

© 2008 Elsevier Inc. All rights reserved.

1

OVERVIEW

Memory is essential to the operation of a computer
system, and nothing is more important to the devel-
opment of the modern memory system than the con-
cept of the memory hierarchy. While a fl at memory
system built of a single technology is attractive for
its simplicity, a well-implemented hierarchy allows a
memory system to approach simultaneously the per-
formance of the fastest component, the cost per bit of
the cheapest component, and the energy consump-
tion of the most energy-effi cient component.

For years, the use of a memory hierarchy has
been very convenient, in that it has simplifi ed the
process of designing memory systems. The use of a
hierarchy allowed designers to treat system design
as a modularized process—to treat the memory
system as an abstraction and to optimize individual
subsystems (caches, DRAMs [dynamic RAM], disks)
in isolation.

However, we are fi nding that treating the hierar-
chy in this way—as a set of disparate subsystems
that interact only through well-defi ned functional
interfaces and that can be optimized in isola-
tion—no longer suffi ces for the design of modern
memory systems. One trend becoming apparent is
that many of the underlying implementation issues
are becoming signifi cant. These include the phys-
ics of device and interconnect scaling, the choice
of signaling protocols and topologies to ensure
signal integrity, design parameters such as granu-
larity of access and support for concurrency, and
communication-related issues such as scheduling
algorithms and queueing. These low-level details
have begun to affect the higher level design process

quite dramatically, whereas they were considered
transparent only a design-generation ago. Cache
architectures are appearing that play to the limita-
tions imposed by interconnect physics in deep sub-
micron processes; modern DRAM design is driven
by circuit-level limitations that create system-level
headaches; and modern disk performance is domi-
nated by the on-board caching and scheduling poli-
cies. This is a non-trivial environment in which to
attempt optimal design.

This trend will undoubtedly become more impor-
tant as time goes on, and even now it has tremendous
impact on design results. As hierarchies and their
components grow more complex, systemic behav-
iors—those arising from the complex interaction of
the memory system’s parts—have begun to domi-
nate. The real loss of performance is not seen in the
CPU or caches or DRAM devices or disk assemblies
themselves, but in the subtle interactions between
these subsystems and in the manner in which
these subsystems are connected. Consequently, it is
becoming increasingly foolhardy to attempt system-
level optimization by designing/optimizing each of
the parts in isolation (which, unfortunately, is often
the approach taken in modern computer design).
No longer can a designer remain oblivious to issues
“outside the scope” and focus solely on design-
ing a subsystem. It has now become the case that a
memory-systems designer, wishing to build a prop-
erly behaved memory hierarchy, must be intimately
familiar with issues involved at all levels of an imple-
mentation, from cache to DRAM to disk. Thus, we
wrote this book.

On Memory Systems
and Their Design

chOv_P379751.indd Sec2:1chOv_P379751.indd Sec2:1 8/8/07 4:33:25 PM8/8/07 4:33:25 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

2 Memory Systems: Cache, DRAM, Disk

Ov.1 Memory Systems
A memory hierarchy is designed to provide mul-

tiple functions that are seemingly mutually exclusive.
We start at random-access memory (RAM): all micro-
processors (and computer systems in general) expect
a random-access memory out of which they operate.
This is fundamental to the structure of modern soft-
ware, built upon the von Neumann model in which
code and data are essentially the same and reside in
the same place (i.e., memory). All requests, whether
for instructions or for data, go to this random-access
memory. At any given moment, any particular datum
in memory may be needed; there is no requirement
that data reside next to the code that manipulates
it, and there is no requirement that two instructions
executed one after the other need to be adjacent in
memory. Thus, the memory system must be able to
handle randomly addressed1 requests in a manner
that favors no particular request. For instance, using
a tape drive for this primary memory is unacceptable
for performance reasons, though it might be accept-
able in the Turing-machine sense.

Where does the mutually exclusive part come in?
As we said, all microprocessors are built to expect a
random-access memory out of which they can oper-
ate. Moreover, this memory must be fast, match-
ing the machine’s processing speed; otherwise, the
machine will spend most of its time tapping its foot
and staring at its watch. In addition, modern soft-
ware is written to expect gigabytes of storage for data,
and the modern consumer expects this storage to be
cheap. How many memory technologies provide both
tremendous speed and tremendous storage capacity
at a low price? Modern processors execute instruc-
tions both out of order and speculatively—put sim-
ply, they execute instructions that, in some cases, are
not meant to get executed—and system software is
typically built to expect that certain changes to mem-
ory are permanent. How many memory technologies
provide non- volatility and an undo operation?

While it might be elegant to provide all of these
competing demands with a single technology (say,

for example, a gigantic battery-backed SRAM [static
RAM]), and though there is no engineering problem
that cannot be solved (if ever in doubt about this, sim-
ply query a room full of engineers), the reality is that
building a full memory system out of such a technol-
ogy would be prohibitively expensive today.2 The good
news is that it is not necessary. Specialization and
division of labor make possible all of these competing
goals simultaneously. Modern memory systems often
have a terabyte of storage on the desktop and provide
instruction-fetch and data-access bandwidths of 128
GB/s or more. Nearly all of the storage in the system
is non-volatile, and speculative execution on the part
of the microprocessor is supported. All of this can be
found in a memory system that has an average cost of
roughly 1/100,000,000 pennies per bit of storage.

The reason all of this is possible is because of a
phenomenon called locality of reference [Belady 1966,
Denning 1970]. This is an observed behavior that
computer applications tend to exhibit and that, when
exploited properly, allows a small memory to serve in
place of a larger one.

Ov.1.1 Locality of Reference Breeds the
Memory Hierarchy

We think linearly (in steps), and so we program the
computer to solve problems by working in steps. The
practical implications of this are that a computer’s
use of the memory system tends to be non-random
and highly predictable. Thus is born the concept of
locality of reference, so named because memory refer-
ences tend to be localized in time and space:

If you use something once, you are likely to
use it again.
If you use something once, you are likely to
use its neighbor.

The fi rst of these principles is called temporal local-
ity; the second is called spatial locality. We will discuss
them (and another type of locality) in more detail in
Part I: Cache of this book, but for now it suffi ces to

•

•

1Though “random” addressing is the commonly used term, authors actually mean arbitrarily addressed requests because,
in most memory systems, a randomly addressed sequence is one of the most effi ciently handled events.
2Even Cray machines, which were famous for using SRAM as their main memory, today are built upon DRAM for their
main memory.

chOv_P379751.indd Sec2:2chOv_P379751.indd Sec2:2 8/8/07 4:33:28 PM8/8/07 4:33:28 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 3

say that one can exploit the locality principle and
render a single-level memory system, which we just
said was expensive, unnecessary. If a computer’s use
of the memory system, given a small time window, is
both predictable and limited in spatial extent, then
it stands to reason that a program does not need all
of its data immediately accessible. A program would
perform nearly as well if it had, for instance, a two-
level store, in which the fi rst level provides immediate
access to a subset of the program’s data, the second
level holds the remainder of the data but is slower and
therefore cheaper, and some appropriate heuristic is
used to manage the movement of data back and forth
between the levels, thereby ensuring that the most-
needed data is usually in the fi rst-level store.

This generalizes to the memory hierarchy: multiple
levels of storage, each optimized for its assigned task.
By choosing these levels wisely a designer can produce
a system that has the best of all worlds: performance
approaching that of the fastest component, cost per
bit approaching that of the cheapest component, and
energy consumption per access approaching that of
the least power-hungry component.

The modern hierarchy is comprised of the following
components, each performing a particular function or
fi lling a functional niche within the system:

Cache (SRAM): Cache provides access to
program instructions and data that has
very low latency (e.g., 1/4 nanosecond per
access) and very high bandwidth (e.g., a
16-byte instruction block and a 16-byte

•

data block per cycle => 32 bytes per 1/4
nanosecond, or 128 bytes per nanosecond,
or 128 GB/s). It is also important to note
that cache, on a per-access basis, also has
relatively low energy requirements
compared to other technologies.
DRAM: DRAM provides a random-access
storage that is relatively large, relatively fast,
and relatively cheap. It is large and cheap
compared to cache, and it is fast compared
to disk. Its main strength is that it is just fast
enough and just cheap enough to act as an
operating store.
Disk: Disk provides permanent storage at
an ultra-low cost per bit. As mentioned,
nearly all computer systems expect some
data to be modifi able yet permanent, so the
memory system must have, at some level, a
permanent store. Disk’s advantage is its very
reasonable cost (currently less than 50¢ per
gigabyte), which is low enough for users to
buy enough of it to store thousands of songs,
video clips, photos, and other memory hogs
that users are wont to accumulate in their
accounts (authors included).

Table Ov.1 lists some rough order-of-magnitude
comparisons for access time and energy consump-
tion per access.

Why is it not feasible to build a fl at memory system
out of these technologies? Cache is far too expensive
to be used as permanent storage, and its cost to store a
single album’s worth of audio would exceed that of the

•

•

Technology Bytes per Access (typ.) Latency per Access Cost per Megabytea Energy per Access

On-chip Cache 10 100 of picoseconds $1–100 1 nJ

Off-chip Cache 100 Nanoseconds $1–10 10–100 nJ

DRAM 1000 (internally
fetched)

10–100
nanoseconds

$0.1 1–100 nJ (per
device)

Disk 1000 Milliseconds $0.001 100–1000 mJ

TABLE 0V.1 Cost-performance for various memory technologies

aCost of semiconductor memory is extremely variable, dependent much more on economic factors and sales volume than on
manufacturing issues. In particular, on-chip caches (i.e., those integrated with a microprocessor core) can take up half of the
die area, in which case their “cost” would be half of the selling price of that microprocessor. Depending on the market (e.g.,
embedded versus high end) and sales volume, microprocessor costs cover an enormous range of prices, from pennies per
square millimeter to several dollars per square millimeter.

chOv_P379751.indd Sec2:3chOv_P379751.indd Sec2:3 8/8/07 4:33:28 PM8/8/07 4:33:28 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

4 Memory Systems: Cache, DRAM, Disk

original music CD by several orders of magnitude. Disk
is far too slow to be used as an operating store, and its
average seek time for random accesses is measured in
milliseconds. Of the three, DRAM is the closest to pro-
viding a fl at memory system. DRAM is suffi ciently fast
enough that, without the support of a cache front-end,
it can act as an operating store for many embedded
systems, and with battery back-up it can be made to
function as a permanent store. However, DRAM alone
is not cheap enough to serve the needs of human
users, who often want nearly a terabyte of permanent
storage, and, even with random access times in the
tens of nanoseconds, DRAM is not quite fast enough to
serve as the only memory for modern general-purpose
microprocessors, which would prefer a new block of
instructions every fraction of a nanosecond.

