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Minimal Vectors in Linear Codes

A. Ashikhmin and A. Barg

Abstract—Minimal vectors in linear codes arise in numerous appli-
cations, particularly, in constructing decoding algorithms and studying
linear secret sharing schemes. However, properties and structure of
minimal vectors have been largely unknown. We prove basic properties of
minimal vectors in general linear codes. Then we characterize minimal
vectors of a given weight and compute their number in several classes
of codes, including the Hamming codes and second-order Reed–Muller
codes. Further, we extend the concept of minimal vectors to codes over
rings and compute them for several examples.

Turning to applications, we introduce a general gradient-like decoding
algorithm of which minimal-vectors decoding is an example. The com-
plexity of minimal-vectors decoding for long codes is determined by the
size of the set of minimal vectors. Therefore, we compute this size for
long randomly chosen codes. Another example of algorithms in this class
is given by zero-neighbors decoding. We discuss relations between the
two decoding methods. In particular, we show that for even codes the
set of zero neighbors is strictly optimal in this class of algorithms. This
also implies that general asymptotic improvements of the zero-neighbors
algorithm in the frame of gradient-like approach are impossible. We also
discuss a link to secret-sharing schemes.

Index Terms—Minimal vectors, minimum distance decoding, Reed–
Muller codes, secret sharing, zero neighbors.

I. INTRODUCTION

The subject of this correspondence is minimal vectors in linear
codes, i.e., vectors that do not cover other nonzero vectors except
maybe proportional ones. Minimal vectors were extensively studied
in combinatorics (cycles in linear matroids). In the coding context,
minimal vectors were introduced in [14] where they were used to
construct a minimum-distance decoding algorithm of linear codes
(see Section IV). For the Euclidean space, this connection was again
addressed in [1]. Recently, interest in this subject has been renewed
in a series of works sparked by [17], where it was observed that
minimal vectors in linear codes describe minimal access structures in
linear secret sharing schemes defined by these codes.

We begin with general properties of collections of minimal vectors
in linear codes. Then we consider some examples, computing minimal
vectors in the Hamming, second-order Reed–Muller, and some other
codes. It turns out that there exist linear codes all of whose nonzero
vectors are minimal. Under the name of intersecting these codes
were studied in [8]. The Carlitz–Uchiyama bound shows (see below)
that codes dual to the binary Bose–Chaudhuri–Hocquengham (BCH)
codes are intersecting. On the other hand, for BCH codes themselves
the problem of characterizing minimal vectors seems difficult to
approach. Even for two-error-correcting binary BCH codes a recent
attempt [7] ended with only a partial result.

Next we show how to extend the concept of minimality to codes
over Galois rings and compute minimal vectors inZZZ4 Kerdock
codes, first-order Reed–Muller, and Hamming codes. Turning to the
minimal-vectors decoding algorithm, we observe that the underlying
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idea is to construct a certain fixed set of code vectors used to
successively improve the current decision. This idea bears similarity
with methods of steepest descent in continuous spaces. This feature
enables us to introduce a general gradient-like decoding algorithm
of which minimal-vectors decoding and another known method,
the zero-neighbors decoding [15], are examples. We show basic
properties of this method, which allows us to analyze both examples
in a simple and unified manner. Further, we show that under certain
conditions, gradient-like algorithms must examine all zero neighbors,
and therefore, the size of this set provides alower bound on the
complexity of algorithms in this class.

In the final section, we briefly review a link of our subject to
secret-sharing schemes.

II. M INIMAL VECTORS IN LINEAR CODES

A. General Properties

Let En

q be then-dimensional coordinate space over the fieldFFF q.
LetC � En

q be an[n; k; d] linear code. We use a shorthand notation
[n] := f1; 2; � � � ; ng for the set of code coordinates. A support of a
vectorccc is defined assupp (ccc) = fi 2 [n]: ci 6= 0g. If supp (ccc0) �
supp (ccc) (respectively,�), we also writeccc0 � ccc (respectively,�).

Definition: A nonzero vectorccc 2 C is called minimal if
0 6= ccc0 � ccc impliesccc0 = accc, whereccc0 is another code vector anda is
a nonzero constant. The support of a minimal code vector is called
minimal with respect toC.

Therefore, no minimal vector covers a nonzero code vector with a
smaller support. LetM(C) be the set of minimal vectors of a given
codeC. If the context does not allow ambiguity, we omitC in this
notation and write simplyM. For binary codes,M(C) can be also
viewed as the set of minimal supports. In the general case, minimal
supports define a set of lines in the code.

Let H be the parity-check matrix ofC. By H(U) we denote its
restriction to columns indexed by a subsetU � [n]: Basic properties
of M are characterized in the following lemma.

Lemma 2.1:

1) Let U � [n] be the support of a vectorccc 2 C. ThenU is
minimal if and only if rk (H(U)) = jU j � 1.

2) (U is minimal) ) (jU j � n � k + 1).
3) Every support of sizejU j � d(1+ 1=(q� 1))� 1 is minimal.
4) The linear span ofM(C) coincides withC.
5) Let C be a binary code. Then ifccc 2 C; ccc =2 M(C) there is a

pair of nonzero code vectorsccc1 � ccc andccc2 � ccc with disjoint
supports such thatccc = ccc1 + ccc2.

