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Abstract

The underlying mechanism of how the human brain solves the cocktail party problem is largely unknown.

Recent neuroimaging studies, however, suggest salient temporal correlations between the auditory neural

response and the attended auditory object. Using magnetoencephalography (MEG) recordings of the neu-

ral responses of human subjects, we propose a decoding approach for tracking the attentional state while

subjects are selectively listening to one of the two speech streams embedded in a competing-speaker en-

vironment. We develop a biophysically-inspired state-space model to account for the modulation of the

neural response with respect to the attentional state of the listener. The constructed decoder is based on

a maximum a posteriori (MAP) estimate of the state parameters via the Expectation Maximization (EM)

algorithm. Using only the envelope of the two speech streams as covariates, the proposed decoder enables

us to track the attentional state of the listener with a temporal resolution of the order of seconds, together

with statistical confidence intervals. We evaluate the performance of the proposed model using numerical

simulations and experimentally measured evoked MEG responses from the human brain. Our analysis re-

veals considerable performance gains provided by the state-space model in terms of temporal resolution,

computational complexity and decoding accuracy.

Keywords: Attention, MEG, Speech Segregation, State-Space Models, Nonlinear Filtering

1. Introduction

One of the hallmarks of brain function is the ability to segregate and focus on an auditory object in a

complex auditory scene. From a mathematical perspective, this is a highly ill-posed problem; however, our

brain is able to solve this problem in a remarkably fast and accurate fashion. It has been hypothesized that
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Figure 1: Schematic depiction of auditory object encoding in the auditory cortex. Here, the auditory scene consists of the

mixture of two concurrent speech streams. Recent studies show that cortical activity (black traces) is selectively phased-locked

to the temporal envelope of the attended speaker as opposed to the unattended speaker’s envelope.

after entering the auditory system, the complex auditory signal resulting from sound sources in a crowded

environment is decomposed into acoustic features at different stages of the auditory pathway. Then, a rich

representation of spectrotemporal features reaches the auditory cortex, where an appropriate binding of the

relevant features and discounting of others leads to the perception of an auditory object (Bergman, 1994;

Griffiths and Warren, 2004; Fishman and Steinschneider, 2010; Shamma et al., 2011). A compelling example

is the Cocktail Party effect (Cherry, 1953; Brungart, 2001; McDermott, 2009), in which a listener is able to

attend to an individual speaker in the presence of other competing speakers and to segregate the attended

speech from all other sound sources in the environment.

The neural representation of speech as a distinct auditory object has been extensively studied using

auditory scenes consisting of pairs of concurrent speech streams mixed into a single acoustic channel with

no spatial cues provided. Any neural representation of a single stream of speech (considered as an auditory

object) involves complex segregation and grouping processes (Ding and Simon, 2012a,b; Mesgarani and

Chang, 2012; O’Sullivan et al., 2014), given the substantial overlaps in spectral and temporal domains. As

reported by these studies, concurrent auditory objects—even those with highly overlapping spectrotemporal

features—are neurally encoded as a distinct object in the auditory cortex and emerge as fundamental

representational units for high-level cognitive processing. In the case of listening to speech, it has recently

been demonstrated that the auditory response manifested in magnetoencephalographic recordings is strongly

modulated by the spectrotemporal features of the speech (Ding and Simon, 2012b; Pasley et al., 2012). In

the presence of two speakers, this modulation appears to be strongly phase-locked to the spectrotemporal

features of the attended speaker as opposed to the unattended speaker (See Figure 1) (Ding and Simon,

2012a; Mesgarani and Chang, 2012).

A widely-used mathematical approach for decoding these cortical modulations is reverse correlation,
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which can be used to reconstruct the stimulus from the response of the neural population, which then can

be compared with the original stimulus to reveal preserved or dismissed features in the population response

(Bialek et al., 1991; Gielen et al., 1988; Hesselmans and Johannesma, 1989). Although useful for evaluating

data from neural populations using electrocorticography (ECoG) (Mesgarani et al., 2009; Mesgarani and

Chang, 2012), MEG (Ding and Simon, 2012a,b) and EEG (O’Sullivan et al., 2014; Mirkovic et al., 2015),

this method has a number of limitations. The achievable temporal resolution of the current techniques is

of the order of minutes. In a real-world scenario, attention of the listener can switch dynamically from

one speaker to another; therefore, an appropriate decoder needs to have a dynamic estimation framework

with high temporal resolution in order to capture attention switches in real-time, especially in light of the

emergence and rapid growth of brain-computer interface systems. Moreover, these decoders often rely on

ad-hoc assumptions and simplifications, which in turn overshadow a reliable statistical interpretation of the

data.

In this paper, we overcome the aforementioned limitations by introducing a biophysically-inspired state-

space model that accounts for the dynamicity of the attentional state as well as its correlation with MEG

observations in a competing-speaker scenario. State-space models are widely used in control engineering

for describing the dynamics of the systems under study (Hinrichsen and Pritchard, 2005). These models

consist of two components: one relating the observations from a stochastic dynamical system to a set of

unobserved state variables (forward model), and the other describing the time evolution of the unobserved

states (state dynamics). By combining the forward model and state dynamics in a probabilistic framework,

it is possible to obtain accurate estimates of the system parameters, perform prediction, and design control

mechanisms. Here, we first utilize a forward model relating the auditory neural response activity to the

envelopes of the two speech streams by employing the sparse structure of the auditory response. We then

model the attentional state of the listener using a non-stationary Bernoulli process. Finally, we employ

von Mises-Fisher circular statistics to form a robust inverse model that accounts for the correlation of the

observed neural response activity with respect to the two speech streams. We use the Maximum a posteriori

(MAP) estimation framework to infer the state-space parameters from the observed data. In particular, we

devise a novel application of two nested Expectation-Maximization (EM) algorithms to efficiently solve the

MAP problem.

Our proposed model has several advantages over existing methods. First, theoretically speaking, our

state-space model is able to preserve dynamics as fast as the sampling resolution. Simulation studies as well

as application to experimental data reveal that our model is indeed capable of predicting the attentional

state of the listener with a temporal resolution of seconds, which is a significant improvement over the state-

of-the-art temporal resolution of minutes. Second, we only require the envelopes of the two speech streams

as covariates, which is a substantial reduction in the dimension of the spectrotemporal feature set used for

decoding auditory attention. Finally, our state-space framework provides confidence bounds on the state
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parameters, which can in turn be used for precise statistical inference procedures such as hypothesis testing.