So far, no technology has appeared that provides
every desired characteristic: low cost, non-volatility,
high bandwidth, low latency, etc. So instead we build
a system in which each component is designed to offer
one or more characteristics, and we manage the opera-
tion of the system so that the poorer characteristics of
the various technologies are “hidden.” For example, if
most of the memory references made by the micro-
processor are handled by the cache and/or DRAM
subsystems, then the disk will be used only rarely,
and, therefore, its extremely long latency will contrib-
ute very little to the average access time. If most of the
data resides in the disk subsystem, and very little of it
is needed at any given moment in time, then the cache
and DRAM subsystems will not need much storage, and,

therefore, their
higher costs per
bit will contrib-
ute very little to
the average cost
of the system.
If done right, a
memory system
has an average
cost approaching
that of bottom-

most layer and an average access time and bandwidth
approaching that of topmost layer.

The memory hierarchy is usually pictured as a pyra-
mid, as shown in Figure Ov.1. The higher levels in the

hierarchy have better performance characteristics
than the lower levels in the hierarchy; the higher levels
have a higher cost per bit than the lower levels; and the
system uses fewer bits of storage in the higher levels
than found in the lower levels.

Though modern memory systems are comprised of
SRAM, DRAM, and disk, these are simply technologies
chosen to serve particular needs of the system, namely
permanent store, operating store, and a fast store. Any
technology set would suffi ce if it (a) provides perma-
nent and operating stores and (b) satisfi es the given
computer system’s performance, cost, and power
requirements.

Permanent Store
The system’s permanent store is where everything

lives … meaning it is home to data that can be modi-
fi ed (potentially), but whose modifi cations must be
remembered across invocations of the system (power-
ups and power-downs). In general-purpose systems,
this data typically includes the operating system’s
fi les, such as boot program, OS (operating system)
executable, libraries, utilities, applications, etc., and
the users’ fi les, such as graphics, word-processing
documents, spreadsheets, digital photographs, digi-
tal audio and video, email, etc. In embedded systems,
this data typically includes the system’s executable
image and any installation-specifi c confi guration
information that it requires. Some embedded systems
also maintain in permanent store the state of any par-
tially completed transactions to withstand worst-case
scenarios such as the system going down before the
transaction is fi nished (e.g., fi nancial transactions).

These all represent data that should not disap-
pear when the machine shuts down, such as a user’s
saved email messages, the operating system’s code
and confi guration information, and applications and
their saved documents. Thus, the storage must be non-
volatile, which in this context means not susceptible to
power outages. Storage technologies chosen for perma-
nent store include magnetic disk, fl ash memory, and
even EEPROM (electrically erasable programmable
read-only memory), of which fl ash memory is a special
type. Other forms of programmable ROM (read-only
memory) such as ROM, PROM (programmable ROM),

Speed

Permanent Store

Level 1
Level 2

Level i
…

…

Cost Size

FIGURE Ov.1: A memory hierachy.

chOv_P379751.indd Sec2:4chOv_P379751.indd Sec2:4 8/8/07 4:33:28 PM8/8/07 4:33:28 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 5

or EPROM (erasable programmable ROM) are suitable
for non-writable permanent information such as the
executable image of an embedded system or a gen-
eral-purpose system’s boot code and BIOS.3 Numerous
exotic non-volatile technologies are in development,
including magnetic RAM (MRAM), FeRAM (ferroelec-
tric RAM), and phase-change RAM (PCRAM).

In most systems, the cost per bit of this technology
is a very important consideration. In general-purpose
systems, this is the case because these systems tend
to have an enormous amount of permanent storage. A
desktop can easily have more than 500 GB of perma-
nent store, and a departmental server can have one
hundred times that amount. The enormous number
of bits in these systems translates even modest cost-
per-bit increases into signifi cant dollar amounts.
In embedded systems, the cost per bit is important
because of the signifi cant number of units shipped.
Embedded systems are often consumer devices that
are manufactured and sold in vast quantities, e.g., cell
phones, digital cameras, MP3 players, programmable
thermostats, and disk drives. Each embedded system
might not require more than a handful of megabytes
of storage, yet a tiny 1¢ increase in the cost per mega-
byte of memory can translate to a $100,000 increase
in cost per million units manufactured.

Operating (Random-Access) Store
As mentioned earlier, a typical microprocessor

expects a new instruction or set of instructions on
every clock cycle, and it can perform a data-read or
data-write every clock cycle. Because the addresses
of these instructions and data need not be sequential
(or, in fact, related in any detectable way), the mem-
ory system must be able to handle random access—it
must be able to provide instant access to any datum
in the memory system.

The machine’s operating store is the level of memory
that provides random access at the microprocessor’s
data granularity. It is the storage level out of which the
microprocessor could conceivably operate, i.e., it is
the storage level that can provide random access to its

storage, one data word at a time. This storage level is
 typically called “main memory.” Disks cannot serve as
main memory or operating store and cannot provide
random access for two reasons: instant access is pro-
vided for only the data underneath the disk’s head at
any given moment, and the granularity of access is not
what a typical processor requires. Disks are block-ori-
ented devices, which means they read and write data
only in large chunks; the typical granularity is 512 B. Pro-
cessors, in contrast, typically operate at the granularity
of 4 B or 8 B data words. To use a disk, a microprocessor
must have additional buffering memory out of which it
can read one instruction at a time and read or write one
datum at a time. This buffering memory would become
the de facto operating store of the system.

Flash memory and EEPROM (as well as the exotic
non-volatile technologies mentioned earlier) are poten-
tially viable as an operating store for systems that have
small permanent-storage needs, and the non-volatil-
ity of these technologies provides them with a distinct
advantage. However, not all are set up as an ideal oper-
ating store; for example, fl ash memory supports word-
sized reads but supports only block-sized writes. If this
type of issue can be handled in a manner that is trans-
parent to the processor (e.g., in this case through addi-
tional data buffering), then the memory technology can
still serve as a reasonable hybrid operating store.

Though the non-volatile technologies seem posi-
tioned perfectly to serve as operating store in all manner
of devices and systems, DRAM is the most commonly
used technology. Note that the only requirement of
a memory system’s operating store is that it provide
random access with a small access granularity. Non-
volatility is not a requirement, so long as it is provided
by another level in the hierarchy. DRAM is a popular
choice for operating store for several reasons: DRAM
is faster than the various non-volatile technologies (in
some cases much faster); DRAM supports an unlim-
ited number of writes, whereas some non-volatile
technologies start to fail after being erased and rewrit-
ten too many times (in some technologies, as few as
1–10,000 erase/write cycles); and DRAM processes
are very similar to those used to build logic devices.

3BIOS = basic input/output system, the code that provides to software low-level access to much of the hardware.

chOv_P379751.indd Sec2:5chOv_P379751.indd Sec2:5 8/8/07 4:33:29 PM8/8/07 4:33:29 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

6 Memory Systems: Cache, DRAM, Disk

DRAM can be fabricated using similar materials and
(relatively) similar silicon-based process technologies
as most microprocessors, whereas many of the various
non-volatile technologies require new materials and
(relatively) different process technologies.

Fast (and Relatively Low-Power) Store
If these storage technologies provide such reason-

able operating store, why, then, do modern systems use
cache? Cache is inserted between the processor and the
main memory system whenever the access behavior
of the main memory is not suffi cient for the needs or
goals of the system. Typical fi gures of merit include per-
formance and energy consumption (or power dissipa-
tion). If the performance when operating out of main
memory is insuffi cient, cache is interposed between the
processor and main memory to decrease the average
access time for data. Similarly, if the energy consumed
when operating out of main memory is too high, cache
is interposed between the processor and main memory
to decrease the system’s energy consumption.

The data in Table Ov.1 should give some intuition
about the design choice. If a cache can reduce the
number of accesses made to the next level down in the
hierarchy, then it potentially reduces both execution
time and energy consumption for an application. The
gain is only potential because these numbers are valid
only for certain technology parameters. For example,
many designs use large SRAM caches that consume
much more energy than several DRAM chips com-
bined, but because the caches can reduce execution
time they are used in systems where performance is
critical, even at the expense of energy consumption.

It is important to note at this point that, even though
the term “cache” is usually interpreted to mean SRAM,
a cache is merely a concept and as such imposes
no expectations on its implementation. Caches are

best thought of as compact databases, as shown in
Figure Ov.2. They contain data and, optionally,
metadata such as the unique ID (address) of each
data block in the array, whether it has been updated
recently, etc. Caches can be built from SRAM, DRAM,
disk, or virtually any storage technology. They can be
managed completely in hardware and thus can be
transparent to the running application and even to
the memory system itself; and at the other extreme
they can be explicitly managed by the running appli-
cation. For instance, Figure Ov.2 shows that there is
an optional block of metadata, which if implemented
in hardware would be called the cache’s tags. In that
instance, a key is passed to the tags array, which
produces either the location of the corresponding
item in the data array (a cache hit) or an indication
that the item is not in the data array (a cache miss).
Alternatively, software can be written to index the
array explicitly, using direct cache-array addresses,
in which case the key lookup (as well as its associ-
ated tags array) is unnecessary. The confi guration
chosen for the cache is called its organization. Cache
organizations exist at all spots along the continuum
between these two extremes. Clearly, the choice of
organization will signifi cantly impact the cache’s per-
formance and energy consumption.

Predictability of access time is another common fi g-
ure of merit. It is a special aspect of performance that is
very important when building real-time systems or sys-
tems with highly orchestrated data movement. DRAM
is occasionally in a state where it needs to ignore exter-
nal requests so that it can guarantee the integrity of its
stored data (this is called refresh and will be discussed in
detail in Part II of the book). Such hiccups in data move-
ment can be disastrous for some applications. For this
reason, many microprocessors, such as digital signal
processors (DSPs) and processors used in embedded
control applications (called microcontrollers), often

Metadata Data

Input Key Entry in
Data Array

Data
Available

FIGURE Ov.2: An idealized cache lookup. A cache is logically comprised of two elements: the data array and some management
information that indicates what is in the data array (labeled “metadata”). Note that the key information may be virtual, i.e., data
addresses can be embedded in the software using the cache, in which case there is no explicit key lookup, and only the data
array is needed.

chOv_P379751.indd Sec2:6chOv_P379751.indd Sec2:6 8/8/07 4:33:29 PM8/8/07 4:33:29 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 7

have special caches that look like small main memo-
ries. These are scratch-pad RAMs whose implementa-
tion lies toward the end of the spectrum at which the
running application manages the cache explicitly. DSPs
typically have two of these scratch-pad SRAMs so that
they can issue on every cycle a new multiply-accumu-
late (MAC) operation, an important DSP instruction
whose repeated operation on a pair of data arrays pro-
duces its dot product. Performing a new MAC opera-
tion every cycle requires the memory system to load
new elements from two different arrays simultaneously
in the same cycle. This is most easily accomplished
by having two separate data busses, each with its own
independent data memory and each holding the ele-
ments of a different array.