Proof: The only if part of Part 1) is obvious. Let us prove the
converse. Lethhhi be theith column ofH(U). By the assumption,
there existw = jU j nonzero numbers�i such that

w

i=1

�ihhhi = 0

and somew � 1 of these columns, say the first, are linearly
independent. Suppose there exists a code vectorccc0; ccc0 � ccc, i.e., there
exists a vanishing linear combination of columns that does not involve
at least one of the firstw � 1 columns, for instance,

w

i=2

�ihhhi = 0
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with �w 6= 0. Multiply this sum by�w=�w and subtract from the
first one. This gives a linear dependence between the firstw � 1
columns, a contradiction.

Part 2) is implied by Part 1).
To prove Part 3), suppose thatccc 2 C is a nonminimal vector of

weight wt (ccc) � d(1 + 1=(q � 1))� 1: Considerq � 1 code vectors
ccc� accc0, wherea runs over all nonzero constants. Summing up their
weights, we get(q�1) wt (ccc)� wt (ccc0). Thus their average weight is
wt (ccc)� (q� 1)�1 wt (ccc0). One of these vectors, sayccc00 has weight
at most the average. Together with our assumption this implies a
contradiction

wt (ccc00) �wt(ccc)�
wt(ccc0)
q � 1

� d 1 +
1

q � 1
� 1�

d

q � 1

= d� 1:

Part 4) will follow from Lemma 4.3 below. Part 5) is obvious.

Note that Part 1) of this lemma gives a straightforward way to
check whether a given code vector is minimal.

This lemma enables one to give immediate characterization of
minimal vectors in some codes.

Examples:
1) Binary Golay Codes:Let C = G23 be the binary[23; 12; 7]

Golay code. We haven � k + 2 = 2d� 1 = 13. Thus

M(G23) = f3335 vectors of weight� 12g

(this was found by a search algorithm in [1]). The same argument
applies to the dual[23; 11; 8] codeG?23, which gives

M(G?23) = f1794 vectors of weights8 and12g:

For the extended codeG24, we haven � k + 2 = 2d � 1, and the
answer is also obvious.

2) Binary Intersecting Codes:These codes were introduced in [8].
They are linear codes in which any pair of nonzero code vectors
intersect. By Lemma 2.1, Part 5, this is equivalent to the fact that
M(C) = Cnf0g.

Let C be the binary code dual to the BCH code of length
n = 2m � 1 with designed distanced = 2t+ 1 andt � 1

32
(m=2)�1.

Then by the Carlitz–Uchiyama bound [16, Ch. 9], the maximum
weightD of C is bounded from above asD � 2m�1+(t�1)2m=2.
By the same bound, the quantity2d � 2m � 2(t � 1)2m=2 > D:
ThusM(C) = C f0g andC is intersecting [8, Proposition 9].

3) Maximum-Distance-Separable (MDS) Codes:In an [n; k; d]
MDS codeC, the set of minimal vectors coincides with the set of all
(q � 1) n

d
codewords of weightd (by Part 2) of the lemma).

For an[n; k; n�k] codeC, the answer is generally not as obvious.
However, there is a subclass of codes with these parameters, namely
“near-MDS” codes of [9] for which it is easily given.

These codes are defined as follows. If a codeC is MDS, then so
is its dualC?, and

d(C) + d(C?) = (n� k + 1) + (k + 1) = n+ 2:

This is the largest possible value for this sum. IfC is not MDS,
then clearlyd(C) + d(C?) � n. A code is called near-MDS [9]
if this holds with equality. This definition implies that anyk? + 1
columns of the parity-check matrix ofC have rankk? [9]. Thus
M(C) = fvectors of weightd andd + 1g.

B. Random Codes

To understand the structure of minimal vectors in long codes, let us
suppose thatC is a random linear code whose parity-check matrix has
independent equiprobable entries. LetMw be the number of minimal

vectors inC and EMw its average number of the ensemble over
random linear codes.

Theorem 2.2: We have

EMw=
n
w

(q�1)w

qn�k

w�2

i=0

(1�q�(n�k�i)); w � n�k+1

0; otherwise.
(1)

Proof: Let �n; k(w) be the probability that a given support of
sizew is minimal. By the definition, code vectors sharing the same
support are proportional, therefore,EMw = (q � 1) n

w
�n;k(w).

The event considered is that some (say, first)w � 1 columns of
H among the chosenw columns are linearly independent and the
remaining column is their linear combinations withw � 1 nonzero
coefficients. The number of collections ofw columns that satisfy the
above conditions equals

(qn�k � 1)(qn�k � q) � � � (qn�k � qw�2)(q� 1)w�1

and the total number of choices isqw(n�k). The probability�n;k(w)
equals the quotient of these quantities.

Intuitive understanding of this result is acquired by asymptotic
analysis. This is not only interesting in itself, but also is used
below in Section IV to assess certain decoding algorithms. Let
n ! 1; (n � k) ! 1. We shall compare the number of minimal
vectorsMw with the number of all code vectors of weightw. Let
Nw denote this number. The probability that a given vector satisfies
a random check equation isq�1; therefore, the probability that this
vector is contained in a random code withn � k checks equals
q�(n�k): Thus

ENw =
n

w

(q � 1)w

qn�k
(2)

a classical result of coding theory [10]. From this we see that the
difference betweenEMw and ENw is in the factor

w�2

i=0

(1� q�(n�k�i)):

It will be seen that the asymptotic behavior ofEMw depends on the
difference betweenw andn�k+1. Letw = (n�k+1)�`; ` � 0:
To simplify the analysis, we shall use the notationt = n� k, so that
` = t�w+1. Using this notation, the product in question takes the
form t

i=`+1(1 � q�i): Since we study its limit value asn ! 1,
we are interested in the behavior of the function


(q; `) :=

1

i=`+1

(1� q�i):

Its properties are given in the following lemma.