We further provide simulation studies as well as applications of our method on experimentally acquired

neural response data. Our analyses reveal the superior performance of the proposed decoder in tracking the

attentional state of a listener in a competing-speaker environment, as compared to existing techniques.

2. Methods

2.1. Modeling

We divide our modeling framework into three stages: the forward problem of relating the neural response

observations to the temporal features of the attended and unattended speech streams; the attention model

which takes into account the dynamics of selective attention; and the inverse problem of decoding the

attentional state of the listener given the neural response observations and the temporal features of the two

speech streams.

2.1.1. The Forward Problem: Estimating the Temporal Response Function

Consider a task where the subject is passively listening to a speech stream. Let the discrete-time neural

response observation at time t, sensor j, and trial r be denoted by xt,j,r, for t = 1, 2, · · · , T , j = 1, 2, · · · ,M
and r = 1, 2, · · · , R. Let the time series y1,r, y2,r, · · · , yT,r denote an auditory component of the MEG

observations. This component can be obtained through source localization techniques or sensor-space source

separation algorithms, and will be referred to hereafter as the neural response (See Section 2.4). Also, let

Et be the speech envelope of the speaker at time t in dB scale. In a linear model, the neural response is

linearly related to the envelope of speech as:

yt,r = τt ∗ Et + vt,r, (1)

where τt is a linear filter of length L denoted by the temporal response function (TRF), ∗ denotes the convo-

lution operator, and vt,r is a nuisance component accounting for trial-dependent and stimulus-independent

components manifested in the neural response. It is known that the TRF is a sparse filter, with sig-

nificant components analogous to the M50 and M100 auditory responses (Ding and Simon, 2012b,a). A

commonly-used technique for estimating the TRF is known as Boosting (David et al., 2007; Ding and Si-

mon, 2012b), where the components of the TRF are greedily selected to decrease the mean square error

(MSE) of the fit to the neural response. We employ an alternative estimation framework based on ℓ1-

regularization. Let τ := [τL, τL−1, · · · , τ1]′ be the time-reversed version of the TRF filter in vector form,

and let Et := [Et, Et−1, · · · , Et−L+1]
′. In order to obtain a sparse estimate of the TRF, we seek the ℓ1-

regularized estimate:

τ̂ = argmin
τ

R,T∑

r,t=1

‖yt,r − τ
′Et‖22 + γ‖τ‖1, (2)
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where γ is the regularization parameter. The above problem can be solved using standard optimization

software. We use a fast solver based on iteratively re-weighted least squares (Ba et al., 2014). The parameter

γ is chosen by two-fold cross-validation, where the first half of the data is used for estimating τ and the

second half is used to evaluate the goodness-of-fit in the MSE sense. In a competing-speaker environment,

where the subjects are only attending to one of the two speakers, the linear model takes the form:

yt,r = τat ∗ Ea
t + τut ∗ Eu

t + vt,r, (3)

with τat , E
a
t , τ

u
t , and Eu

t , denoting the TRF and envelope of the attended and unattended speakers, respec-

tively. The above estimation framework can be generalized to the two-speaker case by replacing the regressor

τ
′Et with τ

a′Ea
t + τ

u′Eu
t , where τ

a, Ea
t , τ

u, and Eu
t are defined in a fashion similar to the single-speaker

case. Similarly, the regularization γ‖τ‖1 is replaced by γa‖τ a‖1 + γu‖τu‖1.

2.1.2. Selective Attention: A Non-stationary Bernoulli Process

Suppose that at each window of observation, the subject is attending to either of the two speakers. Let

nk,r be a binary variable denoting the attention state of the subject at window k and trial r:

nk,r =





1 attending to speaker 1

0 attending to speaker 2
(4)

The subjective experience of attending to a specific speech stream among a number of competing speeches

reveals that the attention may switch to a competing speaker, although not intended so by the listener.

Therefore, we model the statistics of nk,r by a Bernoulli process with a success probability of pk:

P (nk,r|pk) = p
nk,r

k (1 − pk)
1−nk,r . (5)

A value of pk close to 1 (respectively 0) implies attention to speaker 1 (respectively 2). The process {pk}Kk=1

is assumed to be common among different trials. In order to model the dynamics of pk, we perform a change

of variables by defining zk such that

pk = logit−1(zk) :=
exp(zk)

1 + exp(zk)
. (6)

Note that zk and pk have a one-to-one monotonic relation, i.e., when zk varies from −∞ to ∞, pk monoton-

ically varies from 0 to 1. Hence, instead of working with pk with a restricted range, we impose dynamics on

zk which admits a larger class of widely-used linear dynamic models. To this end, we employ a first-order

autoregressive model of the form:

zk = zk−1 + wk, (7)

where wk is an uncertainty parameter. The autoregressive model in Eq. (7) implies that the parameter zk

at time k is equal to zk−1 at time k− 1 up to some uncertainty which is modeled by a random variable wk.
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Since the range of zk is symmetric around zero, we assume that the uncertainty parameters {wk}k=1,2,···

follow centered independent Gaussian distributions with unknown variances {ηk}k=1,2,···. If need be, higher

order autoregressive processes can be used to model the dynamics of zk as well as non-Gaussian distributions

to capture the uncertainty wk. However, our simulation studies as well as the analysis of real data suggest

that it is not necessary to go beyond the first-order model and Gaussian uncertainty parameters for the

problem at hand. We further assume that ηk are distributed according to the conjugate prior given by the

inverse-Gamma distribution with hyper-parameters α (shape) and β (scale).

2.1.3. The Inverse Problem: Decoding Attentional Modulation

Let y1,r, y2,r, · · · , yT,r denote the neural response time series at trial r, for r = 1, 2, · · · , R during an

observation period of length T . For a window length W , let

yk,r :=
[
y(k−1)W+1,r , y(k−1)W+2,r, · · · , ykW,r

]
, (8)

for k = 1, 2, · · · ,K := ⌊T/W ⌋. Also, let Ei,t be the speech envelope of speaker i at time t in dB scale,

i = 1, 2. We extract the envelope of the speech signal by taking the absolute value of its analytic extension

(Hilbert Transform) and low-pass filter with a cut-off frequency of 20 Hz to obtain a smoothed envelope.

