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Minimal Vectors in Linear Codes idea is to construct a certain fixed set of code vectors used to
successively improve the current decision. This idea bears similarity
A. Ashikhmin and A. Barg with methods of steepest descent in continuous spaces. This feature

enables us to introduce a general gradient-like decoding algorithm

of which minimal-vectors decoding and another known method,
Abstract—Minimal vectors in linear codes arise in numerous appli- the zero-neighbors decoding [15], are examples. We show basic
cations, particularly, in constructing decoding algorithms and studying properties of this method, which allows us to analyze both examples

linear secret sharing schemes. However, properties and structure of . imol d unified Furth h that und tai
minimal vectors have been largely unknown. We prove basic properties of In a simple and uninea manner. Further, we show that under certain

minimal vectors in general linear codes. Then we characterize minimal conditions, gradient-like algorithms must examine all zero neighbors,

vectors of a given weight and compute their number in several classes and therefore, the size of this set providesoaer bound on the

of codes, including the Hamming codes and second-order Reed-Muller complexity of algorithms in this class.

cpdes. Further, we extend the concept of minimal vectors to codes over In the final section, we briefly review a link of our subject to

rings and compute them for several examples. .
Turning to applications, we introduce a general gradient-like decoding Secret-sharing schemes.

algorithm of which minimal-vectors decoding is an example. The com-

plexity of minimal-vectors decoding for long codes is determined by the T

size of the set of minimal vectors. Therefore, we compute this size for ’

long randomly chosen codes. Another example of algorithms in this class

is given by zero-neighbors decoding. We discuss relations between theA. General Properties

two decoding methods. In particular, we show that for even codes the n . . . )
set of zero neighbors is strictly optimal in this class of algorithms. This Let ;' be then-dimensional coordinate space over the figlgl

also implies that general asymptotic improvements of the zero-neighbors LetC' C Eg' be an[n, k, d] linear code. We use a shorthand notation
algorithm in the frame of gradient-like approach are impossible. We also  [r] := {1, 2, ---, n} for the set of code coordinates. A support of a
discuss a link to secret-sharing schemes. vectore is defined asupp (¢) = {i € [n]: ¢; # 0}. If supp(¢’) C

Index Terms—Minimal vectors, minimum distance decoding, Reed— SUPP (¢) (respectively,C), we also writec’ < ¢ (respectively ).
Muller codes, secret sharing, zero neighbors.

MINIMAL VECTORS IN LINEAR CODES

Definition: A nonzero vectore € C is called minimal if
0 # ¢’ < cimpliese’ = ae, wherec' is another code vector andis
I. INTRODUCTION a nonzero constant. The support of a minimal code vector is called

The subject of this correspondence is minimal vectors in lined#inimal with respect toc'.

codes, i.e., vectors that do not cover other nonzero vectors exceptherefore, no minimal vector covers a nonzero code vector with a
maybe proportional ones. Minimal vectors were extensively studigghaller support. Let(C') be the set of minimal vectors of a given

in combinatorics (cycles in linear matroids). In the coding contexgode'. If the context does not allow ambiguity, we onditin this
minimal vectors were introduced in [14] where they were used {@tation and write simply\. For binary codesM(C') can be also
construct a minimum-distance decoding algorithm of linear codggewed as the set of minimal supports. In the general case, minimal
(see Section IV). For the Euclidean space, this connection was agipports define a set of lines in the code.

addressed in [1]. Recently, interest in this subject has been reneweflet F be the parity-check matrix of. By H(U') we denote its

in a series of works sparked by [17], where it was observed thaistriction to columns indexed by a sub&etC [n]. Basic properties
minimal vectors in linear codes describe minimal access structuressinAf are characterized in the following lemma.

linear secret sharing schemes defined by these codes.
We begin with general properties of collections of minimal vectors ~ Lemma 2.1:
in linear codes. Then we consider some examples, computing minimal) Let U C [n] be the support of a vectar € C. ThenU is
vectors in the Hamming, second-order Reed-Muller, and some other minimal if and only ifrk (H(U')) = U] — 1.
codes. It turns out that there exist linear codes all of whose nonzer®) (U is minimal) = (|U| < n —k + 1).
vectors are minimal. Under the name of intersecting these codesl) Every support of sizél/| < d(1+1/(¢ — 1)) — 1 is minimal.
were studied in [8]. The Carlitz—Uchiyama bound shows (see below)4) The linear span of\{(C) coincides withC'.
that codes dual to the binary Bose—-Chaudhuri-Hocquengham (BCHp) Let C' be a binary code. Then € C, ¢ ¢ M(C) there is a
codes are intersecting. On the other hand, for BCH codes themselves pair of nonzero code vectors < ¢ ande; < ¢ with disjoint
the problem of characterizing minimal vectors seems difficult to supports such that = ¢; + e2.
approach. Even for two-error-correcting binary BCH codes a recent Proof: The only if part of Part 1) is obvious. Let us prove the
attempt [7] ended with only a partial result. converse. Leth; be theith column of H(U). By the assumption,
Next we show how to extend the concept of minimality to codesere existw = |U| nonzero numbers; such that
over Galois rings and compute minimal vectors Zh Kerdock w
codes, first-order Reed—Muller, and Hamming codes. Turning to the Z)‘ihi -0
minimal-vectors decoding algorithm, we observe that the underlying im1
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with p.. # 0. Multiply this sum by, /i, and subtract from the vectors inC' and EM,, its average number of the ensemble over
first one. This gives a linear dependence between the«first1 random linear codes.
columns, a contradiction.
Part 2) is implied by Part 1).
To prove Part 3), suppose thatc C' is a nonminimal vector of (q— 1)‘” g i
weightwt (¢) < d(141/(¢ — 1)) — 1. Considerg — 1 code vectors EMu. = < ) H (1—q~¢ ), w<n—k+1
¢ — ac’, wherea runs over all nonzero constants. Summing up their 0, otherwise.
weights, we getq — 1) wt(e)— wt(¢'). Thus their average weight is (1)
wt (¢) — (¢ —1)7' wt(c'). One of these vectors, saf has weight
at most the average. Together with our assumption this implies a