Lemma 2.3:

1) The product
(q; `) converges for anỳ � 0.
2) For ` ! 1 we have
(q; `) ! 1.
3) For ` = const, 1 � q�` < 
(q; `) < 1:
4) The function
(q; `) is monotone increasing in one argument

if the other argument is fixed.

Proof: By [13, Theorem 353]


(q; 0) =

+1

i=�1

(�1)iq�(1=2)(3i +i)

=1� q�1 � q�2 + q�5 + q�7 � � � � :

It is known and can be easily checked that this series converges.
The quantity
(q; `) for any fixed` > 0 differs from 
(q; 0) by a
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constant. This proves Part 1) for constant`. Further, for anỳ > 0
we have

1 >

t

i=`+1

(1� q�i) > 1�

t

i=`+1

q�i > 1� q�`:

This proves the convergence of
(q; `) for ` growing and implies
Parts 1)–3). Part 4) is obvious.

Thus ifw is not too close ton�k+1, then on the average almost
all code vectors of weightw in a random code are minimal. Let us
formulate this as a corollary.

Corollary 2.4: Let n!1; 0 < w < (n�k+1)�`; `!1.
Then limn!1 (EMw=ENw) = 1:

If w differs from n � k + 1 by a constant, then the quotient
EMw=ENw tends to a constant between0 and1. In particular, from
the series expansion for
(q; 0) we compute
(2; 0) = 0:288 � � � ;
which is a familiar fraction of nonsingular square matrices overFFF 2.
Otherwise,
(q; `) is always greater than1=2. This is shown by
computing
(3; 0) = 0:560 � � � and applying Lemma 2.3, Part 4).
This shows that for allq � 2 and allw � n � k + 1 except for the
caseq = 2; w = n � k + 1 on the average more than half of code
vectors of weightw are minimal.

The total average number of minimal vectors in a random code is
given in the following corollary.

Corollary 2.5: Let n ! 1; k = Rn; 0 < R < 1. Then

1

n
logq EjMj =

Hq(1�R)� (1�R); 0 < 1�R <
q � 1

q

R;
q � 1

q
� 1�R < 1.

HereHq(�) is the entropy function.
Proof: As long as1�R < (q � 1)=q, asymptotically the sum

EjMj =

n�k+1

w=0

EMw

is dominated by the termEMn�k+1. We have just shown that

EMn�k+1 = 
(q; 0)ENn�k+1:

Conclude by using (2).

In Section IV we use the variance of the number of minimal vectors
in C. This has been estimated in [3]. We quote this result only for
the binary case.

Theorem 2.6 [3]: Let C be a random binary linear code with
distanced. Then

VarMw � EMw(1 + 2�d=2EMw):

C. Hamming Codes

LetC be theq-ary Hamming code of lengthn = (qm�1)=(q�1).
For the binary case, the required set of vectors forms a configu-

ration defined by J. Steiner, from which later the modern notion of
Steiner systems has been coined. Formula (3) is quoted in [12] with a
reference to [20]. Its proof for anyq is given below. Steiner’s original
definition is cited in the Appendix.

Theorem 2.7:The setM(C) is formed byMw vectors of every
weight w; 3 � w � m + 1, where

Mw =
1

w!

w�2

i=0

(qm � qi): (3)

Proof: Considers = w � 1 linearly independent columns in
the parity-check matrixH of the codeC. The total number of
linear combinations of these columns with nonzero coefficients equals
(q � 1)s; the 1=(q � 1)th fraction of them appear as columns
in H distinct from the chosen columns (since they are linearly
independent). Every choice ofw linearly dependent columns of which
s = w � 1 are linearly independent, defines a minimal code vector.
Thus one has to count the number of distinct choices ofs linearly
independent columns inH. This number equals

1

s!
n(n� 1) n�

q2 � 1

q � 1
� � � n�

qs�1 � 1

q � 1
:

Taking into account that all the w
w�1 choices ofw � 1 linearly

independent columns within a given support of sizew yield one and
the same code vector, we find that the number of minimal vectors of
weight w in the code equals

Mw =
1

(w� 1)!w
n(n� 1) n�

q2 � 1

q � 1

� � � n�
qs�1 � 1

q � 1
(q � 1)s:

The substitution of the value ofn gives the desired result.

A similar argument in the binary case yields the following fact.

Theorem 2.8: In the extended Hamming code of length2m, the
number of minimal codewords of even weightw; 4 � w � m+ 2,
equals

M ex
w =

1

w!
2m

w�3

i=0

(2m � 2i):

Proof: As above, we have to count the number of choices of
w linearly independent columns in the parity-check matrix, of which
w � 1 are linearly dependent. Since only half of the total of2m+1

columns of lengthm + 1 are present inH, every t � 1 linearly
independent columns forbid2t�2 columns inH. Therefore, we can
choosew � 1 linearly independent columns in

n

(w� 1)!

w�3

i=0

(n� 2i)

different ways. As above, this has to be divided byw
w�1

.

D. Second-Order Reed–Muller Codes

Let C = RM (2; m) be the second-order binary Reed–Muller
code [16, Ch. 15]. Its parameters are[n = 2m; k = 1 +m + m

2
;

d = 2m�2]. Let Aw the number of vectors of weightw in C. Then
Aw = 0 except for

w = 2m�1; w = 2m�1 � 2m�1�h; 0 � h � bm=2c (4)

(see [16, ch. 15]). In particular, it is known that

Ad = (4=3)(2m� 1)(2m�1 � 1):

Let Mw be the number of minimal vectors of weightw > 0 in C.