Let τat and τut denote the TRFs of the attended and unattended speakers, respectively. The neural response

predictors in the linear model are given by:





e1,t := τat ∗ E1,t + τut ∗ E2,t, attending to speaker 1

e2,t := τat ∗ E2,t + τut ∗ E1,t, attending to speaker 2
, t = 1, 2, · · · , T. (9)

Let

ei,k :=
[
ei,(k−1)W+1, ei,(k−1)W+2, · · · , ei,kW

]
, (10)

for i = 1, 2 and k = 1, 2, · · · ,K. Recent work by Ding and Simon (2012a) suggests that the neural response

yk is more correlated with the predictor ei,k when the subject is attending to the ith speaker at window k.

Let

θi,k,r := arccos

(〈
yk,r

‖yk,r‖2
,

ei,k

‖ei,k‖2

〉)
(11)

denote the empirical correlation between the observed neural response and the model prediction when

attending to speaker i at window k and trial r. When θi,k,r is close to 0 (respectively π), the neural response

and its predicted value are highly (respectively poorly) correlated. Inspired by the findings of Ding and

Simon (2012a), we model the statistics of θi,k,r by the von Mises-Fisher distribution (Fisher, 1993) with

density:

p (θi,k,r) =
2κ

W/2−1
i

(2π)W/2IW/2−1(κi)
exp (κi cos (θi,k,r)) , θi,k,r ∈ [0, π], i = 1, 2 (12)
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Figure 2: A) von Mises–Fisher probability density for different κ parameters. B) Schematic view of von Mises–Fisher statistics

on a three dimensional sphere: normalized neural response data points are shown by black dots on the unit sphere. Red and

green arrows indicate the vectors of predicted neural response based on attending to speaker 1 or speaker 2, respectively. The

angles between the neural response at window k and each of the predictors are shown as θ1,k and θ2,k , for the case of attending

to speaker 1 (left plot) and speaker 2 (right plot), respectively. The point cloud formed by the neural response is aligned with

the direction of the predictor vector corresponding to the attention state.

where IW (·) is the W th order modified Bessel function of the first kind, and κi denotes the spread parameter

of the von Mises-Fisher distribution for i = 1, 2. Note that the extra normalization factor of 2 in the numera-

tor is due to the restriction of θi,k,r to [0, π]. The von Mises-Fisher distribution gives more (respectively less)

weight to higher (respectively lower) values of correlation between the neural response and its predictor. The

spread parameter κi accounts for the concentration of θi,k,r around 0. Figure 2 shows a schematic depiction

of the von Mises–Fisher statistics in modeling the correlation of the neural response with its predictors based

on speech envelopes. We assume a conjugate prior of the form p(κi) ∝ κi
d(W/2−1) exp(c0dκi)

IW/2−1(κi)d
over κi, for

some hyper-parameters c0 and d.

2.1.4. Parameter Estimation: A Novel EM-based Decoder

Let

Ω :=
{
κ1, κ2, {zk}Kk=1, {ηk}Kk=1

}
(13)

be the set of state-space parameters. In principle, these parameters can be estimated through maximum

a posteriori (MAP) estimation. However, due to the involved functional form of the log-likelihood and

particularly temporal coupling of the state parameters, direct maximization of the log-posterior requires

solving a high dimensional convex optimization problem. Instead, we use a novel form of the Expectation-

Maximization (EM) algorithm to efficiently estimate the state parameters (Dempster et al., 1977). Taking

{nk,r}K,R
k=1,r=1 as the unobserved data, the complete data log-posterior can lead to a feasible MAP estimate
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of the parameters, due to its tractable functional form for optimization purposes.

The overall estimation procedure consists of two nested EM algorithms and is outlined in Algorithm 1.

At the ℓth iteration of the outer EM, the E-step involves computing E

{
n
(ℓ+1)
k,r

∣∣∣Ω(ℓ), {θi,k,r}2,K,R
i,k,r=1

}
, using

Bayes’ rule, and the M-step updates κ
(ℓ+1)
1 , κ

(ℓ+1)
2 , {η(ℓ+1)

k }Kk=1 and {z(ℓ+1)
k }Kk=1. As for the last two sets of

parameters, the maximization in the M-step itself is computed using the inner EM algorithm. In the inner

EM algorithm, the E-step corresponds to a Bernoulli smoothing algorithm (Smith and Brown, 2003; Smith

et al., 2004) and the M-step updates the state variance sequence (Shumway and Stoffer, 1982). The detailed

derivations of the estimation procedure are provided in Appendices A and B. Confidence intervals for the

estimated values of pk can be obtained by mapping the confidence intervals of the posterior estimates of

the Gaussian variables zk via the inverse logit mapping (See the output of Algorithm 1). In summary, the

decoder inputs the neural response observations and the envelopes of the two speech streams, and outputs

the Bernoulli success probability sequence corresponding to attending to speaker 1. The choice of the hyper-

parameters will be discussed in Section 3.2. We will refer to the estimator outlined in Algorithm 1 as the

attention decoder in the remainder of the paper.

2.2. Subjects, Stimuli, and Procedures

Eleven normal-hearing, right-handed young adults (ages between 20 and 31) participated in this study,

consisting of two experiments: constant-attention experiment (eight subjects, three female) and attention-

swtich (seven subjects, four female). Four subjects (three female) participated in both experiments. All

subjects were compensated for their participation. The experimental procedures were approved by the

University of Maryland Institutional Review Board. Written, informed consent was obtained from each

subject before the experiment.

The stimuli consist of segments from the book A Child’s History of England by Charles Dickens, narrated

by two different readers (of opposite genders). Four speech segments (one target and one masker segment for

each speaker) were used to generate three speech mixtures. Each speech mixture was constructed by mixing

two speech segments digitally in a single channel with duration of 1 minute, as described next. The first

mixture was generated using the male target segment and the female masker segment, whereas the second

mixture was generated using the female target segment and the male masker segment. The third mixture

was generated using male and female target segments. Periods of silence longer than 300 ms were shortened

to 300 ms to keep the speech streams flowing continuously. All stimuli were low-pass-filtered below 4 kHz

and delivered diotically at both ears using tube phones plugged into the ear canals. In all trials, the stimuli

were mixtures with equal root-mean-square values of sound amplitude, presented roughly at a 65 dB sound

pressure level (SPL).