Theorem 2.2:We have

Proof: Let ,, «(w) be the probability that a given support of

contradiction sizew is minimal. By the definition, code vectors sharing the same
1 p support are proportional, thereforBA.,, = (¢ — 1)(1)mn, & (w).
wt (") <wt(e) — ) < d<1 + 7> - —— The event considered is that some (say, fitst}- 1 columns of
-1 ¢—1 -1 H among the chosen columns are linearly independent and the
=d-1. remaining column is their linear combinations with— 1 nonzero

coefficients. The number of collections @f columns that satisfy the
above conditions equals
Note that Part 1) of this lemma gives a straightforward way to n—k _ nk Y (R — ) (g — 1P
(¢ 1)(q ) ¢ )g-1)
check whether a given code vector is minimal.
This lemma enables one to give immediate characterization @fd the total number of chmcesqé(" *). The probabilityr,,  (w)

Part 4) will follow from Lemma 4.3 below. Part 5) is obviousl

minimal vectors in some codes. equals the quotient of these quantities. O
Examples: Intuitive understanding of this result is acquired by asymptotic
1) Binary Golay Codesiet C = G.3 be the binary[23, 12, 7] analysis. This is not only interesting in itself, but also is used
Golay code. We have — k +2 = 2d — 1 = 13. Thus below in Section IV to assess certain decoding algorithms. Let

, 3 ) n — oo, (n — k) — 0. We shall compare the number of minimal
M(G2s) = {3335 vectors of weight < 12} vectors M, with the number of all code vectors of weight Let

(this was found by a search algorlthm in [1]). The same argumeﬁtﬂ denote this number. The probability that a given vector satisfies

1.
applies to the duaP3, 11, 8] codedas, which gives a random check equation is *; therefore, the probability that this
vector is contained in a random code with— % checks equals
M(G33) = {1794 vectors of weights and12}. ¢ "% Thus
For the extended codé.,, we haven — k +2 = 2d — 1, and the S (¢g—1)" )
answer is also obvious. ST \w ) gk

2) Binary Intersecting Codesthese codes were introduced in [8]. ) . .
They are linear codes in which any pair of nonzero code vectdisClassical result of coding theory [10]. From this we see that the
intersect. By Lemma 2.1, Part 5, this is equivalent to the fact thdffference betweetA/,, andEN,, is in the factor

M(C) = C\[0}, e
Let C' be the binary code dual to the BCH code of length H(l—q )-
n = 2" — 1 with designed distancé = 2¢ + 1 and¢ < L2(m/2-1 =0

Then by the Carlitz—Uchiyama bound [16, Ch. 9], the mammurﬂ will be seen that the asymptotic behaviori®i/,, depends on the

weight D of C' is bounded from above &8 < 2™ 4 (¢ — 1)2'"/2, difference between andn —k+1. Letw = (n—k+1)— ¢, { > 0.

By the same bound, the quantityl > 2™ — 2(¢t — 1)2™/2 > D. To simplify the analysis, we shall use the notatios n — %, so that

Thus M(C) = C {0} andC is intersecting [8, Proposition 9]. ¢ =t —w+ 1. Using this notation, the product in question takes the
3) Maximum-Distance-Separable (MDS) Codés: an [n. k. d] form [;_,, (1 — ¢~*). Since we study its limit value as — oo,

MDS codeC, the set of minimal vectors coincides with the set of alve are interested in the behavior of the function

(¢ —1)(’}) codewords of weight/ (by Part 2) of the lemma).

For an[n, k, n—k] codeC, the answer is generally not as obvious. g, £):= H (I—47")
However, there is a subclass of codes with these parameters, namely =ttt
“near-MDS” codes of [9] for which it is easily given. Its properties are given in the following lemma.

These codes are defined as follows. If a cédés MDS, then so

is its dualC*+, and Lemma 2.3:
L 1) The producty(q, ¢) converges for any > 0.
dAC)+d(CT)=n—-k+ 1)+ (k+1)=n+2. 2) Forf —  we haves(q, {) — 1.

3) Forf = const, 1 — ¢~ * < v(¢, £) < 1.
4) The functiony(q, ¢) is monotone increasing in one argument
if the other argument is fixed.

Proof: By [13, Theorem 353]

(g 0) = Z (—1)ig- (/PGP

1=—o00

This is the largest possible value for this sum.(fis not MDS,
then clearlyd(C') + d(C*+) < n. A code is called near-MDS [9]
if this holds with equality. This definition implies that ary- + 1
columns of the parity-check matrix af have rankk® [9]. Thus
M(C) = {vectors of weight/ andd + 1}.