Theorem 2.9: For w = 2m�1 + 2m�1�h; h = 0; 1; 2; there
are no minimal code vectors(Mw = 0). Otherwise,Mw = Aw,
except for the casew = 2m�1, when the number of nonminimal
vectors equals

A2 �M2 = 2m+1 � 2 + Ad(2
m�1 � 2): (5)

Thus the only weights when there exist nonminimal codewords are
(3=4)n; (5=8)n; n (all codewords) and(1=2)n (part of them).
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Proof: Let ccc 2 C be nonminimal. Then by Lemma 2.1, Part 5)
there areccc1; ccc2 2 C n f0g such thatccc1 + ccc2 = ccc. Let w1; w2; w be
the weights of these vectors. We have

w = w1 + w2 � 2d = 2m�1 = n=2: (6)

First suppose thatw > n=2. Then there are two possibilities, namely,
either one of the weightsw1; w2 equalsn=2 or not. In the former
case, (4) and (6) imply the following equality:

2m�1 + 2m�1�h = 2m�1 + 2m�1 � 2m�1�h

whereh; h1 are some integers between1 andbm=2c. This is possible
only if h = h1 = 1. Thus if eitherw1 or w2 equalsn=2, we have
the following subcase:

i) (w; w1; w2) = ( 3
4
n; 1

2
n; 1

4
n).

If w > n=2 and bothw1 andw2 differ from n=2, then (6) yields
the equation

2m�1 + 2m�1�h =2m�1 � 2m�1�h + 2m�1 � 2m�1�h

or

2�h = 1� 2�h � 2�h ; h; h1; h2 6= 0:

Obviously, this equality cannot be satisfied with the “+” sign whereas
for the “�” the only possibilities for(h; h1; h2) are (1; 2; 2) and
(2; 2; 1). This gives rise to two subcases:

ii) (w; w1; w2) = ( 34n;
3
8n;

3
8n);

iii) (w; w1; w2) = ( 5
8
n; 3

8
n; 1

4
n).

This exhausts the possibilities forw > n=2. Let us examine them.
All code vectors of one and the same weightw 6= n=2 are affinely
equivalent, i.e., if there exists one nonminimal vector of weightw,
then applying a suitable automorphism, one concludes that all code
vectors of weightw are nonminimal. Suppose(x1; � � � ; xm) are the
affine coordinates onFm = AG (m; 2). Then the code vector given
by the incidence vector of the equationx1x2 = 0 has weight3n=4
and covers the incidence vector (of weightn=2) of the hyperplane
x1 = 0. This shows that every code vector of weight3n=4 is
nonminimal and is formed by a disjoint union of a vector of weight
n=2 and a vector of weightn=4, while subcase ii) is never realized.
Likewise, in case iii), the incidence vector ofx1x2 + x3x4 = 0 has
weight5n=8 and contains the vector given by(x1+x2)(x3+x4) = 1.

What is left is the case ofw = n=2. This case is more difficult.
Fortunately, the structure of nonminimal code vectors of weightn=2
is known. Letccc be such a vector. Thenccc is a sum of two nonzero
code vectors of minimal weight. By [16, Theorem 13.5], any vector
of minimal weight inC corresponds to an(m� 2)-dimensional flat
in Fm. Hence the subsetX of Fm corresponding toccc is a disjoint
union of two(m� 2)-dimensional flats inFm, sayA1 andA2. Let
V1 andV2 be the(m� 2)-dimensional linear spaces parallel toA1

and A2, respectively. The disjointness ofA1 and A2 implies that
dim (V1 + V2) < m. Hence eitherV1 = V2 andX is an (m� 1)-
flat or W = V1 V2 has dimensionm � 3. The numberN1 of
nonminimal vectors of weightn=2 of the first type equals the number
of (m � 1)-flats in Fm

N1 = 2(2m � 1):

In the second case, the image ofX in the (three-dimensional) quotient
spaceFm=W is a set of four points that do not constitute an affine
plane. Hence the total number of vectorsX of this type equals

N2 =
m

m� 3

8

4
� 2

3
2

:

Thus the number of nonminimal vectorsA2 �M2 = N1 +
N2, which gives the claimed number if one recalls the expression for
Ad given before the theorem.

Remark: The number of minimal vectors of weightn=2 in
RM (2; m) equals

Bn=2 =

bm=2c

h=2

A2 �2 (2m�2h+1 � 2): (7)

III. M INIMUM VECTORS IN CODES OVER RINGS

Codes over Galois rings have been a subject of considerable
attention lately. In this section we extend the definition of minimal
vectors to this case and give some examples.

Let S be a finite commutative ringS with identity e, whose set of
zero divisors has the formpS for a certain primep, also known as a
Galois ring. It is known [19] thatjSj = qm; m � 1; whereq = ps

for somes � 1, and the characteristic ofS (the order ofe in the group
(S; +)) equalspm. Since fixing the numberspm and qm identifies
S up to isomorphism, it may be also denoted as GR(qm; pm). All
ideals ofS form the following chain:

N0 = S � N1 = pS � N2 = p2S � � � �

� Nm�1 = pm�1S � Nm = pmS = 0 (8)

and jNij = qm�i: Consider a “linear” codeC over S, i.e., a set
of strings of n elements ofS such that ifccc1; ccc2 2 C then also
a1ccc1 + a2ccc2 2 C for any a1; a2 2 S, i.e., anS-module.

The original definition in Section II is not applicable in this case
because of zero divisors in the ring. Namely, it is often possible to
multiply a nonzero codeword by a nonzero constant so that it becomes
all-zero. Therefore, in this section we find it more convenient to speak
of supports than of codewords. Another reason is thatS is not a
vector space.