In the constant-attention experiment, subjects were asked to focus on one speaker (speaker 1, male;

speaker 2, female) through the entire trial. In the attention-switch experiment, subjects were instructed to
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Algorithm 1: Estimation of the State-Space Parameters

input : Neural response {yk,r}K,R
k,r=1, tolerance tol ∈ (0, 0.001), significance level α, and maximum

number of iterations for outer and inner EM algorithms Lmax andMmax ∈ N+, respectively.

Initialization: initial guess of state variables z
(0)
k and state-noise variances η

(0)
k for k = 1, 2, · · · ,K,

initial conditions z0|0 and σ0|0, Initial values for von Mises-Fisher distribution parameters κ
(0)
1 and

κ
(0)
2 . Initialize iteration numbers to l = 1 and m = 1;

Outer EM iteration:

while l ≤ Lmax or relative change in log-posterior ≥ tol do

E-step: Compute E
(ℓ){nk,r} := E

{
nk,r

∣∣∣ {θi,k,r}2,K,R
i,k,r=1 ,Ω

(ℓ)
}
, for all k = 1, 2, · · · ,K and

r = 1, 2, · · · , R. (A.2).

M-step: Update κ
(ℓ+1)
1 and κ

(ℓ+1)
2 (A.3).

Inner EM iteration:

while m ≤ Mmax or relative change in log-posterior ≥ tol do

E-step: Compute z̄
(ℓ+1,m)
k|K :=E

{
zk

∣∣∣
{
E
(ℓ){nk,r}

}K,R

k,r=1

}
and σ

(ℓ+1,m)
k|K :=Var

{
zk

∣∣∣
{
E
(ℓ){nk,r}

}K,R

k,r=1

}

for all k = 1, 2, · · · ,K using Bernoulli smoothing (A.5, A.6).

M-step: Update η
(ℓ+1,m)
k , for all k = 1, 2, · · · ,K. (A.7).

end

z
(ℓ+1)
k := z̄

(ℓ+1,m)
k|K , σ

(ℓ+1)
k := σ

(ℓ+1,m)
k|K , and η

(ℓ+1)
k := η

(ℓ+1,m)
k , for all k = 1, 2, · · · ,K.

end

output: For L ≤ Lmax denoting the final counter value of the outer EM, output κ̂1 := κ
(L+1)
1 ,

κ̂2 := κ
(L+1)
2 , and for all k = 1, 2, · · · ,K output η̂k := η

(L+1)
k , p̂k := logit−1

(
z
(L+1)
k

)
, and

the confidence interval CIk at a level of 1− α given by:

CIk =

[
logit−1

(
z
(L+1)
k − Φ−1(1 − α

2 )

√
σ
(L+1)
k

)
, logit−1

(
z
(L+1)
k +Φ−1(1− α

2 )

√
σ
(L+1)
k

)]
.

focus on one speaker in the first 28 seconds of the trial, switch their attention to the other speaker after

hearing a 2 second pause (28th to 30th seconds), and maintain their focus on the latter speaker through the

end of that trial. Consequently, there were four conditions: 1) attending to speaker 1 for the entire trial

duration, 2) attending to speaker 2 for the entire trial duration, 3) attending to speaker 1 and switching

to speaker 2 halfway through the trial, and 4) attending to speaker 2 and switching to speaker 1 halfway

through the trial. The first mixture was used as the stimulus for condition 1, second mixture for condition 2

and third mixture for conditions 3 and 4. Each mixture was repeated three times during each experimental

condition. The first second of each section was replaced by the clean recording from the target speaker

to help the listener attend to the target speaker. After each condition was presented, subjects answered

9



comprehensive questions related to the passage on which they focused, as a way to keep them motivated in

attending to the target speaker. Eighty percent of the questions were correctly answered on average. The

order of presentation for the constant-attention experiment (conditions 1 and 2), and the attention switch

(conditions 3 and 4) was counterbalanced across subjects participating in that experiment.

A pilot study from subjects listening to single speakers was performed prior to the main study. In this

experiment, 6 trials (3 repetitions each of speaker 1 and speaker 2 target segments) were presented to the

subjects and recordings were used for estimating the Temporal Response Functions (TRFs) in the forward

model.

2.3. Data Recording

MEG signals were recorded in a dimly lit magnetically shielded room (Yokogawa Electric Corporation)

using a 160-channel whole-head system (Kanazawa Institute of Technology, Kanazawa, Japan), and with a

sampling rate of 1 kHz. Detection coils were arranged in a uniform array on a helmet-shaped surface on the

bottom of the dewar, with 25 mm between the centers of two adjacent 15.5-mm-diameter coils. Sensors are

configured as first-order axial gradiometers with a baseline of 50 mm; their field sensitivities are 5 fT/
√
Hz

or better in the white noise region.

Stimuli were presented using the software package Presentation (Neurobehavioral Systems, Inc., Berkeley,

CA, USA). The sounds (approximately 65 dB SPL) were delivered to the participants ears with 50 Ω sound

tubing (E-A-RTONE 3A; Etymotic Research), attached to E-A-RLINK foam plugs inserted into the ear

canal. The entire acoustic delivery system was equalized to give an approximately flat transfer function

from 40 to 3000 Hz, thereby encompassing the range of the presently delivered stimuli.

A 200 Hz low-pass filter and a notch filter at 60 Hz were applied to the magnetic signal online. Three of

the 160 channels were magnetometers separated from the others and used as reference channels in measuring

and canceling environmental noise (de Cheveigné and Simon, 2007). Five electromagnetic coils were used

to measure each subject’s head position inside the MEG machine. The head position was measured twice

during the experiment, once before and once after to quantify the head movement.