B. Random Codes L B i .
- . =1—-q¢ '—¢ 7 +q¢ +q¢ -
To understand the structure of minimal vectors in long codes, let us

suppose that’ is a random linear code whose parity-check matrix hds is known and can be easily checked that this series converges.

independent equiprobable entries. [3ét, be the number of minimal The quantityy(q, ¢) for any fixed¢ > 0 differs from (g, 0) by a
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constant. This proves Part 1) for constdnfurther, for any! > 0 Proof: Considers = w — 1 linearly independent columns in
we have the parity-check matrixd of the codeC. The total number of
¢ t linear combinations of these columns with nonzero coefficients equals
1> JJa-a9>1=> ¢'>1-¢" (¢ — 1)%; the 1/(¢ — 1)th fraction of them appear as columns
i=0+1 =041 in H distinct from the chosen columns (since they are linearly

independent). Every choice of linearly dependent columns of which
s = w — 1 are linearly independent, defines a minimal code vector.
Thus one has to count the number of distinct choices thearly
Thus if w is not too close ta: — k + 1, then on the average almostindependent columns i&/. This number equals
all code vectors of weight in a random code are minimal. Let us 1 ( 1)( 2 _ 1) < < - 1)
n-— e fn—

formulate this as a corollary. " P

This proves the convergence ofq, ¢) for £ growing and implies
Parts 1)-3). Part 4) is obvious. O

qg—1
Corollary 2.4: Letn — oo, 0 < w < (n—k+1)—{, { — co.

Thenlim, . (EM./EN,) = L Taking into account that all th¢ * ) choices ofw — 1 linearly

independent columns within a given support of sizgield one and

If w differs fromn — k£ + 1 by a constant, then the quotientthe same code vector, we find that the number of minimal vectors of
EM, /EN, tends to a constant betwe@rand1. In particular, from weight w in the code equals
the series expansion for(q, 0) we computey(2, 0) = 0.288-- -,

o o ; . : ’ 1 -1
which is a familiar fraction of nonsingular square matrices dler M., = (_71)1 n(n —1) <n _1 — )
Otherwise,~(q, () is always greater than /2. This is shown by v “ ¢ -
computing (3, 0) = 0.560--- and applying Lemma 2.3, Part 4). <n _4¢  ~ 1) (q—1)".
This shows that for alj > 2 and allw < n — k + 1 except for the g—1
caseq = 2. w = n — k+ 1 on the average more than half of coderpe gypstitution of the value of gives the desired result. O

vectors of welghtw are minimal. o _ _ _ _
The total average number of minimal vectors in a random code isA similar argument in the binary case yields the following fact.

given in the following corollary. Theorem 2.8: In the extended Hamming code of leng@H, the

Corollary 2.5: Letn — oo, k = Rn, 0 < R < 1. Then number of minimal codewords of even weight 4 < w < m + 2,
1 equals
H,(1-R)—(1—-R), o<1—R<‘fT e
— lo E|’\/l| = o JET . — om mo_ i
! R, =1y _ R Mo =352 HD(2 2)-
q =

Proof: As above, we have to count the number of choices of
w linearly independent columns in the parity-check matrix, of which
w — 1 are linearly dependent. Since only half of the total28f™

Here H,(-) is the entropy function.
Proof: As long asl — R < (¢ — 1)/q, asymptotically the sum

nk ! ’ columns of lengthm + 1 are present inH, everyt — 1 linearly
ElM| = Z EM. independent columns forbi2f =2 columns inH. Therefore, we can
w=0 choosew — 1 linearly independent columns in
is dominated by the terr& A, 1. We have just shown that w3
EM,_rq1 = v(¢q, O)EN, _g41. (w—1) HO (n—2
Conclude by using (2). L' different ways. As above, this has to be divided (Y ). O

In Section IV we use the variance of the number of minimal vectors
in C'. This has been estimated in [3]. We quote this result only f@. Second-Order Reed—Muller Codes

the binary case. Let C = RM(2, m) be the second-order binary Reed—Muller
Theorem 2.6 [3]: Let C' be a random hinary linear code WlthCOde 7[7}62 Ch. 15]. Its parameters dre= 2", k = 1+ m + (%),
distanced. Then = 2"77]. Let A,, the number of vectors of weight in C. Then
‘ Aw = 0 except for
Var M,, < EM,(1+ 2 “?EM,). . R

w=2"""w=2"""£2" " 0<h<|m/2] 4)

C. Hamming Codes (see [16, ch. 15]). In particular, it is known that
Let C' be theg-ary Hamming code of length = (¢™ —1)/(¢—1). A= (4/3)2™ — (2" — 1)

For the binary case, the required set of vectors forms a configu-
ration defined by J. Steiner, from which later the modern notion @kt A7,, be the number of minimal vectors of weigtt> 0 in C.
Steiner systems has been coined. Formula (3) is quoted in [12] with a
reference to [20]. Its proof for anyis given below. Steiner’s original
definition is cited in the Appendix.