Perhaps the most familiar example of a software-
managed memory is the processor’s register fi le, an
array of storage locations that is indexed directly by bits
within the instruction and whose contents are dictated
entirely by software. Values are brought into the register
fi le explicitly by software instructions, and old values
are only overwritten if done so explicitly by software.
Moreover, the register fi le is signifi cantly smaller than
most on-chip caches and typically consumes far less
energy. Accordingly, software’s best bet is often to opti-
mize its use of the register fi le [Postiff & Mudge 1999].

Ov.1.2 Important Figures of Merit
The following issues have been touched on during

the previous discussion, but at this point it would be
valuable to formally present the various fi gures of merit
that are important to a designer of memory systems.
Depending on the environment in which the memory
system will be used (supercomputer, departmental
server, desktop, laptop, signal-processing system,
embedded control system, etc.), each metric will carry
more or less weight. Though most academic studies
tend to focus on one axis at a time (e.g., performance),
the design of a memory system is a multi-dimensional
optimization problem, with all the adherent complex-
ities of analysis. For instance, to analyze something in
this design space or to consider one memory system

over another, a designer should be familiar with con-
cepts such as Pareto optimality (described later in this
chapter). The various fi gures of merit, in no particu-
lar order other than performance being fi rst due to
its popularity, are performance, energy consumption
and power dissipation, predictability of behavior (i.e.,
real time), manufacturing costs, and system reliability.
This section describes them briefl y, collectively. Later
sections will treat them in more detail.

Performance
The term “performance” means many things to

many people. The performance of a system is typically
measured in the time it takes to execute a task (i.e., task
latency), but it can also be measured in the number of
tasks that can be handled in a unit time period (i.e.,
task bandwidth). Popular fi gures of merit for perfor-
mance include the following:4

Cycles per Instruction (CPI)

�
Total execution cycles

Total user-level instructions committed

Memory-system CPI overhead

� Real CPI – CPI assuming perfect memory

Memory Cycles per Instruction (MCPI)

� Total cycles spent in memory system _________________________________
Total user-level instructions committed

Cache miss rate � Total cache misses _________________
Total cache accesses

Cache hit rate � 1 – Cache miss rate

Average access time

� (hit rate . average to service hit)�
(miss rate . average to service miss)

Million Instructions per Second (MIPS)

�
Instructions executed (seconds)

 106 • Average required for execution

•

•

•

•

•

•

•

4Note that the MIPS metric is easily abused. For instance, it is inappropriate for comparing different instruction-set
architectures, and marketing literature often takes the defi nition of “instructions executed” to mean any particular given
window of time as opposed to the full execution of an application. In such cases, the metric can mean the highest possible
issue rate of instructions that the machine can achieve (but not necessarily sustain for any realistic period of time).

chOv_P379751.indd Sec2:7chOv_P379751.indd Sec2:7 8/8/07 4:33:30 PM8/8/07 4:33:30 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

8 Memory Systems: Cache, DRAM, Disk

A cautionary note: using a metric of performance
for the memory system that is independent of a pro-
cessing context can be very deceptive. For instance,
the MCPI metric does not take into account how much
of the memory system’s activity can be overlapped
with processor activity, and, as a result, memory sys-
tem A which has a worse MCPI than memory system
B might actually yield a computer system with better
total performance. As Figure Ov.5 in a later section
shows, there can be signifi cantly different amounts
of overlapping activity between the memory system
and CPU execution.

How to average a set of performance metrics cor-
rectly is still a poorly understood topic, and it is very
sensitive to the weights chosen (either explicitly or
implicitly) for the various benchmarks considered
[John 2004]. Comparing performance is always the
least ambiguous when it means the amount of time
saved by using one design over another. When we ask
the question this machine is how much faster than
that machine? the implication is that we have been
using that machine for some time and wish to know
how much time we would save by using this machine
instead. The true measure of performance is to com-
pare the total execution time of one machine to
another, with each machine running the benchmark
programs that represent the user’s typical workload
as often as a user expects to run them. For instance,
if a user compiles a large software application ten
times per day and runs a series of regression tests
once per day, then the total execution time should
count the compiler’s execution ten times more than
the regression test.

Energy Consumption and Power Dissipation
Energy consumption is related to work accom-

plished (e.g., how much computing can be done
with a given battery), whereas power dissipation is
the rate of consumption. The instantaneous power
dissipation of CMOS (complementary metal-oxide-
 semiconductor) devices, such as microprocessors,
is measured in watts (W) and represents the sum
of two components: active power, due to switching
activity, and static power, due primarily to subthresh-
old leakage. To a fi rst approximation, average power

 dissipation is equal to the following (we will present a
more detailed model later):

Pavg � (Pdynamic � Pstatic) � Ctot V 2dd
 f � IleakVdd (EQ Ov.1)

where Ctot is the total capacitance switched, Vdd is
the power supply, f is the switching frequency, and Ileak
is the leakage current, which includes such sources
as subthreshold and gate leakage. With each genera-
tion in process technology, active power is decreas-
ing on a device level and remaining roughly constant
on a chip level. Leakage power, which used to be
 insignifi cant relative to switching power, increases as
devices become smaller and has recently caught up
to switching power in magnitude [Grove 2002]. In the
future, leakage will be the primary concern.

Energy is related to power through time. The energy
consumed by a computation that requires T seconds is
measured in joules (J) and is equal to the integral of the
instantaneous power over time T. If the power dissipa-
tion remains constant over T, the resultant energy con-
sumption is simply the product of power and time.

E � (Pavg
.T) � CtotV 2ddN � IleakVddT (EQ Ov.2)

where N is the number of switching events that occurs
during the computation.

In general, if one is interested in extending battery
life or reducing the electricity costs of an enterprise
computing center, then energy is the appropriate
metric to use in an analysis comparing approaches.
If one is concerned with heat removal from a system
or the thermal effects that a functional block can cre-
ate, then power is the appropriate metric. In informal
discussions (i.e., in common-parlance prose rather
than in equations where units of measurement are
inescapable), the two terms “power” and “energy” are
frequently used interchangeably, though such use is
technically incorrect. Beware, because this can lead to
ambiguity and even misconception, which is usually
unintentional, but not always so. For instance, micro-
processor manufacturers will occasionally claim to
have a “low-power” microprocessor that beats its pre-
decessor by a factor of, say, two. This is easily accom-
plished by running the microprocessor at half the
clock rate, which does reduce its power dissipation,

chOv_P379751.indd Sec2:8chOv_P379751.indd Sec2:8 8/8/07 4:33:30 PM8/8/07 4:33:30 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 9

but remember that power is the rate at which energy
is consumed. However, to a fi rst order, doing so dou-
bles the time over which the processor dissipates that
power. The net result is a processor that consumes the
same amount of energy as before, though it is branded
as having lower power, which is technically not a lie.

Popular fi gures of merit that incorporate both
energy/power and performance include the following:

Energy-Delay Product

� � Energy required
to perform task

 � • � Time required

to perform task
 �

Power-Delay Product

� � Power required

to perform task
 �

m

 • � Time required
 to perform task

 �
n

MIPS per watt

� Performance of benchmark in MIPS _________________________________
Average power dissipated by benchmark

The second equation was offered as a generalized
form of the fi rst (note that the two are equivalent when
m � 1 and n � 2) so that designers could place more
weight on the metric (time or energy/power) that
is most important to their design goals [Gonzalez &
Horowitz 1996, Brooks et al. 2000a].

Predictable (Real-Time) Behavior
Predictability of behavior is extremely important

when analyzing real-time systems, because correct-
ness of operation is often the primary design goal for
these systems (consider, for example, medical equip-
ment, navigation systems, anti-lock brakes, fl ight
control systems, etc., in which failure to perform as
predicted is not an option).

Popular fi gures of merit for expressing predictabil-
ity of behavior include the following:

Worst-Case Execution Time (WCET), taken
to mean the longest amount of time a func-
tion could take to execute
Response time, taken to mean the time
between a stimulus to the system and the
system’s response (e.g., time to respond to
an external interrupt)

•

•

•

•

•

Jitter, the amount of deviation from an
 average timing value

These metrics are typically given as single num-
bers (average or worst case), but we have found that
the probability density function makes a valuable aid
in system analysis [Baynes et al. 2001, 2003].

Design (and Fabrication and Test) Costs
Cost is an obvious, but often unstated, design goal.

Many consumer devices have cost as their primary
consideration: if the cost to design and manufacture
an item is not low enough, it is not worth the effort
to build and sell it. Cost can be represented in many
different ways (note that energy consumption is a
measure of cost), but for the purposes of this book, by
“cost” we mean the cost of producing an item: to wit,
the cost of its design, the cost of testing the item, and/
or the cost of the item’s manufacture. Popular fi gures
of merit for cost include the following:

Dollar cost (best, but often hard to even
approximate)

Design size, e.g., die area (cost of manufactur-
ing a VLSI (very large scale integration) design
is proportional to its area cubed or more)

Packaging costs, e.g., pin count

Design complexity (can be expressed in
terms of number of logic gates, number of
transistors, lines of code, time to compile
or synthesize, time to verify or run DRC
(design-rule check), and many others,
including a design’s impact on clock cycle
time [Palacharla et al. 1996])

Cost is often presented in a relative sense, allowing
differing technologies or approaches to be placed on
equal footing for a comparison.

Cost per storage bit/byte/KB/MB/etc.
(allows cost comparison between different
storage technologies)
Die area per storage bit (allows size-
effi ciency comparison within same process
technology)

•

•

•

•

•

•

•

chOv_P379751.indd Sec2:9chOv_P379751.indd Sec2:9 8/8/07 4:33:30 PM8/8/07 4:33:30 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

10 Memory Systems: Cache, DRAM, Disk

In a similar vein, cost is especially informative
when combined with performance metrics. The
following are variations on the theme:

Bandwidth per package pin (total sustain-
able bandwidth to/from part, divided by
total number of pins in package)
Execution-time-dollars (total execution time
multiplied by total cost; note that cost can
be expressed in other units, e.g., pins, die
area, etc.)

An important note: cost should incorporate all
sources of that cost. Focusing on just one source of
cost blinds the analysis in two ways: fi rst, the true cost
of the system is not considered, and second, solutions
can be unintentionally excluded from the analysis.
If cost is expressed in pin count, then all pins should
be considered by the analysis; the analysis should not
focus solely on data pins, for example. Similarly, if
cost is expressed in die area, then all sources of die
area should be considered by the analysis; the analy-
sis should not focus solely on the number of banks,
for example, but should also consider the cost of
building control logic (decoders, muxes, bus lines,
etc.) to select among the various banks.

Reliability
Like the term “performance,” the term “reliabil-
ity” means many things to many different people.
In this book, we mean reliability of the data stored
within the memory system: how easily is our stored
data corrupted or lost, and how can it be protected
from corruption or loss? Data integrity is depen-
dent upon physical devices, and physical devices
can fail.