2.4. MEG Processing and Neural Source Localization

Recorded MEG signals contained both stimulus-driven responses and stimulus-irrelevant background

neural activity. In order to extract components that were phase-locked to the stimulus and consistent

over trials, as opposed to the random irrelevant activities, we employed the Denoising Source Separation

(DSS) algorithm (Särelä and Valpola, 2005; de Cheveigné and Simon, 2008). This algorithm is a blind

source separation method that decomposes the data into temporally uncorrelated components by removing

inconsistent temporal components not phased-locked to the stimulus. In other words, DSS suppresses the

components of the data that are noise-like and enhances those that are consistent across trials, with no
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Figure 3: A) MEG magnetic field distribution for the first DSS component of a sample subject shows a stereotypical pattern

of neural activity, originating separately in the left and right auditory cortices. Red and green contours represent the magnetic

field strength. Blue arrows schematically represent the locations of the dipole currents, generating the measured magnetic field.

B) Estimated TRF for the sample subject has significant components analogous to the well-known M50 and M100 auditory

responses, as well as later responses, as demonstrated in the figure.

knowledge of the stimulus or the timing of the task. The recorded neural response during each 60 s was

band-pass filtered between 1–8 Hz and down sampled to 200 Hz before submission to the DSS analysis. We

found that the first DSS component alone was sufficient, so analysis was restricted to this component, which

we denote by the auditory neural response throughout this paper. The spatial magnetic field distribution

pattern of the auditory neural response was used for neural source localization. In all subjects, the magnetic

field corresponding to the auditory neural response showed a stereotypical bilateral dipolar pattern (See

Figure 3–A).

3. Results

In order to evaluate the performance of the state-space model in decoding the attentional state of

listeners and to illustrate the effectiveness of this model in various stimulus conditions, a number of realistic

simulations and experimental data sets were employed. We first present our results on the robust estimation

of the TRF, which forms the basis of the forward models used in both simulations and experimental data

analysis. We will then present simulation results which highlight the capability of our proposed estimation

framework in tracking the attentional state under a wide range of SNR values as well as dynamics. Finally,

we will apply the proposed attentional decoding framework to experimental MEG data from several subjects

which chimes in accordance to our simulation studies.

3.1. TRF Estimation

TRFs corresponding to the attended speaker were estimated from the pilot conditions, where only single

speech streams were presented to the subjects. Separate TRFs were obtained for speakers one and two,

using 3 repeated trials for each and the TRF with smaller normalized least square error was chosen and used

throughout the rest of our analysis. The TRF corresponding to the unattended speaker was approximated
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by truncating the attended TRF beyond a lag of 90 ms, on the grounds of the recent findings of Ding

and Simon (2012a), which show that the components of the unattended TRF are significantly suppressed

beyond the M50 evoked field. An example of an estimated TRF using the auditory neural response for

a sample subject is shown in Figure 3–B. The spatial magnetic field distribution pattern of the auditory

neural response (Figure 3–A) demonstrates a stereotypical bilateral dipolar pattern, as expected for auditory

evoked field.

3.2. Decoding Auditory Attention from MEG: A Simulation Study

In order to simulate neural response modulated by attention, first a binary sequence {nk,r}240,3k=1,r=1 was

generated as realizations of a Bernoulli process with success probability pk = 0.95 or 0.05, corresponding to

attention to the first or second speakers, respectively. The total observation time was 60 s with a sampling

rate of Fs = 200 Hz (T = 12000 samples) and the processing window length was chosen to be 250 ms

(W = 50 samples). Using a TRF template of length 0.5 s estimated from experimental data (See Section

3.1), we generated 3 trials for various SNR values and with multiple attention switches throughout each

trial.

Figures 4–A and 4–B show the simulated neural signal (black traces) and predictors of attending to
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Figure 4: Simulated neural response (black traces) and model prediction (red traces) of A) speaker one and B) speaker two at

SNR = 10 dB. Black arrows indicate the instructed attentional state of the subjects. The MEG units are in pT/m. C) Estimated

values of {pk} with 95% confidence intervals. D) Estimated values of {pk} from simulated neural response vs. SNR = 0, −10

and −15 dB. Error hulls indicate 95% confidence intervals. E) Behavioral results of the simulated neural response vs. SNR

values ranging from −20 to 10 dB.The time fraction for which the estimated attentional state follows the target speaker (the

opposite speaker) as a function of different SNRs is shown in the left panel (right panel).
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speaker one and two (red traces) at an SNR of 10 dB. Regions indicated by arrows in panels A and B

demonstrate the time intervals, in which listeners are supposed to attend to either of the two speakers.

The hyper-parameters for the von Mises-Fisher distribution were chosen as d = 100KR/2 and c0 =

0.01, consistent with the observed correlation values between the simulated neural response and the model

prediction. The choice of d = 100KR/2 gives more weight to the prior than the empirical estimate of κi.

The hyper-parameters α and β for the inverse-Gamma prior on the state variance were chosen as α = 2.01

and β = 0.5. This choice of α close to 2 results in a non-informative prior, as the variance of the prior is

given by β2/[(α− 1)2(α− 2)] ≈ 245, while the mean is given by β/(α− 1) ≈ 0.5.

Estimated values of {pk}240k=1 (green trace) and the corresponding confidence intervals (green hull) are

shown in Figure 4–C. The estimated pk values reliably track the attentional state, and the transitions are

captured with high accuracy. MEG data recorded from the brain is usually contaminated with environmental

noise as well as nuisance sources of neural activity, which can considerably decrease the SNR of the measured

signal. In order to test the robustness of the decoder with respect to observation noise, we repeated the above

simulation with SNR values ranging from −20 to 10 dB. As demonstrated in Figure 4–D, the confidence

intervals and the estimated transition width widen gracefully as the SNR decreases. The dynamic denoising

feature of the proposed state-space model results in a desirable decoding performance for SNR values above

−15 dB (Figure 4–E).

3.3. Decoding Auditory Attention from MEG: Application to Experimental MEG Data

We assessed our proposed state-space model and decoder on experimental MEG data recorded from 11

human subjects who listened to one of the two competing speakers in constant-attention and attention-

switch experiments (see Methods). All hyper-parameters in the model were chosen similar to those of

the simulation studies in the previous section, except for the prior parameter c0 for the von Mises-Fisher

distribution which was conservatively chosen as c0 = 0.01, consistent with the observed correlation values

between the simulated neural response and the model prediction.