The number

T (ccc) = min
i2supp (c)

fu: ci 2 Nug

will be called the type of the word ccc. Let us call the number
T (I) = minsupp (c)=I T (ccc) the type of a subsetI � [n]. If there is
no word with supportI, the type ofI is undefined.

Definition: A subsetI � [n] of typet is called minimal if there
does not exist a codewordccc with T (ccc) � t and suppccc � I.

This yields a hierarchy of minimal subsets of types0 � t � m�1.
The collection of typet minimal subsets will be denoted byMt(C).

Examples:
4) Consider the first-order Reed–Muller code ZRM(1; v) of length

n = 2v overZZZ4 [11]. Then there are two types of minimal words,
namely, those of types0 and1. It can be easily seen thatM0 consists
of a single setI = [n] andM1 consists of2v+1�2 subsets (supports
of words) of sizen=2.

5) Let C be theZZZ4 Kerdock code of lengthn = 2v, wherev is
an odd number,v � 5, [11], [18]. ThenM0 is formed by the type
0 minimal subsets of sizes2v�1 + 2v�2 � 2(v�3)=2 (the number of
subsets of either size is2v+1(2v � 1)) andM1 consists of2v+1� 2
subsets of sizen=2. Therefore, all supports except the one of size
n are minimal.

6) LetC be theZZZ4 “Hamming” code with the parity-check matrix

1 1 1 1 1 1 1 1
0 0 0 0 2 2 2 2
0 0 2 2 0 0 2 2
0 2 0 2 0 2 0 2

whose columns are formed by all then = 2v possible vectors of
zeros and twos, each preceded by a1. This code is orthogonal over
ZZZ4 to the ZRM(1; v) code of Example 1. The binary image of this
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code under the mapping(0 ! 00; 1 ! 10; 2 ! 11; 3 ! 01) is a
nonlinear(2v+1; 22 �(v+1)�1; 4) code. LetM =M0 [M1 be
the set of minimal supports with respect toHv. We refer to [3] for
the proof of the following theorem.

Theorem 3.1 [3]: The number of minimal supports of type0
and sizew in Hv equals

M (0)
w =

1

w!
2v

w�3

i=0

(2v � 2i); 4 � w � v + 1; w even: (9)

Every pair of coordinates forms a minimal support of type1, thus

M
(1)
2 =

n

2
: (10)

IV. M INIMUM DISTANCE DECODING

In this and the next section we outline two applications of minimal
vectors mentioned in the Introduction. We begin with minimum
distance decoding algorithms. In this section we deal with binary
codes only. We introduce a general gradient-like decoding algorithm
and study its properties. One of the first works devoted to minimal
vectors was paper [14], where they were used to construct such a
decoding algorithm. This algorithm bears similarity to the steepest
descent methods for computing optima in continuous spaces. Another
example of algorithms of this type, thezero-neighborsdecoding, was
provided in [15]. Our results provide a framework for the study of
algorithms of this type and show their limits.

The minimum distance decoding problem that we consider is
formulated as follows. We are given a linear codeC � En

2 . The
problem is to implement the mappingf : En

2 ! C such that

8xxx2E dist (xxx; f(xxx)) = dist (xxx; C):

If for a certainxxx, this is satisfied for many code vectors, the value of
f(xxx) is chosen arbitrarily from them. This function gives rise to the
concept of Voronoi regions of code vectors inEn

2 . Let ccc 2 C, then
the Voronoi regionD(ccc) is defined as follows:

D(ccc) := fxxx 2 En

2 j dist (xxx; ccc) � dist (xxx; ccc0); ccc0 2 Cg:

Any point of En

2 is contained in at least one Voronoi region; some
points fall into many regions. Note that geometrically Voronoi regions
of different code vectors in a linear codeC all have the same shape.
Namely, the following property follows directly from the definition.

Lemma 4.1: Let ccc; ccc0 2 C and letxxx 2 D(ccc). Thenxxx + ccc0 2
D(ccc + ccc0).

Let us define the general gradient-like decoding method. A general
principle of the decoding is to construct a setT of codewords in such
a way that every vectoryyy either lies inD(0) or there exists azzz 2 T
such that

wt (yyy + zzz) < wt (yyy): (11)

Any set T � C satisfying this property will be called atest set.
This suggests that the decoding can be accomplished by recursively
inspecting the test set for the existence of such a vectorzzz and
subtracting it from the current vector. Letyyy be the received vector.
Let us formulate the algorithm.

Gradient-like decoding:

1) Set ccc = 0.
2) Find zzz 2 T such thatwt (yyy + zzz) < wt (yyy). Let ccc  ccc + zzz;

yyy  yyy + zzz.
3) Repeat until no suchzzz is found. Outputccc.

Let us prove that this algorithm always converges to the nearest
code vector.

Theorem 4.2: For any set of code vectors satisfying (11) the
gradient-like algorithm performs a complete minimum-distance de-
coding. The time complexity of this algorithm isO (n2jT j): The
space complexity isO (njT j).

Proof: Let yyy 62 D(0). The algorithm expandsyyy into a sum
of test vectors. Suppose that afterm steps no further test vectors
satisfying (11) are found. This means that we managed to bringyyy

“down” to D(0)

eee = yyy +

m

u=1

zzzu 2 D(0):

By Lemma 4.1 this means thatyyy 2 D m

u=1 zzzu .