Theorem 2.9:For w = 2™~ ! 4 2m~1=" j, =0, 1, 2, there
are no minimal code vector&M,, = 0). Otherwise,M., = A.,
except for the cases = 2™~', when the number of nonminimal
Theorem 2.7: The setM(C') is formed by).,, vectors of every vectors equals

weightw, 3 < w < m 4+ 1, where
ghtw. = 5w = Agm-1 — Mym—1 =271 —2 4 4,277 = 2). (5)

1 — .
M, = — H (g™ —q"). 3) Thus the only weights when there exist nonminimal codewords are
v (3/4)n, (5/8)n, n (all codewords) and1/2)n (part of them).
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Proof: Let ¢ € C be nonminimal. Then by Lemma 2.1, Part 5)

there areeq, ¢; € C'\ {0} such thaie; + ¢2 = ¢. Let w1, w2, w be
the weights of these vectors. We have

w=w, +ws >2d= oml = n/2.

(6)

2013

Remark: The number of minimal vectors of weight/2 in
RM (2, m) equals
Lm /2] ‘
B,y = Z 442m—1_2m—1—ln(2n172h+1 -2).

h=2

@)

First suppose that > n/2. Then there are two possibilities, namely,

either one of the weights/,, w2 equalsn/2 or not. In the former
case, (4) and (6) imply the following equality:

2777.—1 + 2777—1—h — 2777—1 + 2777,—1 _ 21n—1—h1

whereh, h, are some integers betwegmnd|m /2|. This is possible
only if h = hy = 1. Thus if eitherw; or w. equalsn/2, we have
the following subcase:

1

) (w, wi, wa) = (3n, In, in).
If w > n/2 and bothw, andw- differ from n/2, then (6) yields

the equation

2m—l +27n—l—h :27n—l _2m—l—h1 +2m—l :l:QWL—l—hz

or

27 =1—927M gy o7l h oy hy #£0.

Obviously, this equality cannot be satisfied with the'‘sign whereas
for the “—" the only possibilities for(h, k1, he) are(1, 2, 2) and
(2, 2, 1). This gives rise to two subcases:

||) ('lU7 wi, uzg) = (%n’ %n’

ii)

%71);
1
(w, w1, wa2) = (3n, %n, %n).

This exhausts the possibilities far > /2. Let us examine them.

All code vectors of one and the same weight# n/2 are affinely
equivalent, i.e., if there exists one nonminimal vector of weight

IIl. MINIMUM VECTORS IN CODES OVER RINGS

Codes over Galois rings have been a subject of considerable
attention lately. In this section we extend the definition of minimal
vectors to this case and give some examples.

Let S be a finite commutative ring with identity ¢, whose set of
zero divisors has the formpS for a certain prime, also known as a
Galois ring. It is known [19] thatS| = ¢, m > 1, whereq = p°
for somes > 1, and the characteristic 6f (the order ok in the group
(S, 4)) equalsp™. Since fixing the numberg™ and¢™ identifies
S up to isomorphism, it may be also denoted as (@R, p™). All
ideals of S form the following chain:

m

No:53N1:p531\72:p253---

D ij71 = ])n1715 D jvm = pms =0 (8)

and |N;| = ¢™*. Consider a “linear" code” over S, i.e., a set
of strings ofn elements ofS such that ife(, e2 € C then also
aic1 + azex € C for anya,, a2 € S, i.e., anS-module.

The original definition in Section Il is not applicable in this case
because of zero divisors in the ring. Namely, it is often possible to
multiply a nonzero codeword by a nonzero constant so that it becomes
all-zero. Therefore, in this section we find it more convenient to speak
of supports than of codewords. Another reason is thidas not a

then applying a suitable automorphism, one concludes that all cotRCtor space.

vectors of weights are nonminimal. Supposge:i, -+ -, 7,,) are the

affine coordinates o' = AG (m, 2). Then the code vector given

by the incidence vector of the equatienz, = 0 has weight3n /4

and covers the incidence vector (of weight2) of the hyperplane

z1 = 0. This shows that every code vector of weight/4 is

nonminimal and is formed by a disjoint union of a vector of weighﬁ
n/2 and a vector of weight /4, while subcase ii) is never realized.

Likewise, in case iii), the incidence vector ofx2 + z324 = 0 has
weight5n /8 and contains the vector given by, +2 ) (w3 +z4) = 1.

What is left is the case off = n/2. This case is more difficult.

Fortunately, the structure of nonminimal code vectors of weigt

is known. Lete be such a vector. Thesmis a sum of two nonzero
code vectors of minimal weight. By [16, Theorem 13.5], any vector

of minimal weight inC' corresponds to afin — 2)-dimensional flat
in F'". Hence the subseX of F™ corresponding te is a disjoint
union of two(m — 2)-dimensional flats inF"™”, say A, and A». Let
Vi andV; be the(m — 2)-dimensional linear spaces parallel g
and A, respectively. The disjointness of; and A, implies that
dim (Vi 4+ V32) < m. Hence eitheds = V2 and X is an(m — 1)-
flat or W = Vi (V2 has dimensionn — 3. The numberN, of

The number

T(e)=

min
i€supp (¢

){u: ci € N}

will be called thetype of the word e. Let us call the number
T(I) = ming.pp (=1 I'(c) the type of a subselt C [r]. If there is
o word with support/, the type of! is undefined.