The predicted pk values resulted from single and multi-trial analysis are shown in Figure 5 for three

sample subjects. For multi-trial analysis (3rd panel of each plot) 90% confidence intervals are shown by

the shaded hulls around the estimated values. In the first and second conditions subjects were instructed

to maintain their attention through the entire experiment to the speaker one and speaker two, respectively

(Figures 5–A and 5–B). The decoding results demonstrate the decoder’s reliable recovery of the attention

modulation by estimating {pk} close to 1 for the first condition and values close to 0 for the second condition.

For the third and fourth conditions, subjects were instructed to switch their attention after hearing a 2 s

pause, in the middle of each trial, from the speaker one to the speaker two (Figure 5–C) and from the

speaker two to the speaker one (Figure 5–D). Using multiple-trial analysis, the decoder was able to capture

the attentional switch occurring roughly halfway through the trial. The decoding of individual trials in the
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Figure 5: Decoding auditory attentional modulation in experimental MEG data. In each subplot, the neural response (black

traces) and the model prediction (red traces) for attending to speaker one and speaker two are shown in the first and second

panels, respectively, for one sample subject. The third panel shows the estimated values of {pk} and the corresponding

confidence intervals using multi-trial analysis for three sample subjects. The fourth panel shows the estimated {pk} values for

single trials. A) Condition 1: attending to the speaker one through the entire trial. B) Condition 2: attending to the speaker

two through the entire trial. C) Condition 3: attending to the speaker one until t = 28s and switching attention to the speaker

two after the 2 s pause. D) Condition 4: attending to the speaker two until t = 28s and switching attention to the speaker one

after the 2 s pause. Dashed lines in subplots C and D indicate the start of the 2s silence cue for attentional switch. Error hulls

indicate 90% confidence intervals. The MEG units are in pT/m.

fourth panel of Figure 5–C & 5–D suggest that the exact switching times were not consistent across different

trials, as the attentional switch might have occurred slightly earlier or later than the presented cue.

The performance of individual subjects were evaluated by computing time fractions in which the target

speaker or the alternative speaker were followed according to the estimated results from the state-space

decoder. All computations were done within the confidence interval of 90% for multi-trial and 70% for

single-trial analysis. An illustrative example of the time intervals in which a sample subject is in target,
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Figure 6: Schematic illustration of attentional states and behavioral analysis. A) The estimated attentional condition at

each time point can take one of the followings states: Target Attended (TA), Alternative Target Attended (Alt-TA), and the

Unfollowed state (UF). Examples of the attentional states for a sample subject are depicted in panel A, for a sample trial

from condition 3. B1, C1) Target speaker attended time fractions are plotted with respect to the Alt-target attended time

fractions for individual subjects in constant-attention and attention-switch experiments, respectively. B2, C2) Target and Alt-

target attended time fractions are computed via multi-trial analysis. Box plots indicate the median and quartile percentages

of subjects’ behavioral performances in attending to the target and non-target speakers (first and second boxes in each plot,

respectively). Individual subject performances, shown in blue markers, are plotted on top of each box plot.

alternative target (Alt-target) or unfollowed attentional sate is shown in Figure 6–A, for a sample trial

in speaker one-speaker two attention-switch condition (condition 3). The evaluated target and Alt-target

attentional time fractions for single trials are plotted in Figure 6–B1 and 6–B2, for the constant-attention

and the attention-switch experiments, respectively. As shown in these figures, most of the data points

fall above the identity line, indicating larger time fractions in which the target speakers were attended

vs. the alternative targets. The behavioral results from multi-trial analysis were significantly improved

compared to the single-trial estimations (one way ANOVA, P < 0.01). This is indeed expected from the

state-space formulation, as the variance of the state variable zk is inversely proportional to the number

of trials R (See Eq. (A.5)). The results of multi-trial estimations are shown in Figure 6–C1 & 6–C2

for each individual subject and two experimental conditions. The median, 25% and 75% quartile values

are shown in separate box plots for target and Alt-target attended time fractions and for each individual

experiment. In addition, individual subject performances averaged over condition pairs within constant-
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attention experiment (conditions one & two) and attention-switch experiment (conditions three & four) are

plotted in blue on top of the corresponding box plots. Evaluated performances for the decoded attentional

states show that time fractions in which the target speakers were attended to, were significantly larger than

the Alt-target attended time fractions (one way ANOVA, P < 0.001), highlighting the successful decoding

of the attentional states via the state-space model.

4. Discussion

In this study, we developed a biophysically-inspired state-space model that provides an estimation frame-

work for decoding the attentional state of a listener in a competing-speaker environment. The proposed

algorithm takes advantage of the temporal continuity in the attentional state, resulting in a decoding perfor-

mance, which is highly accurate and resolved in time. Parameter estimation of this model is carried out using

the EM algorithm, which is tied to the efficient computation of the Bernoulli process smoothing, resulting

in a very low overall computational complexity. The output of the state-space model at each EM iteration

is plotted in Figure 7 for a sample subject and all four experimental conditions.These plots illustrate the

convergence path of the EM iterations in estimating the attention probability values pk, starting from values

at chance level (0.5) and converging to values near 0 or 1 depending on the targeted speaker.

The novel state space model proposed in this study is supported by performance evaluation of the model

on realistic simulated data, as well as evoked neural activity from the auditory cortex of humans, recorded via
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Figure 7: A step-wise illustration of the EM convergence. A) The output of the state-space decoder is plotted after each

EM iteration for sample trials of attending to speaker 1 (green curves), and attending to speaker 2 (orange curves), in the

Constant-Attention experiment. B) EM iterations are plotted for sample trials of the Attention-Switch experiment and for

attention switches from speaker 1 to speaker 2 (green curves), and from speaker 2 to speaker 1 (orange curves). The iteration

direction is shown by the arrows.
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MEG. These studies divulge two main advantages in the current model over the state of the art methods such

as the reverse correlation technique (Bialek et al., 1991; Gielen et al., 1988; Hesselmans and Johannesma,

1989).

First, in this proposed model, temporal resolution of the estimated state of attention is in the order

of a few seconds rather than a minute. This resolution is comparable to empirically estimated speed of

attention switching in humans; therefore the proposed model provides a dynamic framework for tracking

the attentional state of a listener in real world scenarios. This is a considerable improvement over the

commonly used methods based on reverse correlation, in which the recovery of the stimulus paradigm from

the corresponding neural response results is a poor reconstruction of the stimulus using short processing

time windows, and therefore fails in tracking the attentional state in a precise fashion (Ding and Simon,

2012a; Mesgarani and Chang, 2012).