Approaches to guarantee the integrity of stored
data typically operate by storing redundant infor-
mation in the memory system so that in the case of
device failure, some but not all of the data will be lost
or corrupted. If enough redundant information is
stored, then the missing data can be reconstructed.
Popular fi gures of merit for measuring reliability

•

•

characterize both device fragility and robustness of a
proposed solution. They include the following:

Mean Time Between Failures (MTBF): 5
given in time (seconds, hours, etc.) or num-
ber of uses
Bit-error tolerance, e.g., how many bit errors
in a data word or packet the mechanism can
correct, and how many it can detect (but not
necessarily correct)
Error-rate tolerance, e.g., how many errors
per second in a data stream the mechanism
can correct
Application-specifi c metrics, e.g., how
much radiation a design can tolerate before
failure, etc.

Note that values given for MTBF often seem astro-
nomically high. This is because they are not meant
to apply to individual devices, but to system-wide
device use, as in a large installation. For instance, if
the expected service lifetime of a device is several
years, then that device is expected to fail in several
years. If an administrator swaps out devices every
few years (before the service lifetime is up), then the
administrator should expect to see failure frequen-
cies consistent with the MTBF rating.

Ov.1.3 The Goal of a Memory Hierarchy
As already mentioned, a well-implemented hierar-

chy allows a memory system to approach simultane-
ously the performance of the fastest component, the
cost per bit of the cheapest component, and the energy
consumption of the most energy-effi cient component.
A modern memory system typically has performance
close to that of on-chip cache, the fastest component
in the system. The rate at which microprocessors
fetch and execute their instructions is measured in
nanoseconds or fractions of a nanosecond. A modern
low-end desktop machine has several hundred giga-
bytes of storage and sells for under $500, roughly half
of which goes to the on-chip caches, off-chip caches,
DRAM, and disk. This represents an average cost of

•

•

•

•

5A common variation is “Mean Time To Failure (MTTF).”

chOv_P379751.indd Sec2:10chOv_P379751.indd Sec2:10 8/8/07 4:33:30 PM8/8/07 4:33:30 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 11

several dollars per gigabyte—very close to that of disk,
the cheapest component. Modern desktop systems
have an energy cost that is typically in the low tens of
nanojoules per instruction executed—close to that of
on-chip SRAM cache, the least energy-costly compo-
nent in the system (on a per-access basis).

The goal for a memory-system designer is to create
a system that behaves, on average and from the point
of view of the processor, like a big cache that has the
price tag of a disk. A successful memory hierarchy is
much more than the sum of its parts; moreover, suc-
cessful memory-system design is non-trivial.

How the system is built, how it is used (and what
parts of it are used more heavily than others), and on
which issues an engineer should focus most of his effort
at design time—all these are highly dependent on the
target application of the memory system. Two com-
mon categories of target applications are (a) general-
purpose systems, which are characterized by their
need for universal applicability for just about any
type of computation, and (b) embedded systems,
which are characterized by their tight design restric-
tions along multiple axes (e.g., cost, correctness of
design, energy consumption, reliability) and the fact
that each executes only a single, dedicated software
application its entire lifespan, which opens up pos-
sibilities for optimization that are less appropriate for
general-purpose systems.

General-Purpose Computer Systems
General-purpose systems are what people normally

think of as “computers.” These are the machines on
your desktop, the machines in the refrigerated server
room at work, and the laptop on the kitchen table.
They are designed to handle any and all tasks thrown
at them, and the software they run on a day-to-day
basis is radically different from machine to machine.

General-purpose systems are typically overbuilt.
By defi nition they are expected by the consumer to
run all possible software applications with accept-
able speed, and therefore, they are built to handle
the average case very well and the worst case at least
tolerably well. Were they optimized for any particu-
lar task, they could easily become less than optimal
for all dissimilar tasks. Therefore, general-purpose

systems are optimized for everything, which is another
way of saying that they are actually optimized for
nothing in particular. However, they make up for this
in raw performance, pure number-crunching. The
average notebook computer is capable of perform-
ing orders of magnitude more operations per sec-
ond than that required by a word processor or email
client, tasks to which the average notebook is fre-
quently relegated, but because the general-purpose
system may be expected to handle virtually anything
at any time, it must have signifi cant spare number-
crunching ability, just in case.

It stands to reason that the memory system of this
computer must also be designed in a Swiss-army-
knife fashion. Figure Ov.3 shows the organization of
a typical personal computer, with the components
of the memory system highlighted in grey boxes. The
cache levels are found both on-chip (i.e., integrated
on the same die as the microprocessor core) and
off-chip (i.e., on a separate die). The DRAM system
is comprised of a memory controller and a number
of DRAM chips organized into DIMMs (dual in-line
memory modules, printed circuit boards that contain
a handful of DRAMs each). The memory controller
can be located on-chip or off-chip, but the DRAMs
are always separate from the CPU to allow memory
upgrades. The disks in the system are considered
peripheral devices, and so their access is made
through one or more levels of controllers, each rep-
resenting a potential chip-to-chip crossing (e.g., here
a disk request passes through the system controller
to the PCI (peripheral component interconnect) bus
controller, to the SCSI (small computer system inter-
face) controller, and fi nally to the disk itself).

The software that runs on a general-purpose sys-
tem typically executes in the context of a robust
operating system, one that provides virtual memory.
Virtual memory is a mechanism whereby the operat-
ing system can provide to all running user-level soft-
ware (i.e., email clients, web browsers, spreadsheets,
word-processing packages, graphics and video edit-
ing software, etc.) the illusion that the user-level soft-
ware is in direct control of the computer, when in fact
its use of the computer’s resources is managed by the
operating system. This is a very effective way for an
operating system to provide simultaneous access by

chOv_P379751.indd Sec2:11chOv_P379751.indd Sec2:11 8/8/07 4:33:31 PM8/8/07 4:33:31 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

12 Memory Systems: Cache, DRAM, Disk

large numbers of software packages to small num-
bers of limited-use resources (e.g., physical memory,
the hard disk, the network, etc.).

The virtual memory system is the primary constit-
uent of the memory system, in that it is the primary
determinant of the manner/s in which the memory
system’s components are used by software run-
ning on the computer. Permanent data is stored on
the disk, and the operating store, DRAM, is used as
a cache for this permanent data. This DRAM-based
cache is explicitly managed by the operating system.
The operating system decides what data from the
disk should be kept, what should be discarded, what
should be sent back to the disk, and, for data retained,

where it should be placed in the DRAM system. The
primary and secondary caches are usually transpar-
ent to software, which means that they are managed
by hardware, not software (note, however, the use of
the word “usually”—later sections will delve into this
in more detail). In general, the primary and second-
ary caches hold demand-fetched data, i.e., running
software demands data, the hardware fetches it from
memory, and the caches retain as much of it as pos-
sible. The DRAM system contains data that the oper-
ating system deems worthy of keeping around, and
because fetching data from the disk and writing it
back to the disk are such time-consuming processes,
the operating system can exploit that lag time (during

CPU

Off-Chip
Cache

Sys & Mem
Controllers

DIMMs

CPU

North Bridge

Graphics
Co-Processor

On-Chip
Cache/s

I/O
Controller

South Bridge

Hard
Drive/s

Network
Interface

SCSI
Controller

Backside bus

Frontside bus
DRAM bus

AGP p2p

PCI bus

Other Low-BW
I/O Devices

Keyboard

Mouse

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

SCSI bus

FIGURE Ov.3: Typical PC organization. The memory subsystem is one part of a relatively complex whole. This fi gure illustrates a
two-way multiprocessor, with each processor having its own dedicated off-chip cache. The parts most relevant to this text are
shaded in grey: the CPU and its cache system, the system and memory controllers, the DIMMs and their component DRAMs, and
the hard drive/s.

chOv_P379751.indd Sec2:12chOv_P379751.indd Sec2:12 8/8/07 4:33:31 PM8/8/07 4:33:31 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 13

which it would otherwise be stalled, doing nothing)
to use sophisticated heuristics to decide what data to
retain.

Embedded Computer Systems
Embedded systems differ from general-purpose

systems in two main aspects. First and foremost,
the two are designed to suit very different purposes.
While general-purpose systems run a myriad of
unrelated software packages, each having poten-
tially very different performance requirements and
dynamic behavior compared to the rest, embed-
ded systems perform a single function their entire
lifetime and thus execute the same code day in and
day out until the system is discarded or a software
upgrade is performed. Second, while performance is
the primary (in many instances, the only) fi gure of
merit by which a general-purpose system is judged,
optimal embedded-system designs usually represent
trade-offs between several goals, including manufac-
turing cost (e.g., die area), energy consumption, and
performance.

As a result, we see two very different design strat-
egies in the two camps. As mentioned, general-
purpose systems are typically overbuilt; they are
optimized for nothing in particular and must make
up for this in raw performance. On the other hand,
embedded systems are expected to handle only one
task that is known at design time. Thus, it is not only
possible, but highly benefi cial to optimize an embed-
ded design for its one suited task. If general-purpose
systems are overbuilt, the goal for an embedded sys-
tem is to be appropriately built. In addition, because
effort spent at design time is amortized over the life
of a product, and because many embedded systems
have long lifetimes (tens of years), many embedded
design houses will expend signifi cant resources up
front to optimize a design, using techniques not gen-
erally used in general-purpose systems (for instance,
compiler optimizations that require many days or
weeks to perform).

The memory system of a typical embedded system
is less complex than that of a general-purpose sys-
tem.6 Figure Ov.4 illustrates an average digital signal-
processing system with dual tagless SRAMs on-chip,

6Note that “less complex” does not necessarily imply “small,” e.g., consider a typical iPod (or similar MP3 player), whose
primary function is to store gigabytes’ worth of a user’s music and/or image files.

DSP Processor

SRAM1

SRAM0

Device
Interfaces

DSP
Core

PROCESS ADDRESS SPACE

0

MAX

SRAM0

SRAM1

I/O DevicesI/O and/or Mem
Controllers

Prog. RO
Chip/sM

DRAM bus

DRAM

DRAM

DRAM

DRAM

Individual
DRAM
Chip/s
(not a DIMM)

I/O to External World

ROM
Instr

Cache

External (DRAM)

ROM

FIGURE Ov.4: DSP-style memory system. Example based on Texas Instruments’ TMS320C3x DSP family.

chOv_P379751.indd Sec2:13chOv_P379751.indd Sec2:13 8/8/07 4:33:31 PM8/8/07 4:33:31 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

14 Memory Systems: Cache, DRAM, Disk

an off-chip programmable ROM (e.g., PROM, EPROM,
fl ash ROM, etc.) that holds the executable image, and
an off-chip DRAM that is used for computation and
holding variable data. External memory and device
controllers can be used, but many embedded micro-
processors already have such controllers integrated
onto the CPU die. This cuts down on the system’s die
count and thus cost. Note that it would be possible
for the entire hierarchy to lie on the CPU die, yielding
a single-chip solution called a system-on-chip. This
is relatively common for systems that have limited
memory requirements. Many DSPs and microcon-
trollers have programmable ROM embedded within
them. Larger systems that require megabytes of stor-
age (e.g., in Cisco routers, the instruction code alone
is more than a 12 MB) will have increasing numbers
of memory chips in the system.