Submitting a code vectorccc 6= 0 to this algorithm, we observe that
it constructs a decomposition of zero in the form

0 = ccc+
u

zzzu:

In addition, we can observe that in each step the algorithm produces a
vector of a strictly smaller weight. Let us formulate this as a lemma.

Lemma 4.3: Let T � C be a test set. Then any code vector
ccc 6= 0 can be decomposed into a sum

ccc =

m

u=1

zzzu; zzzu 2 T ; m � 1

where

wt (ccc) > wt (ccc+ zzz1) > wt (ccc+ (zzz1 + zzz2)) > � � � � 0:

Thus the linear span ofT equals the entire codeC.
The setM of minimal vectors of a binary code forms a test set.

Lemma 4.4: Minimal vectors in a binary linear code form a
test set.

Proof: Let yyy 62 D(0). Then there is a code vectorccc such that
wt (yyy + ccc) < wt (yyy). If ccc is not minimal, then it can be decomposed
into a sumccc =

u
mmmu of minimal vectors with disjoint supports.

Clearly, for at least one of these vectors, saymmm1, we must have
wt (yyy +mmm1) < wt (yyy).

Note that Lemma 2.1, Part 5) left without proof earlier now follows
from the last two lemmas.

Therefore, minimal vectors can be used for decoding. To estimate
the complexity of this decoding for long random codes, we use
Corollaries 2.4, 2.5, and Theorem 2.6. First, Corollary 2.5 implies
that theaveragedecoding complexity for rates0 < R < (q � 1)=q
behaves exponentially in the same way as that of the exhaustive
search. To estimate the worst case complexity, we use the expression
for the variance in Theorem 2.6. This amounts in standard calculations
using Stirling approximation (see [3]) that we omit. The conclusion is
that, at least for low code rates, the worst case complexity of minimal-
vectors decoding has the same order of magnitude as the average-case
complexity. Note that in examples the number of minimal code
vectors can be much smaller than the total size of the code. This is the
case for all codes whose distance is close ton�k+1 since then many
vectors have weight greater thann�k+1 and cannot be minimal. An
extreme example is MDS codes (Example 3 in the previous section).
Another example is Hamming codes. Namely, using (3) we see that
asn ! 1, the number of minimal vectors is of exponential order
at mostqm = qlog n(1+o(1)). The total number of code vectors is
qn�O(log n).
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Another example of decoding algorithms in this class was given
in [15]. Let A � En

2 and letX (A) be formed by all the points of
En

2 at a distance1 from A

X (A) = fxxx j dist (xxx; A) = 1g:

Define theboundaryof A as follows:

@A = X (A) [ X (A):

Definition: Two code vectorsccc1; ccc2 are calledneighbors if
their Voronoi regions share a common boundary, i.e., if@D(ccc1) \
@D(ccc2) 6= ;: A neighbor of the zero vector is called azero neighbor.

Note that here we deviate slightly from [15]. This enables us to
give the definition of zero neighbors in symmetric form.

LetZ be the set of zero neighbors. The definition has the following
simple consequence:

(X (D(0))\D(zzz) 6= ;) ) zzz 2 Z: (12)

Indeed,xxx 2 X (D(0))\D(zzz) implies that there is ayyy 2 D(0) at a
distance1 from xxx. Henceyyy 2 @D(0) \ @D(zzz).

Decoding with zero neighbors proceeds in the same way as with
minimal supports except that now we choose the test setT in
Algorithm 2.1 equal toZ. This version of the algorithm is called
zero-neighbors decoding, first introduced in [15].

The zero-neighbors decoding always converges to the closest code
vector. To justify this we again verify thatZ is a test set.

Theorem 4.5 [15]: The zero-neighbors algorithm performs a
complete minimum distance decoding.

Proof: Let yyy 62 D(0). Consider a chain of inclusions

0 � . . . � yyy2 � yyy1 � yyy0 = yyy

wherewt (yyy
i
) = wt (yyy

i�1)�1. Clearly, there exists a numberi such
that yyy

i+1 2 D(0) and yyy
i
2 @D(0) n D(0). Then yyy

i
2 D(zzz) for

somezzz 2 Z. We have

wt (yyy � zzz) = dist (yyy; zzz) � dist (yyy; yyy
i
) + dist (yyy

i
; zzz)

< dist (yyy; yyy
i
) + dist (yyy

i
; 0) = wt (yyy):

HenceZ is a test set and the theorem follows.

The complexity of zero-neighbors decoding was estimated in [15]
as follows.

Theorem 4.6 [15]: For almost all codes, both time and space
complexity of zero-neighbors decoding behaves as2�(R)n(1+o(1)),
where

�(R) =
R; 0 � R � 1�H2(1=4)
(H2(2�0)� (1�R)); 1�H2(1=4)< R � 1

where�0 is the smallest positive root ofR = 1�H2(�).

The memory used by the algorithm is spent on storing zero
neighbors. Therefore,�(R) also gives an estimate of the exponent of
the size ofZ for most long codes. This size grows slower than the
total size of the code forR > 1 �H2(1=4) � 0:189.

We conclude that the complexity of this decoding for almost all
codes and forR > 0:189 is exponentially smaller than that of
minimal-vectors decoding.

Two last results of this section deal with characterization theorems
for zero neighbors and minimal vectors in linear codes. Let us first
take a closer look at the set of zero neighbors. The only property of
the setZ that is essential for the successful decoding is formulated
in (12)

X (D(0)) �
zzz2Z

D(zzz): (13)

Thus we may further restrict the test set of vectors by choosing a
smallestsubset ofZ with this property. Denote this subset byZmin.
(This is how zero neighbors were originally defined in [15].) Note
that though the setZmin may not be unique, its size is well-defined.
Therefore, letZmin = jZminj:

First, we prove that for codes with only even weights of codewords
zero neighbors in the setZmin form a test set of thesmallestpossible
size.