Definition: A subsetl C [r] of typet is called minimal if there
does not exist a codewomwith T'(¢) < t andsuppe C I.

This yields a hierarchy of minimal subsets of tyfles ¢t < m —1.
The collection of type minimal subsets will be denoted by!,(C).

Examples:
4) Consider the first-order Reed—Muller code ZRM v) of length
n = 2" over Z4 [11]. Then there are two types of minimal words,
namely, those of typegand1. It can be easily seen thatl, consists
of a single sef = [»] and M consists oR"1' —2 subsets (supports
of words) of sizen/2.

5) Let C' be theZ, Kerdock code of length. = 2%, wherev is
an odd numbery > 5, [11], [18]. ThenM, is formed by the type

nonminimal vectors of weight /2 of the first type equals the number( minimal subsets of sizez’~! + 2v=2 £ 2(v=3/2 (the number of

of (m — 1)-flats in F™
Ny =2(2" - 1).

In the second case, the imageXofin the (three-dimensional) quotient

subsets of either size ®*!(2” — 1)) and M, consists oR2v*! — 2
subsets of sizex/2. Therefore, all supports except the one of size
n are minimal.

6) Let C' be theZ, “Hamming” code with the parity-check matrix

spaceF™ /W is a set of four points that do not constitute an affine

plane. Hence the total number of vectdfsof this type equals

w= ) (()-2B])

Thus the number of nonminimal vectass, m—1

11111111
0000 2 2 2 2
002 200 2 2
0202 0 2 0 2

— M,m-1 =N+ whose columns are formed by all the= 2" possible vectors of

N2, which gives the claimed number if one recalls the expression feeros and twos, each preceded by. & his code is orthogonal over

Ag given before the theorem. O

Z, to the ZRM(1, v) code of Example 1. The binary image of this
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code under the mappin@ — 00, 1 — 10,2 — 11,3 — 01) is a Let us prove that this algorithm always converges to the nearest
nonlinear(2°+", 22" =("+1)=1 4y code. LetM = M, UM, be code vector.
the set of minimal supports with respect,. We refer to [3] for

; Th 4.2:F t of cod t tisfyi 11) th
the proof of the following theorem. eorem or any set of code vectors satisfying (11) the

gradient-like algorithm performs a complete minimum-distance de-
Theorem 3.1 [3]: The number of minimal supports of tyge coding. The time complexity of this algorithm & (»”|71). The

and sizew in H, equals space complexity isD (n|7]).
s Proof: Lety ¢ D(0). The algorithm expandg into a sum
MO = i27,~ H (2" — 2). 4<w<uv+1, weven (9) of t_est_ vectors. Suppose tha_t after steps no further test vectqrs
w! bl satisfying (11) are found. This means that we managed to kying

, ) o “down” to D(0)
Every pair of coordinates forms a minimal support of tyipehus

, e=y+ z. € D(0).
M = (’2‘) (10) ;
By Lemma 4.1 this means thgte D (37" z.). O

IV. " MINIMUM DISTANCE DECODING Submitting a code vectar # 0 to this algorithm, we observe that

In this and the next section we outline two applications of minimai constructs a decomposition of zero in the form
vectors mentioned in the Introduction. We begin with minimum
distance decoding algorithms. In this section we deal with binary 0=c+ ZZU-
codes only. We introduce a general gradient-like decoding algorithm
and study its properties. One of the first works devoted to minimad addition, we can observe that in each step the algorithm produces a
vectors was paper [14], where they were used to construct suclegtor of a strictly smaller weight. Let us formulate this as a lemma.
decoding algorithm. This algorithm bears similarity to the steepest ,
descent methods for computing optima in continuous spaces. Another Lemma 4.3:Let T C C, be a test set. Then any code vector
example of algorithms of this type, thero-neighborsiecoding, was € # 0 can be decomposed into a sum
provided in [15]. Our results provide a framework for the study of
algorithms of this type and show their limits. c= sz 2. €T, m2>1
The minimum distance decoding problem that we consider is u=l
formulated as follows. We are given a linear codeC E3. The \where

problem is to implement the mapping £3 — C such that
wt(e) >wt(e+ z1) > wt(e+ (21 +22)) > --- > 0.
Veery dist(z, f(z)) = dist(z, C).
Thus the linear span of equals the entire cod€.
If for a certainz, this is satisfied for many code vectors, the value of The setM of minimal vectors of a binary code forms a test set.
f(x) is chosen arbitrarily from them. This function gives rise to the

concept of Voronoi regions of code vectors i . Letc € C, then Lemma 4.4: Minimal vectors in a binary linear code form a
the Voronoi region D(e) is defined as follows: test set. _
Proof: Lety ¢ D(0). Then there is a code vectorsuch that
D(e) := {z € E} |dist(z, ¢) < dist (z, ¢'), ¢ € C}. wt (y + ¢) < wt(y). If ¢ is not minimal, then it can be decomposed

into a sume = 3, m, of minimal vectors with disjoint supports.