On the right side of Figure Ov.4 is the software’s
view of the memory system. The primary distinction
is that, unlike general-purpose systems, is that the
SRAM caches are visible as separately addressable
memories, whereas they are transparent to software
in general-purpose systems.

Memory, whether SRAM or DRAM, usually rep-
resents one of the more costly components in an
embedded system, especially if the memory is
located on-CPU because once the CPU is fabricated,
the memory size cannot be increased. In nearly all
system-on-chip designs and many microcontrollers
as well, memory accounts for the lion’s share of avail-
able die area. Moreover, memory is one of the pri-
mary consumers of energy in a system, both on-CPU
and off-CPU. As an example, it has been shown that,
in many digital signal-processing applications, the
memory system consumes more of both energy and
die area than the processor datapath. Clearly, this is
a resource on which signifi cant time and energy is
spent performing optimization.

Ov.2 Four Anecdotes on Modular Design
It is our observation that computer-system design

in general, and memory-hierarchy design in par-
ticular, has reached a point at which it is no lon-
ger suffi cient to design and optimize subsystems

in isolation. Because memory systems and their
subsystems are so complex, it is now the rule, and not
the exception, that the subsystems we thought to be
independent actually interact in unanticipated ways.
Consequently, our traditional design methodologies
no longer work because their underlying assump-
tions no longer hold. Modular design, one of the
most widely adopted design methodologies, is an oft-
praised engineering design principle in which clean
functional interfaces separate subsystems (i.e., mod-
ules) so that subsystem design and optimization can
be performed independently and in parallel by dif-
ferent designers. Applying the principles of modular
design to produce a complex product can reduce the
time and thus the cost for system-level design, inte-
gration, and test; optimization at the modular level
guarantees optimization at the system level, provided
that the system-level architecture and resulting mod-
ule-to-module interfaces are optimal.

That last part is the sticking point: the principle
of modular design assumes no interaction between
module-level implementations and the choice of
system-level architecture, but that is exactly the kind
of interaction that we have observed in the design
of modern, high-performance memory systems.
Consequently, though modular design has been
a staple of memory-systems design for decades,
allowing cache designers to focus solely on caches,
DRAM designers to focus solely on DRAMs, and disk
designers to focus solely on disks, we fi nd that, going
forward, modular design is no longer an appropriate
methodology.

Earlier we noted that, in the design of memory
systems, many of the underlying implementation
issues have begun to affect the higher level design
process quite signifi cantly: cache design is driven
by interconnect physics; DRAM design is driven by
circuit-level limitations that have dramatic sys-
tem-level effects; and modern disk performance is
dominated by the on-board caching and scheduling
policies. As hierarchies and their components grow
more complex, we fi nd that the bulk of performance
is lost not in the CPUs or caches or DRAM devices or
disk assemblies themselves, but in the subtle interac-
tions between these subsystems and in the manner in
which these subsystems are connected. The bulk of lost

chOv_P379751.indd Sec2:14chOv_P379751.indd Sec2:14 8/8/07 4:33:32 PM8/8/07 4:33:32 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 15

performance is due to poor confi guration of system-
level parameters such as bus widths, granularity of
access, scheduling policies, queue organizations, and
so forth.

This is extremely important, so it bears repeat-
ing: the bulk of lost performance is not due to the
number of CPU pipeline stages or functional units or
choice of branch prediction algorithm or even CPU
clock speed; the bulk of lost performance is due to
poor confi guration of system-level parameters such
as bus widths, granularity of access, scheduling poli-
cies, queue organizations, etc. Today’s computer-
system performance is dominated by the manner in
which data is moved between subsystems, i.e., the
scheduling of transactions, and so it is not surprising
that seemingly insignifi cant details can cause such a
headache, as scheduling is known to be highly sensi-
tive to such details.

Consequently, one can no longer attempt system-
level optimization by designing/optimizing each of
the parts in isolation (which, unfortunately, is often
the approach taken in modern computer design). In
subsystem design, nothing can be considered “out-
side the scope” and thus ignored. Memory-system
design must become the purview of architects, and
a subsystem designer must consider the system-level
ramifi cations of even the slightest low-level design
decision or modifi cation. In addition, a designer must
understand the low-level implications of system-
level design choices. A simpler form of this maxim is
as follows:

A designer must consider the system-level
ramifi cations of circuit- and device-level
decisions as well as the circuit- and device-
level ramifi cations of system-level decisions.

To illustrate what we mean and to motivate our
point, we present several anecdotes. Though they
focus on the DRAM system, their message is global,
and we will show over the course of the book that the
relationships they uncover are certainly not restricted
to the DRAM system alone. We will return to these
anecdotes and discuss them in much more detail
in Chapter 27, The Case for Holistic Design, which
follows the technical section of the book.

Ov.2.1 Anecdote I: Systemic Behaviors Exist
In 1999–2001, we performed a study of DRAM

systems in which we explicitly studied only system-
level effects—those that had nothing to do with the
CPU architecture, DRAM architecture, or even DRAM
interface protocol. In this study, we held constant the
CPU and DRAM architectures and considered only a
handful of parameters that would affect how well the
two communicate with each other. Figure Ov.5 shows
some of the results [Cuppu & Jacob 1999, 2001, Jacob
2003]. The varied parameters in Figure Ov.5 are all
seemingly innocuous parameters, certainly not the
type that would account for up to 20% differences in
system performance (execution time) if one param-
eter was increased or decreased by a small amount,
which is indeed the case. Moreover, considering the
top two graphs, all of the choices represent intui-
tively “good” confi gurations. None of the displayed
values represent strawmen, machine confi gurations
that one would avoid putting on one’s own desktop.
Nonetheless, the performance variability is signifi -
cant. When the analysis considers a wider range of
bus speeds and burst lengths, the problematic behav-
ior increases. As shown in the bottom graph, the ratio
of best to worst execution times can be a factor of
three, and the local optima are both more frequent
and more exaggerated. Systems with relatively low
bandwidth (e.g., 100, 200, 400 MB/s) and relatively
slow bus speeds (e.g., 100, 200 MHz), if confi gured
well, can match or exceed the performance of sys-
tem confi gurations with much faster hardware that is
poorly confi gured.

Intuitively, one would expect the design space to
be relatively smooth: as system bandwidth increases,
so should system performance. Yet the design space
is far from smooth. Performance variations of 20% or
more can be found in design points that are imme-
diately adjacent to one another. The variations from
best-performing to worst-performing design exceed a
factor of three across the full space studied, and local
minima and maxima abound. Moreover, the behav-
iors are related. Increasing one parameter by a fac-
tor of two toward higher expected performance (e.g.,
increasing the channel width) can move the system off
a local optimum, but local optimality can be restored
by changing other related parameters to follow suit,

chOv_P379751.indd Sec2:15chOv_P379751.indd Sec2:15 8/8/07 4:33:32 PM8/8/07 4:33:32 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

16 Memory Systems: Cache, DRAM, Disk

such as increasing the burst length and cache block
size to match the new channel width. This complex
interaction between parameters previously thought
to be independent arises because of the complexity

of the system under study, and so we have named
these “systemic” behaviors.7 This study represents
the moment we realized that systemic behaviors exist
and that they are signifi cant. Note that the behavior

12.8 25.6
0

1

2

3

GCC

64-Byte Burst
32-Byte Burst

128-Byte Burst

0.8 1.6 3.2 6.4

System Bandwidth

)I
P

C(noitcurtsnI rep selcy
C

(GB/s = Channels * Width * 800Mbps)

setyb 4 x nahc 1

setyb 2 x nahc 2

etyb 1 x nahc 4

setyb 8 x nahc 1

setyb 4 x nahc 2

setyb 2 x nahc 4

setyb 8 x nahc 2

setyb 4 x nahc 4

setyb 8 x nahc 4

setyb 2 x nahc 1

etyb 1 x nahc 2

etyb 1 x nahc 1

0

1

2

BZIP

)I
P

C(noitcur tsnI rep selcy
C

12.8 25.60.8 1.6 3.2 6.4

System Bandwidth
(GB/s = Channels * Width * 800Mbps)

setyb 4 x nahc 1

setyb 2 x nahc 2

etyb 1 x nahc 4

setyb 8 x nahc 1

setyb 4 x nahc 2

setyb 2 x nahc 4

setyb 8 x nahc 2

setyb 4 x nahc 4

setyb 8 x nahc 4

setyb 2 x nahc 1

etyb 1 x nahc 2

etyb 1 x nahc 1

DRAM Latency
System Overhead + DRAM

CPU + DRAM
CPU Execution

0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6

System Bandwidth (GB/s = Channels * Width * Speed)

0

0.5

1

1.5

)I
P

C(noitcurtsnI r ep s elcy
C

PERL

zhM 001 x tib-8 x 1

zhM 001 x tib-61 x 1

zhM 001 x tib-8 x 2

zhM 002 x tib-8 x 1

zhM 001 x tib-23 x 1

zhM 001 x tib-61 x 2

zhM 001 x tib-8 x 4

zhM 002 x tib-61 x 1

zhM 002 x tib-8 x 2

zhM 004 x tib-8 x 1

zhM 002 x tib-23 x 1

zhM 002 x tib-61 x 2

zhM 002 x tib-8 x 4

zhM 004 x tib-61 x 1

zhM 004 x tib-8 x 2

zhM 008 x tib-8 x 1

zhM 001 x tib-46 x 1

zhM 001 x tib-23 x 2

zhM 001 x tib-61 x 4

zhM 004 x tib-23 x 1

zhM 004 x tib-61 x 2

zhM 004 x tib-8 x 4

zhM 008 x tib-61 x 1

zhM 008 x tib-8 x 2

zhM 002 x tib-46 x 1

zhM 002 x tib-23 x 2

zhM 002 x tib-61 x 4

zhM 001 x tib-46 x 2

zhM 001 x tib-23 x 4

zhM 008 x tib-23 x 1

zhM 008 x tib-61 x 2

zhM 008 x tib-8 x 4

zhM 004 x tib-46 x 1

zhM 004 x tib-23 x 2

zhM 004 x tib-61 x 4
zhM 002 x tib-46 x 2

zhM 002 x tib-23 x 4

zhM 001 x tib-46 x 4

zhM 008 x tib-46 x 1

zhM 008 x tib-23 x 2

zhM 008 x tib-61 x 4

zhM 004 x tib-46 x 2

zhM 004 x tib-23 x 4

zhM 002 x tib-46 x 4

zhM 008 x tib-46 x 2

zhM 008 x tib-23 x 4

zhM 004 x tib-46 x 4

zh
M 008 x tib-46 x 4

(4 banks per channel)

(2 banks/channel) (2 banks/channel)

8 16 32 64 128
Burst Width

FIGURE Ov.5: Execution time as a function of bandwidth, channel organization, and granularity of access. Top two graphs from
Cuppu & Jacob [2001] (© 2001 IEEE); bottom graph from Jacob [2003] (© 2003 IEEE).