Second, the principled statistical framework used in constructing the decoder allows us to obtain confi-

dence bounds on the estimated attentional state. This feature is crucial to obtaining a statistically principled

framework for assessing the validity of the algorithm output. Moreover, the proposed approach benefits

from the inherent model-based dynamic denoising of the underlying state-space model, and is able to re-

liably decode the attentional state under very low SNR conditions. A comparison of our method with a

correlation-based classifier (without the state-space mechanism) was presented in our earlier work (Akram

et al., 2014), which confirmed the latter observation and revealed a significant performance gap.

A potential application of this analysis framework is to be used as a real-time cocktail party analyzer,

tracking the attentional state of a listener in a complex auditory environment. The state-space model

provides estimation of the probability of attending to either one of the speakers at each time point t based

on the recorded neural data at all other time points before (via non-linear filtering) and after (via backward

smoothing) t. Assuming that the cognitive state of attention is a continuous process in time, this continuity is

appropriately accounted for in the proposed model; however, for real-time Brain-Computer Interface (BCI)

applications, the smoothing step can be omitted and estimation of the attentional state can be causally

carried out via the proposed non-linear filter.

Future work includes generalization of the proposed model to more realistic and complex auditory en-

vironments with more diverse sources such as mixtures of speech, music and structured background noise.

Nevertheless, the promising performance of the proposed algorithm for MEG recordings makes it an appeal-

ing candidate for EEG applications.
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Appendix A: Parameter Estimation of the Inverse Problem

Let

Ω :=
{
κ1, κ2, {zk}Kk=1, {ηk}Kk=1

}
(A.1)

be the set of parameters.

The log-posterior of the parameter set Ω given the observed data
{
θi,k,r

}2,T,R

i,k,r=1
is given by:

log p
(
Ω
∣∣∣{θi,k,r}2,K,R

i,k,r=1

)
=

R,K∑

r,k=1

log

[
2κ

W/2−1
1 pk

(2π)W/2IW/2−1(κ1)
exp (κ1cos (θ1,k,r))

+
2κ

W/2−1
2 (1− pk)

(2π)W/2IW/2−1(κ2)
exp (κ2cos (θ2,k,r))

]

+
[
(κ1 + κ2)c0d+ d(W/2 − 1)(log κ1 + log κ2)− d

(
log IW/2(κ1) + log IW/2(κ2)

)]

−
R,K∑

r,k=1

{
1

2ηk
(zk−zk−1)

2 +
1

2
log ηk + (α + 1) log ηk +

β

ηk

}
+ cst.

where cst. denotes terms that are not functions of Ω. The MAP estimate of the parameters is difficult to

obtain given the involved functional form of the log-posterior. However, the complete data log-posterior,

where the unobservable sequence {nk,r}K,R
k=1,r=1 is given, takes the form:

log p
(
Ω
∣∣∣{θi,k,r , nk,r}2,K,R

i,k,r=1

)
=

R,K∑

r,k=1

nk,r

[
(W/2− 1) log(κ1) + κ1 cos (θ1,k,r)−log IW/2−1(κ1)

]

+

R,K∑

r,k=1

(1−nk,r)
[
(W/2 − 1) log(κ2) + κ2 cos (θ2,k,r)−log IW/2−1(κ2)

]

+
[
(κ1 + κ2)c0d+ d(W/2 − 1)(log κ1 + log κ2)− d

(
log IW/2(κ1) + log IW/2(κ2)

)]

+

R,K∑

r,k=1

[nk,r log pk + (1−nk,r) log(1−pk)]

−
R,K∑

r,k=1

{
1

2ηk
(zk−zk−1)

2
+
1

2
log ηk+(α+ 1) log ηk+

β

ηk

}
+cst.

The log-posterior of the parameters given the complete data has a tractable functional form for opti-

mization purposes. Therefore, by taking {nk,r}K,R
k=1,r=1 as the unobserved data, we can estimate Ω via the

EM algorithm (Dempster et al., 1977). Using Bayes’ rule, the expectation of nk,r, given
{
θi,k,r

}2,K,R

i,k,r=1
and

current estimates of the parameters Ω(ℓ) :=
{
κ
(ℓ)
1 , κ

(ℓ)
2 ,
{
z
(ℓ)
k

}K
k=1

,
{
η
(ℓ)
k

}K
k=1

}
is given by:

E

{
nk,r

∣∣∣{θi,k,r}2,K,R
i,k,r=1,Ω

(ℓ)
}
=

2κ
(ℓ)
1

W/2−1
p
(ℓ)
k

(2π)W/2IW/2−1(κ
(ℓ)
1 )

exp
(
κ
(ℓ)
1 cos (θ1,k,r)

)

2κ
(ℓ)
1

W/2−1
p
(ℓ)
k

(2π)W/2IW/2−1(κ
(ℓ)
1 )

exp
(
κ
(ℓ)
1 cos (θ1,k,r)

)
+

2κ
(ℓ)
2

W/2−1
(1−p

(ℓ)
k )

(2π)W/2IW/2−1(κ
(ℓ)
2 )

exp
(
κ
(ℓ)
2 cos (θ2,k,r)

) .