Any point of F is contained in at least one Voronoi region; Som%learly, for at least one of these vectors, say, we must have
points fall into many regions. Note that geometrically Voronoi regior\ﬁt (y +m1) < wt(y) 0O

of different code vectors in a linear codéall have the same shape.
Namely, the following property follows directly from the definition. Note that Lemma 2.1, Part 5) left without proof earlier now follows
, , from the last two lemmas.
Lemma 4.1:Lete, ¢ € C and lete € D(c). Thenz +¢" € Therefore, minimal vectors can be used for decoding. To estimate
De+¢). the complexity of this decoding for long random codes, we use

Let us define the general gradient-like decoding method. A genefe@rollaries 2.4, 2.5, and Theorem 2.6. First, Corollary 2.5 implies
principle of the decoding is to construct a §ebf codewords in such that theaveragedecoding complexity for rate8 < R < (¢ — 1)/q

a way that every vectay either lies inD(0) or there exists a € 7 behaves exponentially in the same way as that of the exhaustive
such that search. To estimate the worst case complexity, we use the expression

for the variance in Theorem 2.6. This amounts in standard calculations
wt(y + 2) < wt(y). (11)  using Stirling approximation (see [3]) that we omit. The conclusion is
that, at least for low code rates, the worst case complexity of minimal-
ctors decoding has the same order of magnitude as the average-case
¥np|exity. Note that in examples the number of minimal code
vectors can be much smaller than the total size of the code. This is the
case for all codes whose distance is close 0k +1 since then many
: . : vectors have weight greater thar- &+ 1 and cannot be minimal. An
Gradient-like decoding: . . . .

extreme example is MDS codes (Example 3 in the previous section).

1) S.etc = 0. Another example is Hamming codes. Namely, using (3) we see that
2) Findz € 7 such thatwt(y + z) < wt(y). Letec — ¢+ 2. a5, — o, the number of minimal vectors is of exponential order

y—y+z . at mostg™” = ¢'°%a "(1+°(1)  The total number of code vectors is
3) Repeat until no such is found. Outpute. g0 og ™)

Any set7 C C satisfying this property will be called test set v
This suggests that the decoding can be accomplished by recursiv&%
inspecting the test set for the existence of such a vegt@and
subtracting it from the current vector. Lgtbe the received vector.
Let us formulate the algorithm.
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Another example of decoding algorithms in this class was given Thus we may further restrict the test set of vectors by choosing a
in [15]. Let A C E7 and letX(A) be formed by all the points of smallestsubset ofZ with this property. Denote this subset Bix .
5 at a distancel from A (This is how zero neighbors were originally defined in [15].) Note
N . N that though the se£...., may not be unique, its size is well-defined.
A(A) = {z|dist(z, 4) = 1}, Therefore, 1etZmin = | Zmin|-
Define theboundaryof A as follows: First, we prove that for codes with only even weights of codewords
94 = X(4) U X(A). z;ezrg neighbors in the sét.i» form a test set of themallestpossible
Definition: Two code vectorse;, ¢, are calledneighborsif
their Voronoi regions share a common boundary, i.eQlif(¢;) N
dD(e2) # 0. A neighbor of the zero vector is calledzaro neighbor

Theorem 4.7:Let C' be a binary linear code all of whose
codewords have even weight and &t C C be a test set. Then

|T| 2 Znin -
Note that here we deviate slightly from [15]. This enables us to Proof: Lety € X(D(0)) and letz € 7 be such a vector that
give the definition of zero neighbors in symmetric form. wt (y — z) < wt(y). Sincedist(y, D(0)) = 1, we can choose a

Let Z be the set of zero neighbors. The definition has the followingectorz € D(0) with dist(z, y) = 1 andz < y. We have

simple consequence: .
P q dist (z, y) < dist(0, y) = dist (0, ) + 1

(X(DO)ND(=) #0) = z€Z. (12) <dist(e,2)+1, VeeC. (14)

Indeed,z € X(D(0)) N D(z) implies that there is g € D(0) at a
distancel from 2. Hencey € 9D(0) N dD(z). ) . )
Decoding with zero neighbors proceeds in the same way as with®) Consider the subsét’ C C' for which

minimal supports except that now we choose the test7Sein ; o
= - 1.
Algorithm 2.1 equal toZ. This version of the algorithm is called dist(e. z) = dist(c. y)

Clearly, for anye € C' we havedist (¢, &) = dist(¢, y) + 1.

zero-neighbors decodindirst introduced in [15]. Then (14) implies
The zero-neighbors decoding always converges to the closest code . . .
vector. To justify this we again verify thaf is a test set. dist(z, y) < dist(c, y), c€C. (15)

Theorem 4.5 [15]: The zero-neighbors algorithm performs a b) Let C"" C C be the subset of codewords for which
complete minimum distance decoding. ) )
Proof: Lety ¢ D(0). Consider a chain of inclusions dist(c, z) = dist(c, y) + 1.

0<...<ys <9y, <Y=Y Definition (11) impliesdist (0, y)—dist(z, ) > 1. Suppose that this

hol ith lity. L = w, th
wherewt (y,) = wt(y,_,) — 1. Clearly, there exists a numbésuch olds with equality. Lewt (y) = w, then

thaty,,, € D(0) andy, € dD(0)\ D(0). Theny, € D(z) for dist(z, y) = wt(z) +wt(y) — 2wt (2N y)
somez € Z. We have

« or
wt(y — z) =dist(y, 2) < dist(y, y,) + dist(y,. 2)
<dist(y. y,) + dist(y;. 0) = wt (y). 2wt(zNy) = wi(z) + 1.
HenceZ is a test set and the theorem follows. O This contradicts our assumption that has only even weights.
. . . . . Therefore,
The complexity of zero-neighbors decoding was estimated in [15
as follows. dist (0, y) — dist(z, y) > 2.