7There is a distinction between this type of behavior and what in complex system theory is called “emergent system”
behaviors or properties. Emergent system behaviors are those of individuals within a complex system, behaviors that
an individual may perform in a group setting that the individual would never perform alone. In our environment, the
 behaviors are observations we have made of the design space, which is derived from the system as a whole.

chOv_P379751.indd Sec2:16chOv_P379751.indd Sec2:16 8/8/07 4:33:32 PM8/8/07 4:33:32 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 17

is not restricted to the DRAM system. We have seen
it in the disk system as well, where the variations in
performance from one confi guration to the next are
even more pronounced.

Recall that this behavior comes from the varying
of parameters that are seemingly unimportant in the
grand scheme of things—at least they would certainly
seem to be far less important than, say, the cache
architecture or the number of functional units in the
processor core. The bottom line, as we have observed,
is that systemic behaviors—unanticipated interac-
tions between seemingly innocuous parameters
and mechanisms—cause signifi cant losses in per-
formance, requiring in-depth, detailed design-space
exploration to achieve anything close to an optimal
design given a set of technologies and limitations.

Ov.2.2 Anecdote II: The DLL in DDR SDRAM
Beginning with their fi rst generation, DDR (double

data rate) SDRAM devices have included a circuit-level
mechanism that has generated signifi cant contro-
versy within JEDEC (Joint Electron Device Engineer-
ing Council), the industry consortium that created
the DDR SDRAM standard. The mechanism is a delay-
locked loop (DLL), whose purpose is to more precisely

align the output of the DDR part with the clock on the
system bus. The controversy stems from the cost of the
technology versus its benefi ts.

The system’s global clock signal, as it enters the
chip, is delayed by the DLL so that the chip’s inter-
nal clock signal, after amplifi cation and distribution
across the chip, is exactly in-phase with the origi-
nal system clock signal. This more precisely aligns
the DRAM part’s output with the system clock. The
trade-off is extra latency in the datapath as well as
a higher power and heat dissipation because the
DLL, a dynamic control mechanism, is continuously
running. By aligning each DRAM part in a DIMM
to the system clock, each DRAM part is effectively
de-skewed with respect to the other parts, and the
DLLs cancel out timing differences due to process
variations and thermal gradients.

Figure Ov.6 illustrates a small handful of alterna-
tive solutions considered by JEDEC, who ultimately
chose Figure Ov.6(b) for the standard. The interest-
ing thing is that the data strobe is not used to cap-
ture data at the memory controller, bringing into
question its purpose if the DLL is being used to help
with data transfer to the memory controller. There is
signifi cant disagreement over the value of the cho-
sen design; an anonymous JEDEC member, when

strobe

DATA DATA

strobe
MC D MC D

DATA

strobe
MC

RCLK

DATA
MC D

DATA

strobe
MC D

DATA

strobe
MC D

DLL D

DLL DLL V

V DLL V

V

(a) Unassisted

(b) DLL on DRAM (d) DLL on MC

(c) DLL on module
(e) Read clock

(f) Static delay w/ recalibration

DIMM

FIGURE Ov.6: Several alternatives to the per-DRAM DLL. The fi gure illustrates a half dozen different timing conventions (a dotted
line indicates a signal is unused for capturing data): (a) the scheme in single data rate SDRAM; (b) the scheme chosen for DDR
SDRAM; (c) moving the DLL onto the module, with a per-DRAM static delay element (Vernier); (d) moving the DLL onto the memory
controller, with a per-DRAM static delay; (e) using a separate read clock per DRAM or per DIMM; and (f) using only a static delay
element and recalibrating periodically to address dynamic changes.

chOv_P379751.indd Sec2:17chOv_P379751.indd Sec2:17 8/8/07 4:33:33 PM8/8/07 4:33:33 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

18 Memory Systems: Cache, DRAM, Disk

asked “what is the DLL doing on the DDR chip?”
answered with a grin, “burning power.” In applica-
tions that require low latency and low power dissipa-
tion, designers turn off the DLL entirely and use only
the data strobe for data capture, ignoring the system
clock (as in Figure Ov.6(a)) [Kellogg 2002, Lee 2002,
Rhoden 2002].

The argument for the DLL is that it de-skews
the DRAM devices on a DIMM and provides a path
for system design that can use a global clocking
scheme, one of the simplest system designs known.
The argument against the DLL is that it would be
unnecessary if a designer learned to use the data
strobe—this would require a more sophisticated
system design, but it would achieve better perfor-
mance at a lower cost. At the very least, it is clear
that a DLL is a circuit-oriented solution to the prob-
lem of system-level skew, which could explain the
controversy.

Ov.2.3 Anecdote III: A Catch-22 in the Search
for Bandwidth

With every DRAM generation, timing parameters
are added. Several have been added to the DDR spec-
ifi cation to address the issues of power dissipation
and synchronization.

tFAW (Four-bank Activation Window) and
tRRD (Row-to-Row activation Delay) put a
ceiling on the maximum current draw of a
single DRAM part. These are protocol-level
limitations whose values are chosen to pre-
vent a memory controller from exceeding
circuit-related thresholds.
tDQS is our own name for the DDR system-
bus turnaround time; one can think of it as
the DIMM-to-DIMM switching time that
has implications only at the system level
(i.e., it has no meaning or effect if consid-
ering read requests in a system with but a
single DIMM). By obeying tDQS , one can
ensure that a second DIMM will not drive

•

•

the data bus at the same time as a fi rst when
switching from one DIMM to another for
data output.

These are per-device timing parameters that were
chosen to improve the behavior (current draw, timing
uncertainty) of individual devices. However, they do
so at the expense of a signifi cant loss in system-level
performance. When reading large amounts of data
from the DRAM system, an application will have to
read, and thus will have to activate, numerous DRAM
rows. At this point, the tFAW and tRRD timing param-
eters kick in and limit the available read bandwidth.
The tRRD parameter specifi es the minimum time
between two successive row activation commands
to the same DRAM device (which implies the same
DIMM, because all the DRAMs on a DIMM are slaved
together8). The tFAW parameter represents a slid-
ing window of time during which no more than four
row activation commands to the same device may
appear.

The parameters are specifi ed in nanoseconds and
not bus cycles, so they become increasingly problem-
atic at higher bus frequencies. Their net effect is to
limit the bandwidth available from a DIMM by limit-
ing how quickly one can get the data out of the DRAM’s
storage array, irrespective of how fast the DRAM’s I/O
circuitry can ship the data back to the memory con-
troller. At around 1 GBps, sustainable bandwidth hits
a ceiling and remains fl at no matter how fast the bus
runs because the memory controller is limited in how
quickly it can activate a new row and start reading
data from it.

The obvious solution is to interleave data from
different DIMMs on the bus. If one DIMM is limited
in how quickly it can read data from its arrays, then
one should populate the bus with many DIMMs and
move through them in a round-robin fashion. This
should bring the system bandwidth up to maximum.
 However, the function of tDQS is to prevent exactly
that: tDQS is the bus turnaround time, inserted to
account for skew on the bus and to prevent different
bus masters from driving the bus at the same time.

8This is a minor oversimplifi cation. We would like to avoid having to explain details of DRAM-system organization, such as
the concept of rank, at this point.

chOv_P379751.indd Sec2:18chOv_P379751.indd Sec2:18 8/8/07 4:33:34 PM8/8/07 4:33:34 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 19

To avoid such collisions, a second DIMM must wait
at least tDQS after a fi rst DIMM has fi nished before
 driving the bus. So we have a catch:

One set of parameters limits device-level
bandwidth and expects a designer to go to
the system level to reclaim performance.
The other parameter limits system-level
bandwidth and expects a designer to go to
the device level to reclaim performance.

The good news is that the problem is solvable
(see Chapter 15, Section 15.4.3, DRAM Command
Scheduling Algorithms), but this is nonetheless a
very good example of low-level design decisions that
create headaches at the system level.

Ov.2.4 Anecdote IV: Proposals to Exploit
Variability in Cell Leakage

The last anecdote is an example of a system-level
design decision that ignores circuit- and device-level
implications. Ever since DRAM was invented, it has
been observed that different DRAM cells exhibit dif-
ferent data-retention time characteristics, typically
ranging between hundreds of milliseconds to tens
of seconds. DRAM manufacturers typically set the
refresh requirement conservatively and require that
every row in a DRAM device be refreshed at least once
every 64 or 32 ms to avoid losing data. Though refresh
might not seem to be a signifi cant concern, in mobile
devices researchers have observed that refresh can
account for one-third of the power in otherwise
idle systems, prompting action to address the issue.
Several recent papers propose moving the refresh
function into the memory controller and refreshing
each row only when needed. During an initialization
phase, the controller would characterize each row
in the memory system, measuring DRAM data-
retention time on a row-by-row basis, discarding
leaky rows entirely, limiting its DRAM use to only
those rows deemed non-leaky, and refreshing once
every tens of seconds instead of once every tens of
milliseconds.

The problem is that these proposals ignore
another, less well-known phenomenon of DRAM cell

•

•

variability, namely that a cell with a long retention
time can suddenly (in the time frame of seconds)
exhibit a short retention time [Yaney et al. 1987,
Restle et al. 1992, Ueno et al. 1998, Kim 2004]. Such
an effect would render these power-effi cient pro-
posals functionally erroneous. The phenomenon is
called variable retention time (VRT), and though its
occurrence is infrequent, it is non-zero. The occur-
rence rate is low enough that a system using one of
these reduced-refresh proposals could protect itself
against VRT by using error correcting codes (ECC,
described in detail in Chapter 30, Memory Errors and
Error Correction), but none of the proposals so far
discuss VRT or ECC.

Ov.2.5 Perspective
To summarize so far:

Anecdote I: Systemic behaviors exist and are sig-
nifi cant (they can be responsible for factors of two to
three in execution time).

Anecdote II: The DLL in DDR SDRAM is a circuit-
level solution chosen to address system-level skew.

Anecdote III: tDQS represents a circuit-level solu-
tion chosen to address system-level skew in DDR
SDRAM; tFAW and tRRD are circuit-level limitations
that signifi cantly limit system-level performance.

Anecdote IV: Several research groups have rec-
ently proposed system-level solutions to the DRAM-
refresh problem, but fail to account for circuit-level
details that might compromise the correctness of the
 resulting system.