Theorem 4.7: Let C be a binary linear code all of whose
codewords have even weight and letT � C be a test set. Then
jT j � Zmin.

Proof: Let y 2 X (D(0)) and letzzz 2 T be such a vector that
wt (yyy � zzz) < wt (yyy). Sincedist (yyy; D(0)) = 1, we can choose a
vectorxxx 2 D(0) with dist (xxx; yyy) = 1 andxxx � yyy. We have

dist (zzz; yyy) < dist (0; yyy) = dist (0; xxx) + 1

� dist (ccc; xxx) + 1; 8 ccc 2 C: (14)

Clearly, for anyccc 2 C we havedist (ccc; xxx) = dist (ccc; yyy)� 1.

a) Consider the subsetC0 � C for which

dist (ccc; xxx) = dist (ccc; yyy)� 1:

Then (14) implies

dist (zzz; yyy) < dist (ccc; yyy); c 2 C 0: (15)

b) Let C 00 � C be the subset of codewords for which

dist (ccc; xxx) = dist (ccc; yyy) + 1:

Definition (11) impliesdist (0; yyy)�dist (zzz; yyy) � 1. Suppose that this
holds with equality. Letwt (yyy) = w, then

dist (zzz; yyy) = wt (zzz) + wt (yyy)� 2wt (zzz \ yyy)

or

2wt (zzz \ yyy) = wt (zzz) + 1:

This contradicts our assumption thatC has only even weights.
Therefore,

dist (0; yyy)� dist (zzz; yyy) � 2:

Then (14) implies

dist (zzz; yyy) � dist (0; yyy)� 2 � dist (ccc; xxx)� 1

= dist (ccc; yyy); 8c 2 C 00: (16)

Inequalities (15) and (16) together imply that

yyy 2 D(z):

Running over allyyy 2 X (D(0)), we collect a subsetT 0 � C with

X (D(0))�
zzz2T

D(zzz):

Then jT j � jT 0j � Zmin:

SinceM is a test set, this theorem implies that forC an even
binary linear code,jMj � Zmin. However, it is possible to prove a
stronger fact, namely, that in any even binary linear code there is a
setZmin all of whose elements are minimal codewords.

Theorem 4.8: Let C be a binary linear code with only even
weights of codewords. Then the setZmin can be chosen so that
Zmin � M.
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Fig. 1.

Proof: Let us assume that there is a codewordzzz 2 Z; zzz 62 M
and letyyy 2 En

2 be a vector such thatyyy 2 X (D(0)); yyy 2 D(zzz).
Sincezzz is not minimal, there are nonzero vectorszzz1; zzz2 with disjoint
supports such thatzzz = zzz1 + zzz2. Let

wt (zzz) = t wt (zzz1) = t1 wt (zzz2) = t2:

We want to show that if one of the vectorszzz1; zzz2 is farther fromyyy

thanzzz, then the other one is at most as far aszzz.
By our assumptions,

`1 + `2 = dist (0; yyy) =
t

2
+ 1 dist (zzz; yyy) =

t

2
� 1:

Let dist (zzz2; yyy) > dist (zzz; yyy). We then plug in our notation and
perform straightforward computations using the Fig. 1 to find that
dist (zzz1; yyy) � t=2 � 1.

Thusyyy 2 D(zzz) andyyy 2 D(zzz1), i.e., zzz andzzz1 cannot both be in
the setZmin at the same time. Moreover, given a nonminimal code
vector (zzz in our case) and a vectoryyy 2 X (D(0)); yyy 2 D(zzz), we can
always cast it away so that the remaining subset of zero neighbors
still satisfies condition (13). Therefore,Zmin can be chosen to be a
subset ofM.

For more details and a general overview we refer to [4].

Remarks:

i) Generally, not all zero neighbors are minimal. Indeed, con-
sider the codef0000;1100;0011;1111g. Then vector0110
lies equally far from all the code vectors which proves that
all nonzero code vectors are zero neighbors. However, the all-
one vector is not minimal. Looking at smallest sets of zero
neighbors defined by (13) we easily see thatzzz 2 Zmin implies
wt (zzz) � 2 (covering radius ofC)�1. LetC be a binary linear
code such that its covering radius equals at most its minimum
distance. For instance, long BCH codes are known to satisfy
this. By Lemma 2.1, Part 3), in such codesany setZmin is
formed by minimal code vectors.

ii) In view of Theorem 4.7, the setZmin is in the general
case unavoidable in gradient-like decoding methods. For this
reason it is no surprise that in the case of arbitraryq the zero-
neighbors algorithm is also applicable and leads to similar
results [4]. Interestingly, minimal vectors do not always form
a test set inq-ary linear codes.