Theorem 4.6 [15]: For almost all codes, both time and spacgpep (14) implies
complexity of zero-neighbors decoding behaves2ad® " (! +o(1)),
where dist(z, y) <dist(0,y) — 2 < dist(¢, ) — 1
o(R) = R, 0<R<1- Ha(1/4) =dist(c,y), VeeC". (16)
T L(H2(200) = (1= R)), 1-Hz(1/4)<R<1

. . Inequalities (15) and (16) together imply that
whereé, is the smallest positive root a8 = 1 — H»(6).

The memory used by the algorithm is spent on storing zero y € D).
neighbors. Thereforey(R?) also gives an estimate of the exponent oRunning over ally € X(D(0)), we collect a subseI’ ¢ C' with
the size ofZ for most long codes. This size grows slower than the
total size of the code foR > 1 — H»(1/4) = 0.189. X(D(0)) C U D(z).
We conclude that the complexity of this decoding for almost all €T’
chfss and forR > 0..189 is exponentially smaller than that OfThen|T| > T| > Zonin. L
minimal-vectors decoding.
Two last results of this section deal with characterization theoremsSince M is a test set, this theorem implies that f6r an even
for zero neighbors and minimal vectors in linear codes. Let us firsinary linear code| M| > Zin. However, it is possible to prove a
take a closer look at the set of zero neighbors. The only property sifonger fact, namely, that in any even binary linear code there is a
the setZ that is essential for the successful decoding is formulategt Z,.;, all of whose elements are minimal codewords.

in (12
(12) Theorem 4.8:Let C' be a binary linear code with only even

X(D(0)) c | D). (13) weights of codewords. Then the sét.i, can be chosen so that
z€Z anin g ,M.
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111 111 000 ... 000 values of the secret information and the remaining 1 coordinates
= t i 2 are associated with users of a system of restricted access to the
secret. Letd = ||hy, 1 < i < r, 1 < j < n, be a matrix with
(111 ... 111 000 00 z entries fromF,. Define a linear tran_sformatioq_n: E" — E7 py
' 1 1 #(e) = eH, e € E;*. Suppose the first coordinate ofe) carries
tl the value of the secret. The remaining coordinates contain shares of
000 .. 0000111 ... 111]000 ... 000, 2=z information given to the» — 1 users. It can be shown [6] that users
' t, ' 2 corresponding to nonzero entries (B2 (e), ¢s(e), ---, dn—1(e)),
putting their shares together, can uniquely reconstruct the secret.
}00-0;1“ 111}000 0001 y Each such group of users is called an authorized coalition. Any
1 l group of users that does not form an authorized coalition is called
1 2 unauthorized. Wher runs overE]’, we obtain the entire set of

o
Fig. 1. authorized coalitions, called the&ccess structuref the scheme. If
no unauthorized coalition can obtain aayosterioriinformation of
) the secret value, the scheme is calpEifect A minimal authorized
Proof: Let us assume that there is a codewerd 2, z ¢ M ¢qgjition is an authorized coalition that becomes unauthorized upon
and lety € E% be a vector such thay € X(D(0)). y € D(2).  geletion of any of the users. The set of minimal authorized coalitions
Sincez is not minimal, there are nonzero vectars 22 with disjoint  54\ides a complete description of a perfect secret-sharing scheme.
supports such that = z; + 2. Let Viewing H as a parity-check matrix of a linear cod& one can
wt(z) =t Wt(z) =t Wt (22) = to. establish a one-to-one correspondence between minimal authorized

coalitions and a subset of minimal supportsGn
We want to show that if one of the vectats, 2. is farther fromy

than z, then the other one is at most as farzas Theorem 5.1 [6], [17]: LetC be a linear secret-sharing scheme
By our assumptions, defined by a-aryr x » matrix H and letC' = ker H be an[n, n—r]
; ; g-ary linear code. Then the set of minimal support&irntersecting
£y + € =dist (0, y) = E +1 dist(z, y) = 5 —1. the first coordinate equals the set of minimal authorized coalitions in

C. Moreover, the scheme is perfect.

Let dist(z2. y) > dist(z, y). We then plug in our notation and  For some of the above examples it is easy to find minimal supports
gerf(()rm s)traigh;forward computations using the Fig. 1 to find thaitersecting the first (or any other fixed) coordinate.

ist(zi,y) < t/2—1.