(A.2)
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Denoting the above expectation by the shorthand E
(ℓ){nk,r}, the M-step of the EM algorithm for κ

(ℓ+1)
1

and κ
(ℓ+1)
2 gives:

κ
(ℓ+1)
i = A−1




R,K∑

r,k=1

ε
(ℓ)
i,k,r cos (θi,k,r) + c0d

d+

R,K∑

r,k=1

ε
(ℓ)
i,k,r




, ε
(ℓ)
i,k,r =





E
(ℓ){nk,r} i = 1

1− E
(ℓ){nk,r} i = 2

(A.3)

where A(x) := −W/2−1
x +

0.5(IW/2−2(x)+IW/2(x))

IW/2−1(x)
, with IW (·) denoting the W th order modified Bessel function

of the first kind. Inversion of A(·) can be carried out numerically in order to find κ
(ℓ+1)
1 and κ

(ℓ+1)
2 . The

M-step for {ηk}Kk=1 and {zk}Kk=1 corresponds to the following maximization problem:

argmax
{zk,ηk}K

k=1

R,K∑

r,k=1

[
E
(ℓ){nk,r}zk−log(1 + exp(zk))−

1

2ηk

[
(zk − zk−1)

2
+2β

]
− 1+2(α+1)

2 log ηk

]
. (A.4)

An efficient approximate solution to this maximization problem is given by another EM algorithm, where

the E-step is the point process smoothing algorithm (Smith and Brown, 2003; Smith et al., 2004) and the

M-step updates the state variance sequence (Shumway and Stoffer, 1982). At iteration m, given an estimate

of η
(ℓ+1)
k , denoted by η

(ℓ+1,m)
k , the forward pass of the E-step for k = 1, 2, · · · ,K is given by:





z̄
(ℓ+1,m)
k|k−1 = z̄

(ℓ+1,m)
k−1|k−1

σ
(ℓ+1,m)
k|k−1 = σ

(ℓ+1,m)
k−1|k−1 +

η
(ℓ+1,m)
k

R

z̄
(ℓ+1,m)
k|k = z̄

(ℓ+1,m)
k|k−1 + σ

(ℓ+1,m)
k|k−1




R∑

r=1

E
(ℓ){nk,r} −R

exp
(
z̄
(ℓ+1,m)
k|k

)

1 + exp
(
z̄
(ℓ+1,m)
k|k

)




σ
(ℓ+1,m)
k|k =




1

σ
(ℓ+1,m)
k|k−1

+R
exp

(
z̄
(ℓ+1,m)
k|k

)

(
1 + exp

(
z̄
(ℓ+1,m)
k|k

))2




−1

(A.5)

Note that the third equation in the forward filter is non-linear in z̄
(ℓ+1,m)
k|k , and can be solved using standard

techniques (e.g., Newton’s method). More details on derivation of the non-linear forward filter can be found

in Appendix B. For k = K − 1,K − 2, · · · , 1, the backward pass of the E-step is given by:





s
(ℓ+1,m)
k = σ

(ℓ+1,m)
k|k /σ

(ℓ+1,m)
k+1|k

z̄
(ℓ+1,m)
k|K = z̄

(ℓ+1,m)
k|k + s

(ℓ+1,m)
k

(
z̄
(ℓ+1,m)
k+1|K − z̄

(ℓ+1,m)
k+1|k

)

σ
(ℓ+1,m)
k|K = σ

(ℓ+1,m)
k|k + s

(ℓ+1,m)
k

(
σ
(ℓ+1,m)
k+1|K − σ

(ℓ+1,m)
k+1|k

)
s
(ℓ+1,m)
k

(A.6)

The M-step gives the updated value of η
(ℓ+1,m+1)
k as:
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η
(ℓ+1,m+1)
k =

E

(
z2k

∣∣∣Ω(ℓ), {θi,k,r}2,K,R
i,k,r=1

)
+ E

(
z2k−1

∣∣∣Ω(ℓ), {θi,k,r}2,K,R
i,k,r=1

)
− 2E

(
zk, zk−1

∣∣∣Ω(ℓ), {θi,k,r}2,K,R
i,k,r=1

)
+ 2β

1 + 2(α+ 1)

=

(
z̄
(ℓ+1,m)
k|K − z̄

(ℓ+1,m)
k−1|K

)2
+ σ

(ℓ+1,m)
k|K + σ

(ℓ+1,m)
k−1|K − 2σ

(ℓ+1,m)
k|K s

(ℓ+1,m)
k−1 + 2β

1 + 2(α+ 1)
. (A.7)

Appendix B: Derivation of the Recursive Nonlinear Filtering Algorithm

Assume that at time (k− 1), zk−1|k−1 and σ2
k|k−1 are given. The distribution of zk given all the data up

to time k is N (zk−1|k−1, σ
2
k|k−1), where σ

2
k|k−1 = ηk +σ2

k−1|k−1. To derive the non-linear recursive filter, we

keep track of the parameters of the posterior distribution p(zk|Ω):

log(p(zk|Ω)) =
{
− (zk − zk−1|k−1)

2

σ2
k|k−1

}{
E
(ℓ){nk}zk − log(1 + exp(zk))−

β

ηk
+

1 + 2(α+ 1)

2
log ηk

}
. (B.1)

To find the mode of p(zk|Ω), we apply Gaussian approximation to the posterior density. The approxi-

mation is based on recursively computing the posterior mode zk|k and computing its variance σ2
k|k as the

negative inverse Hessian of the log-posterior probability density (Tanner, 1993). Differentiating equation

(A.1) w.r.t. zk gives

−zk − zk−1|k−1

σ2
k|k−1

+ E
(ℓ){nk} −

exp(zk)

1 + exp(zk)
= 0 (B.2)

and solving for z yields

zk = zk−1|k−1 + σ2
k|k−1

{
E
(ℓ){nk} −

exp (zk)

1 + exp(zk)

}
. (B.3)

This equation is non-linear w.r.t. zk and can be solved using the Newton’s method. The Hessian of Eq.

(B.1) is given by
−1

σ2
k|k−1

− exp(zk)(1 + exp(zk))− exp2(zk)

(1 + exp(zk))
2 (B.4)

and hence the variance of zk, under the Gaussian approximation is given by:

σ2
k|k =

(
1

σ2
k|k−1

+
exp (zk|k)

(1 + exp(zk|k))
2

)−1

. (B.5)

Appendix C: Covariance Smoothing

The lagged covariance σ2
k,l|K can be computed from the state-space covariance smoothing algorithm

(De Jong and Mackinnon, 1988) given by the following equation:

σ2
k,l|K = σ2

k|k(σ
2
k+1|k)

−1σ2
k+1,l|K (C.1)

20



for 1 ≤ k ≤ l ≤ K. Hence, the lagged covariance term appearing in our E-step is given by:

Cov
{
zk+1, zk|Ω(ℓ), {θi,k,r}2,K,R

i,k,r=1

}
= σ2

k,k+1|K = σ2
k|k(σ

2
k+1|k)

−1σ2
k+1|K (C.2)

which is easily computable using the smoothed state variances.
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