Anecdotes II and III show that a common practice
in industry is to focus at the level of devices and cir-
cuits, in some cases ignoring their system-level rami-
fi cations. Anecdote IV shows that a common practice
in research is to design systems that have device- and
circuit-level ramifi cations while abstracting away the
details of the devices and circuits involved. Anecdote I

chOv_P379751.indd Sec2:19chOv_P379751.indd Sec2:19 8/8/07 4:33:34 PM8/8/07 4:33:34 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

20 Memory Systems: Cache, DRAM, Disk

illustrates that both approaches are doomed to failure
in future memory-systems design.

It is clear that in the future we will have to move
away from modular design; one can no longer
safely abstract away details that were previously
considered “out of scope.” To produce a credible
analysis, a designer must consider many different
subsystems of a design and many different levels
of abstraction—one must consider the forest when
designing trees and consider the trees when design-
ing the forest.

Ov.3 Cross-Cutting Issues
Though their implementation details might apply

at a local level, most design decisions must be con-
sidered in terms of their system-level effects and
side-effects before they become part of the system/
hierarchy. For instance, power is a cross-cutting,
system-level phenomenon, even though most power
optimizations are specifi c to certain technologies and
are applied locally; reliability is a system-level issue,
even though each level of the hierarchy implements
its own techniques for improving it; and, as we have
shown, performance optimizations such as widening
a bus or increasing support for concurrency rarely
result in system performance that is globally optimal.
Moreover, design decisions that locally optimize along
one axis (e.g., power) can have even larger effects on
the system level when all axes are considered. Not
only can the global power dissipation be thrown off
optimality by blindly making a local decision, it is
even easier to throw the system off a global optimum
when more than one axis is considered (e.g., power/
performance).

Designing the best system given a set of con-
straints requires an approach that considers multiple
axes simultaneously and measures the system-level
effects of all design choices. Such a holistic approach
requires an understanding of many issues, includ-
ing cost and performance models, power, reliabil-
ity, and software structure. The following sections
provide overviews of these cross-cutting issues, and
Part IV of the book will treat these topics in more
detail.

Ov.3.1 Cost/Performance Analysis
To perform a cost/performance analysis correctly,

the designer must defi ne the problem correctly, use
the appropriate tools for analysis, and apply those
tools in the manner for which they were designed.
This section provides a brief, intuitive look at the
problem. Herein, we will use cost as an example of
problem defi nition, Pareto optimality as an example
of an appropriate tool, and sampled averages as an
example to illustrate correct tool usage. We will dis-
cuss these issues in more detail with more examples
in Chapter 28, Analysis of Cost and Performance.

Problem Defi nition: Cost
A designer must think in an all-inclusive manner

when accounting for cost. For example, consider a
cost-performance analysis of a DRAM system wherein
performance is measured in sustainable bandwidth
and cost is measured in pin count.

To represent the cost correctly, the analysis
should consider all pins, including those for con-
trol, power, ground, address, and data. Otherwise,
the resulting analysis can incorrectly portray the
design space, and workable solutions can get left
out of the analysis. For example, a designer can
reduce latency in some cases by increasing the
number of address and command pins, but if the
cost analysis only considers data pins, then these
optimizations would be cost-free. Consider DRAM
addressing, which is done half of an address at a
time. A 32-bit physical address is sent to the DRAM
system 16 bits at a time in two different commands;
one could potentially decrease DRAM latency by
using an SRAM-like wide address bus and sending
the entire 32 bits at once. This represents a real cost
in design and manufacturing that would be higher,
but an analysis that accounts only for data pins
would not consider it as such.

Power and ground pins must also be counted
in a cost analysis for similar reasons. High-speed
chip-to-chip interfaces typically require more
power and ground pins than slower interfaces. The
extra power and ground signals help to isolate the
I/O drivers from each other and the signal lines

chOv_P379751.indd Sec2:20chOv_P379751.indd Sec2:20 8/8/07 4:33:34 PM8/8/07 4:33:34 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 21

from each other, both improving signal integrity
by reducing crosstalk, ground bounce, and related
effects. I/O systems with higher switching speeds
would have an unfair advantage over those with
lower switching speeds (and thus fewer power/
ground pins) in a cost-performance analysis if
power and ground pins were to be excluded from
the analysis. The inclusion of these pins would pro-
vide for an effective and easily quantifi ed trade-off
between cost and bandwidth.

Failure to include address, control, power, and
ground pins in an analysis, meaning failure to be all-
inclusive at the conceptual stages of design, would
tend to blind a designer to possibilities. For example,
an architecturally related family of solutions that at
fi rst glance gives up total system bandwidth so as to
be more cost-effective might be thrown out at the
conceptual stages for its intuitively lower perfor-
mance. However, considering all sources of cost in the
analysis would allow a designer to look more closely
at this family and possibly to recover lost bandwidth
through the addition of pins.

Comparing SDRAM and Rambus system archi-
tectures provides an excellent example of consid-

ering cost as the total number of pins leading to a
 continuum of designs. The Rambus memory sys-
tem is a narrow-channel architecture, compared
to SDRAM’s wide-channel architecture, pictured
in Figure Ov.7 Rambus uses fewer address and
command pins than SDRAM and thus incurs an
additional latency at the command level. Rambus
also uses fewer data pins and occurs an additional
latency when transmitting data as well. The trade-off
is the ability to run the bus at a much higher bus fre-
quency, or pin-bandwidth in bits per second per pin,
than SDRAM. The longer channel of the DRDRAM
(direct Rambus DRAM) memory system contributes
directly to longer read-command latencies and lon-
ger bus turnaround times. However, the longer chan-
nel also allows for more devices to be connected to
the memory system and reduces the likelihood that
consecutive commands access the same device. The
width and depth of the memory channels impact
the bandwidth, latency, pin count, and various cost
components of the respective memory systems. The
effect that these organizational differences have on
the DRAM access protocol is shown in Figure Ov.8
which illustrates a row activation and column read

16

16

16

16

64

DIMM 0
DIMM 1

RIMM 0 RIMM 1

SDRAM and
DDR SDRAM
Memory System
Topology

DRDRAM Memory System Topology

y ro
me

M
rel lortno

C

 yro
me

M
rellortno

C

Long and Narrow Channel

Short and Wide Channel

16

FIGURE Ov.7: Difference in topology between SDRAM and Rambus memory systems.

chOv_P379751.indd Sec2:21chOv_P379751.indd Sec2:21 8/8/07 4:33:34 PM8/8/07 4:33:34 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

22 Memory Systems: Cache, DRAM, Disk

command for both DDR SDRAM and Direct Rambus
DRAM.

Contemporary SDRAM and DDR SDRAM memory
chips operating at a frequency of 200 MHz can activate a
row in 3 clock cycles. Once the row is activated, memory
controllers in SDRAM or DDR SDRAM memory systems
can retrieve data using a simple column address strobe
command with a latency of 2 or 3 clock cycles. In Figure
Ov.8(a), Step 1 shows the assertion of a row activation
command, and Step 2 shows the assertion of the column
address strobe signal. Step 3 shows the relative timing
of a high-performance DDR SDRAM memory module
with a CASL (CAS latency) of 2 cycles. For a fair compar-
ison against the DRDRAM memory system, we include
the bus cycle that the memory controller uses to assert
the load command to the memory chips. With this addi-
tional cycle included, a DDR SDRAM memory system
has a read latency of 6 clock cycles (to critical data). In a
SDRAM or DDR SDRAM memory system that operates
at 200 MHz, 6 clock cycles translate to 30 ns of latency for
a memory load command with row activation latency

inclusive. These latency values are the same for high-
performance SDRAM and DDR SDRAM memory
 systems.

The DRDRAM memory system behaves very
 differently from SDRAM and DDR SDRAM memory sys-
tems. Figure Ov.8(b) shows a row activation command in
Step 1, followed by a column access command in Step 2.
The requested data is then returned by the memory
chip to the memory controller in Step 3. The row acti-
vation command in Step 1 is transmitted by the mem-
ory controller to the memory chip in a packet format
that spans 4 clock cycles. The minimum delay between
the row activation and column access is 7 clock cycles,
and, after an additional (also minimum) CAS (column
address strobe) latency of 8 clock cycles, the DRDRAM
chip begins to transmit the data to the memory control-
ler. One caveat to the computation of the access latency
in the DRDRAM memory system is that CAS delay in the
DRDRAM memory system is a function of the number
of devices on a single DRDRAM memory channel. On a
DRDRAM memory system with a full load of 32 devices

Bus Clock
0 1 2 3 4 5 6 7 98

3

1 2Command Bus

Data Bus

1
2
3

Activation command asserted to DRAM chip

Column Address Strobe asserted
lowest latency CASL 2

row activation
latency

CASL = 2

overall load request latency (activation)

Bus Clock

Row Command

(RAS to CAS
delay)

Col Command

Data Bus

tRCDrow activation
command

1

2

3

tCAC
(CAS access

delay)

data packet

1
2
3

Activation command asserted to DRAM chip
Column Access command sent to DRAM chip
Data packet returned by DRAM chips

(a) SDRAM and DDR SDRAM

(b) Direct Rambus DRAM

FIGURE Ov.8: Memory access latency in SDRAM and DDR SDRAM memory systems (top) and DRDRAM (bottom).

chOv_P379751.indd Sec2:22chOv_P379751.indd Sec2:22 8/8/07 4:33:35 PM8/8/07 4:33:35 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 23

on the data bus, the CAS-latency delay may be as large
as 12 clock cycles. Finally, it takes 4 clock cycles for the
DRDRAM memory system to transport the data packet.
Note that we add half the transmission time of the data
packet in the computation of the latency of a memory
request in a DRDRAM memory system due to the fact
that the DRDRAM memory system does not support
critical word forwarding, and the critically requested
data may exist in the latter parts of the data packet;
on average, it will be somewhere in the middle. This
yields a total latency of 21 cycles, which, in a DRDRAM
memory system operating at 600 MHz, translates to a
latency of 35 ns.

The Rambus memory system trades off a longer
latency for fewer pins and higher pin bandwidth (in
this example, three times higher bandwidth). How do
the systems compare in performance?

Peak bandwidth of any interface depends solely
on the channel width and the operating frequency
of the channel. In Table Ov.2, we summarize the sta-
tistics of the interconnects and compute the peak
bandwidths of the memory systems at the interface

of the memory controller and at the interface of the
memory chips as well.

Table Ov.3 compares a 133-MHz SDRAM, a 200-
MHz DDR SDRAM system, and a 600-MHz DRDRAM
system. The 133-MHz SDRAM system, as represented
by a PC-133 compliant SDRAM memory system on
an AMD Athlon-based computer system, has a the-
oretical peak bandwidth of 1064 MB/s. The maxi-
mum sustained bandwidth for the single channel of
SDRAM, as measured by the use of the add kernel
in the STREAM benchmark, reaches 540 MB/s. The
maximum sustained bandwidth for DDR SDRAM
and DRDRAM was also measured on STREAM, yield-
ing 1496 and 1499 MB/s, respectively. The pin cost of
each system is factored in, yielding bandwidth per
pin on both a per-cycle basis and a per-nanosecond
basis.