V. SECRET SHARING

A general introduction to secret sharing schemes can be found
for instance in Stinson’s survey article [21]. Some familiarity with
this concept is helpful in reading this section. The relation to linear
codes was observed in [17] and analyzed in [6]. In the context of
secret-sharing schemes one coordinate of the code is associated with

values of the secret information and the remainingn� 1 coordinates
are associated with users of a system of restricted access to the
secret. LetH = khijk; 1 � i � r; 1 � j � n, be a matrix with
entries fromFFF q. Define a linear transformation�: Em

q ! En
q by

�(eee) = eeeH; eee 2 Em
q . Suppose the first coordinate of�(eee) carries

the value of the secret. The remaining coordinates contain shares of
information given to then� 1 users. It can be shown [6] that users
corresponding to nonzero entries in(�2(eee); �3(eee); � � � ; �n�1(eee)),
putting their shares together, can uniquely reconstruct the secret.
Each such group of users is called an authorized coalition. Any
group of users that does not form an authorized coalition is called
unauthorized. Wheneee runs overEn

q , we obtain the entire set of
authorized coalitions, called theaccess structureof the scheme. If
no unauthorized coalition can obtain anya posteriori information of
the secret value, the scheme is calledperfect. A minimal authorized
coalition is an authorized coalition that becomes unauthorized upon
deletion of any of the users. The set of minimal authorized coalitions
provides a complete description of a perfect secret-sharing scheme.

Viewing H as a parity-check matrix of a linear codeC, one can
establish a one-to-one correspondence between minimal authorized
coalitions and a subset of minimal supports inC.

Theorem 5.1 [6], [17]: Let C be a linear secret-sharing scheme
defined by aq-aryr�n matrixH and letC = kerH be an[n; n�r]
q-ary linear code. Then the set of minimal supports inC intersecting
the first coordinate equals the set of minimal authorized coalitions in
C. Moreover, the scheme is perfect.

For some of the above examples it is easy to find minimal supports
intersecting the first (or any other fixed) coordinate.

Examples 1–3 (Continued):In the extended Golay codeG24 a
code vector is minimal if and only if its weight is8 or 12. Since
puncturingG24 in any coordinate we getG23, the number of minimal
vectors with a one in any fixed coordinate is the same.

The same holds for binary intersecting codes, namely, the number
of minimal vectors with a one in any fixed coordinate isjCj=2.

The only minimal supports in an[n; k; d] MDS code are n

d

supports of sized. Of them n�1

d�1
intersect the first (or any fixed)

coordinate.

For codes over Galois rings the situation is more complicated in the
sense that some of the minimal supports characterize groups of users
that can recover only a part of the secret. More specifically, letC be
a “linear” code over GR(qm; pm) as discussed in Section III, and
suppose we construct a linear secret-sharing scheme as above using
the parity-check matrix ofC to generate distribution rules. Suppose
again that the first coordinate corresponds to the secret. Minimal
authorized coalition in this case can reconstruct either a part of the
secret or the secret in full, depending on the type of the corresponding
minimal support. More precisely, the following is true.

Theorem 5.2 [2], [3]: Let I = f1g [ I � [n] be a minimal
support of typet in C such that there is a codewordccc 2 C with
supp (ccc) = I and c1 2 Nt. Then the users inI, taking their shares
of information together, can reconstruct exactlym� t q-ary symbols
of the secret.

For instance, ifC is a ZRM(1; 3) first-order Reed–Muller code,
thenM0 consists of a single setI = [n] andM1 is formed by 14
sets of size8 (see Example 4). A half of them contain coordinate1;
therefore, there are seven groups of users that can reconstruct one of
the two bits of the secret.

Note that since the binary image of the ZRM(1; v) code isZZZ2-
linear, this scheme can be realized by two linear schemes overZZZ2,
one corresponding to the[8; 1; 8] repetition code and the other to
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the [8; 4; 4] binary RM code. In both schemes, the number of bits in
the secret (one) equals the number of bits in the information share of
each participant. Such schemes are calledideal. One of the reviewers
suggested that any scheme overZZZ4 can be realized by two ideal
(not necessarily linear) binary schemes, one responsible for sharing
the first (say, less significant) bit of the secret and the other one the
second bit. We conclude by showing that this is not true.

The counterexample is furnished by the Nordstrom–Robinson
code C of length 8 over ZZZ4 [11]. Suppose its first coordinate
corresponds to the secret. PuncturingC in this coordinate, we get
a cyclic code of length7, whose type0 supports are given by the
vectors1223233;1013102;1100123;1033320 and their cyclic shifts.
Minimal supports of type0 are defined by the last three vectors.
Thus minimal coalitions authorized to recover both bits of the secret
correspond to supports of vectors1013102;1100123;1033320 and
those of their cyclic shifts that have1 or 3 on the first coordinate.
We shall show that this access structure cannot be realized by a binary
ideal scheme. It is known [5], [19] that every binary ideal scheme is
either linear or affine, i.e., corresponds to a binary linear code or to
a binary affine code (a binary code is affine if the sum of any three
code vectors is a code vector).

Suppose that the minimal coalitions in this scheme correspond to
minimal vectors (with a1 in the first coordinate) of some binary
linear or affine code, sayA. In either case, the sum of any three
code vectors should be again a code vector. On the other hand, it
is immediate to observe that there are three vectors inA that sum
up to a vector of weight3. Since the size of all minimal authorized
coalitions in the original system is4, this proves that codeA does
not realize our access structure.

We leave as an open problem to prove that every scheme corre-
sponding to aZZZ4-linear code whose binary image is notZZZ2-linear
cannot be represented by two binary ideal schemes.

APPENDIX

Steiner’s Original Problem[20]. Given two numbersk and v,
k � v, construct a pair(X;B), whereX is a finite set andB a
collection of its subsets, which satisfies the following conditions:

i) jXj = v;
ii) B = k

n=3
B(n) and jBij = n for everyBi 2 B(n);

iii) every pair (x; y) � X is contained in exactly one block of
B(3);

iv) every i-subset ofX; 3 � i � k � 1; which does not contain
a block of i

j=3
B(j), is contained in exactly one block of

B(i+ 1); no block ofB(i+ 1) contains as subsets blocks of
i

j=3
B(j).
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