=(Na) and so

log ÄCa, a=NH 1 a
N
2−o(g). (3)

Recall that the fibers of the canonical projection

pa: Div+a (X)0 Ja(X)

are the projective spaces P(D)=P(L(D)), which are projectivizations of
linear systems L(D). For any D ¥ Div+a (X) the number of words of weight
d=N−a in the code C(D) equals

Ad(D)=(q−1) Ä 1p−1a (pa(D))3 Ca, a 2 .

Thus we have

Ag
d :=max{Ad(D) : D ¥ Div+a (X)} \

ÄCa, a
ÄJa

.

Taking logarithms and using (2), (3) we obtain Theorem 2. L

It remains to pass to binary codes. For q=22s take the binary linear
[n=q−1, n−2s, 3] Hamming code and consider its orthogonal code, i.e.,
the simplex code. For simplicity let us augment each vector in it with a zero
coordinate. This results in a binary linear code S of length q, dimension 2s
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and distance q/2 in which every nonzero vector has Hamming weight q/2.
Establish a linear bijection between Fq and S and for a vector c ¥ C replace
every coordinate by its image. We obtain a linear binary code Cn of length
n=qN and minimum distance dn :=qNd/2. Note that pairwise distances
in C change by a factor q/2 upon passing to Cn, and so vectors of weight
dn in Cn are obtained from vectors of weight d in C and only from them.
Together with Theorem 2 this completes the proof of Theorem 1.

Remarks. (1) From the definition of Eq(d) we see that the interval
(d1, d2) for large q is arbitrarily close to (0, 1). Hence the result of Theorem
1 is valid for all values of dn/n between 0 and 1/2.

(2) There are many possible choices for the code S in the final step.
For instance, one could take S={ei, 1 [ i [ q}, where ei is a binary
q-vector with eij=di, j, j=1, ..., q. Then the distances in C are doubled, and
the qualitative argument of the proof is preserved. This gives a sequence of
nonlinear codes Cn.

(3) The rate of the code Cn equals 2Rs/q, where for large N the value
R > 0 is given in the main theorem of [6].

(4) Upper bounds on the average weight spectrum of C over the
choice of D ¥ Div+a (X) for maximal curves were obtained in [7].
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