Thusy € D(z) andy € D(z1), i.e., z andz, cannot both be in Examples 1-3 (Continued)tn the extended Golay codg:s a
the setZn;, at the same time. Moreover, given a nonminimal codéode vector is minimal if and only if its weight is or 12. Since
vector ¢ in our case) and a vectgre X (D(0)), y € D(z), we can Puncturinggz4 in any coordinate we gel.s, the number of minimal
always cast it away so that the remaining subset of zero neighb¥g$tors with a one in any fixed coordinate is the same.

still satisfies condition (13). Therefor&.i, can be chosen to be a The same holds for binary intersecting codes, namely, the number

subset of M. O of minimal vectors with a one in any fixed coordinate{ds|/2.
The only minimal supports in afw, k, d] MDS code are(’;)
n—1

supports of sizel. Of them (,~) intersect the first (or any fixed)
Remarks: coordinate. O

i) Generally, not all zero neighbors are minimal. Indeed, con- For codes over Galois rings the situation is more complicated in the
sider the code{0000,1100,0011,1111}. Then vector0110 sense that some of the minimal supports characterize groups of users
lies equally far from all the code vectors which proves thahat can recover only a part of the secret. More specifically(lée
all nonzero code vectors are zero neighbors. However, the g{l<jinear” code over GRq™, p™) as discussed in Section IlI, and
one vector is not minimal. Looking at smallest sets of zerg,ppose we construct a linear secret-sharing scheme as above using
neighbors defined by (13) we easily see tha& Zwin implies  the parity-check matrix of’ to generate distribution rules. Suppose
wt(2) < 2 (covering radius of")—1. LetC' be abinary linear again that the first coordinate corresponds to the secret. Minimal
code such that its covering radius equals at most its minimugithorized coalition in this case can reconstruct either a part of the
distance. For instance, long BCH codes are known to satisfécret or the secret in full, depending on the type of the corresponding
this. By Lemma 2.1, Part 3), in such codasy set Zwin IS minimal support. More precisely, the following is true.
formed by minimal code vectors. -

i) In view of Theorem 4.7, the seEmi, is in the general Theorem 5.2 [2], [3]: Let I = {1} UT C [n] be a minimal
case unavoidable in gradient-like decoding methods. For trigpport of typet in C' such that there is a codeworde C' with
reason it is no surprise that in the case of arbitratlie zero- supp (¢) = I andei € N;. Then the users id, taking their shares
neighbors algorithm is also applicable and leads to simil&f information together, can reconstruct exaetly- # g-ary symbols
results [4]. Interestingly, minimal vectors do not always forn®f the secret.

a test set ing-ary linear codes.

For more details and a general overview we refer to [4].

For instance, ifC' is a ZRM(1, 3) first-order Reed—Muller code,

then M, consists of a single sdt = [n] and M, is formed by 14
V. SECRET SHARING sets of size’ (see Example 4). A half of them contain coordinate

A general introduction to secret sharing schemes can be fouthgrefore, there are seven groups of users that can reconstruct one of
for instance in Stinson’s survey article [21]. Some familiarity witlthe two bits of the secret.
this concept is helpful in reading this section. The relation to linear Note that since the binary image of the ZRM v) code isZ,-
codes was observed in [17] and analyzed in [6]. In the context lifiear, this scheme can be realized by two linear schemes Zyer
secret-sharing schemes one coordinate of the code is associated worigh corresponding to thi, 1, 8] repetition code and the other to
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the[8, 4, 4] binary RM code. In both schemes, the number of bits in4]
the secret (one) equals the number of bits in the information share of
each participant. Such schemes are calfiedl One of the reviewers [5]
suggested that any scheme ov&r can be realized by two ideal
(not necessarily linear) binary schemes, one responsible for sharing
the first (say, less significant) bit of the secret and the other one the
second bit. We conclude by showing that this is not true.

The counterexample is furnished by the Nordstrom—Robinson
code C' of length 8 over Z, [11]. Suppose its first coordinate [7]
corresponds to the secret. Puncturifigin this coordinate, we get
a cyclic code of lengthv, whose typel supports are given by the
vectors1223233,1013102,1100123, 1033320 and their cyclic shifts. (8]
Minimal supports of typed are defined by the last three vectors. g
Thus minimal coalitions authorized to recover both bits of the secret
correspond to supports of vector§13102,1100123,1033320 and  [10]
those of their cyclic shifts that have or 3 on the first coordinate.

We shall show that this access structure cannot be realized by a bin%rl)}
ideal scheme. It is known [5], [19] that every binary ideal scheme is

either linear or affine, i.e., corresponds to a binary linear code or 2]
a binary affine code (a binary code is affine if the sum of any three
code vectors is a code vector). 1

Suppose that the minimal coalitions in this scheme correspond[gq]
minimal vectors (with al in the first coordinate) of some binary
linear or affine code, sayl. In either case, the sum of any three[15]
code vectors should be again a code vector. On the other hand, it
is immediate to observe that there are three vectord ithat sum ]
up to a vector of weigh8. Since the size of all minimal authorized
coalitions in the original system i$, this proves that codel does
not realize our access structure.

We leave as an open problem to prove that every scheme cor{f‘g]
sponding to aZ,-linear code whose binary image is ngt-linear
cannot be represented by two binary ideal schemes.

[17]

[19]
APPENDIX [20]
Steiner's Original Problem[20]. Given two numberst and v, [21]

k < v, construct a pai( X, ), where X is a finite set and3 a
collection of its subsets, which satisfies the following conditions:
) IX] = v
iy B=|J'_,B(n)and|B;| = n for everyB; € B(n);
ii) every pair (z, y) C X is contained in exactly one block of
B(3);
iv) everyi-subset ofX, 3 < i < k — 1, which does not contain
a block of U;:3 B(j), is contained in exactly one block of
B(i + 1); no block of B(i + 1) contains as subsets blocks of

Uj=s BG)-
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