Appropriate Tools: Pareto Optimality
It is convenient to represent the “goodness” of a

design solution, a particular system confi guration,

TABLE OV.2 Peak bandwidth statistics of SDRAM, DDR SDRAM, and DRDRAM memory systems

Operating
Frequency
(Data)

Data
Channel
Pin Count

Data
Channel
Bandwidth

Control
Channel
Pin Count

Command
Channel
Bandwidth

Address
Channel
Pin Count

Address
Channel
Bandwidth

SDRAM controller 133 64 1064 MB/s 28 465 MB/s 30 500 MB/s

DDR SDRAM controller 2 * 200 64 3200 MB/s 42 1050 MB/s 30 750 MB/s

DRDRAM controller 2 * 600 16 2400 MB/s 9 1350 MB/s 8 1200 MB/s

x16 SDRAM chip 133 16 256 MB/s 9 150 MB/s 15 250 MB/s

x16 DDR SDRAM chip 2 *200 16 800 MB/s 11 275 MB/s 15 375 MB/s

TABLE OV.3 Cross-comparison of SDRAM, DDR SDRAM, and DRDRAM memory systems

DRAM
Technology

Operating
Frequency
(Data Bus)

Pin Count
per Channel

Peak Band-
width

Sustained
BW on
StreamAdd

Bits per
Pin per
Cycle
(Peak)

Bits per Pin
per Cycle
(Sustained)

SDRAM 133 152 1064 MB/s 540 MB/s 0.4211 0.2139

DDR SDRAM 2 * 200 171 3200 MB/s 1496 MB/s 0.3743 0.1750

DRDRAm 2 * 600 117 2400 MB/s 1499 MB/s 0.1368 0.0854

chOv_P379751.indd Sec2:23chOv_P379751.indd Sec2:23 8/8/07 4:33:35 PM8/8/07 4:33:35 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

24 Memory Systems: Cache, DRAM, Disk

as a single number so that one can readily compare
the number with the goodness ratings of other can-
didate design solutions and thereby quickly fi nd the
“best” system confi guration. However, in the design
of memory systems, we are inherently dealing with
a multi-dimensional design space (e.g., one that
encompasses performance, energy consumption,
cost, etc.), and so using a single number to represent
a solution’s worth is not really appropriate, unless
we can assign exact weights to the various fi gures
of merit (which is dangerous and will be discussed
in more detail later) or we care about one aspect to
the exclusion of all others (e.g., performance at any
cost).

Assuming that we do not have exact weights for the
fi gures of merit and that we do care about more than
one aspect of the system, a very powerful tool to aid
in system analysis is the concept of Pareto optimality
or Pareto effi ciency, named after the Italian economist
Vilfredo Pareto, who invented it in the early 1900s.

Pareto optimality asserts that one candidate solution
to a problem is better than another candidate solution
only if the fi rst dominates the second, i.e., if the fi rst is
better than or equal to the second in all fi gures of merit.
If one solution has a better value in one dimension but
a worse value in another, then the two candidates are
Pareto equivalent. The best solution is actually a set

Execution time

Cost

Execution time

Cost

Execution time

Cost

A

B

C

D

Execution time

Cost

(a) a set of data points (b) the Pareto-optimal wavefront

(c) the addition of four new points to set (d) the new Pareto-optimal wavefront

A

B

C

D

FIGURE Ov.9: Pareto optimality. Members of the Pareto-optimal set are shown in solid black; non-optimal points are grey.

chOv_P379751.indd Sec2:24chOv_P379751.indd Sec2:24 8/8/07 4:33:36 PM8/8/07 4:33:36 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 25

of candidate solutions: the set of Pareto-equivalent
solutions that is not dominated by any solution.

Figure Ov.9(a) shows a set of candidate solutions
in a two-dimensional space that represent a cost/
performance metric. The x-axis represents system
performance in execution time (smaller numbers
are better), and the y-axis represents system cost in
dollars (smaller numbers are better). Figure Ov.9(b)
shows the Pareto-optimal set in solid black and
connected by a line; non-optimal data points are
shown in grey. The Pareto-optimal set forms a wave-
front that approaches both axes simultaneously.
Figures Ov.9(c) and (d) show the effect of adding four
new candidate solutions to the space: one lies inside
the wavefront, one lies on the wavefront, and two lie
outside the wavefront. The fi rst two new additions,
A and B, are both dominated by at least one member
of the Pareto-optimal set, and so neither is considered
Pareto optimal. Even though B lies on the wavefront,
it is not considered Pareto optimal. The point to the
left of B has better performance than B at equal cost.
Thus, it dominates B.

Point C is not dominated by any member of the
Pareto-optimal set, nor does it dominate any mem-
ber of the Pareto-optimal set. Thus, candidate-
solution C is added to the optimal set, and its addition
changes the shape of the wavefront slightly. The last
of the additional points, D, is dominated by no mem-
bers of the optimal set, but it does dominate several
members of the optimal set, so D’s inclusion in the
optimal set excludes those dominated members from
the set. As a result, candidate-solution D changes

the shape of the wave front more signifi cantly than
candidate-solution C.

Tool Use: Taking Sampled Averages Correctly
In many fi elds, including the fi eld of computer

engineering, it is quite popular to fi nd a sampled
average, i.e., the average of a sampled set of numbers,
rather than the average of the entire set. This is useful
when the entire set is unavailable, diffi cult to obtain,
or expensive to obtain. For example, one might want
to use this technique to keep a running performance
average for a real microprocessor, or one might want
to sample several windows of execution in a terabyte-
size trace fi le. Provided that the sampled subset is
representative of the set as a whole, and provided that
the technique used to collect the samples is correct,
this mechanism provides a low-cost alternative that
can be very accurate.

The discussion will use as an example a mecha-
nism that samples the miles-per-gallon performance
of an automobile under way. The trip we will study is
an out and back trip with a brief pit stop, as shown
in Figure Ov.10. The automobile will follow a simple
course that is easily analyzed:

 1. The auto will travel over even ground for
60 miles at 60 mph, and it will achieve 30
mpg during this window of time.

 2. The auto will travel uphill for 20 miles at 60
mph, and it will achieve 10 mpg during this
window of time.

60 miles, 60 mph, 30 mpg

m 02

seli

m 06 ,

hp

:pu

m 01

gp

od
:nw

m 003

gp

10 minutes idling
0 mph, 0 mpg

FIGURE Ov.10: Course taken by the automobile in the example.

chOv_P379751.indd Sec2:25chOv_P379751.indd Sec2:25 8/8/07 4:33:36 PM8/8/07 4:33:36 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

26 Memory Systems: Cache, DRAM, Disk

 3. The auto will travel downhill for 20 miles at
60 mph, and it will achieve 300 mpg during
this window of time.

 4. The auto will travel back home over even
ground for 60 miles at 60 mph, and it will
achieve 30 mpg during this window of time.

 5. In addition, before returning home, the driver
will sit at the top of the hill for
10 minutes, enjoying the view, with the auto
idling, consuming gasoline at the rate of 1 gal-
lon every 5 hours. This is equivalent to 1/300
gallon per minute or 1/30 of a gallon during
the 10-minute respite. Note that the auto will
achieve 0 mpg during this window of time.

Our car’s algorithm samples evenly in time, so for
our analysis we need to break down the segments of
the trip by the amount of time that they take:

Outbound: 60 minutes
Uphill: 20 minutes
Idling: 10 minutes
Downhill: 20 minutes
Return: 60 minutes

This is displayed graphically in Figure Ov.11, in
which the time for each segment is shown to scale.
Assume, for the sake of simplicity, that the sampling
algorithm samples the car’s miles-per-gallon every
minute and adds that sampled value to the running
average (it could just as easily sample every second
or millisecond). Then the algorithm will sample the
value 30 mpg 60 times during the fi rst segment of the
trip, the value 10 mpg 20 times during the second
segment of the trip, the value 0 mpg 10 times during

•
•
•
•
•

the third segment of the trip, and so on. Over the trip,
the car is operating for a total of 170 minutes. Thus,
we can derive the sampling algorithm’s results as fol-
lows:

 60 ___ 170 30 � 20 ___ 170 10 � 10 ___ 170 0 � 20 ___ 170 300 � 60 ___ 170 30 � 57.5mpg

 (EQ Ov.3)

The sampling algorithm tells us that the auto
achieved 57.5 mpg during our trip. However, a quick
reality check will demonstrate that this cannot be
correct; somewhere in our analysis we have made
an invalid assumption. What is the correct answer,
the correct approach? In Part IV of the book we will
revisit this example and provide a complete picture.
In the meantime, the reader is encouraged to fi gure
the answer out for him- or herself.

Ov.3.2 Power and Energy
Power has become a “fi rst-class” design goal in

recent years within the computer architecture and
design community. Previously, low-power circuit,
chip, and system design was considered the purview
of specialized communities, but this is no longer the
case, as even high-performance chip manufacturers
can be blindsided by power dissipation problems.

Power Dissipation in Computer Systems
Power dissipation in CMOS circuits arises from two

different mechanisms: static power, which is primar-
ily leakage power and is caused by the transistor not
completely turning off, and dynamic power, which
is largely the result of switching capacitive loads

FIGURE Ov.11: Sampling miles-per-gallon (mpg) over time. The figure shows the trip in time, with each segment of time labeled
with the average miles-per-gallon for the car during that segment of the trip. Thus, whenever the sampling algorithm samples
miles-per-gallon during a window of time, it will add that value to the running average.

60 minutes

30 mpg

60 minutes

30 mpg

20 min

10 mpg

20 min

300 mpg

10 min

0mpg 170 min
total

Points at which samples are taken:
10 samples

chOv_P379751.indd Sec2:26chOv_P379751.indd Sec2:26 8/8/07 4:33:37 PM8/8/07 4:33:37 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 27

between two different voltage states. Dynamic power
is dependent on frequency of circuit activity, since no
power is dissipated if the node values do not change,
while static power is independent of the frequency
of activity and exists whenever the chip is powered
on. When CMOS circuits were fi rst used, one of their
main advantages was the negligible leakage current
fl owing with the gate at DC or steady state. Practically
all of the power consumed by CMOS gates was due
to dynamic power consumed during the transition
of the gate. But as transistors become increasingly
smaller, the CMOS leakage current starts to become
signifi cant and is projected to be larger than the
dynamic power, as shown in Figure Ov.12.

In charging a load capacitor C up ΔV volts and
discharging it to its original voltage, a gate pulls
an amount of current equal to C . ΔV from the Vdd
supply to charge up the capacitor and then sinks
this charge to ground discharging the node. At the
end of a charge/discharge cycle, the gate/capacitor
combination has moved C . ΔV of charge from Vdd
to ground, which uses an amount of energy equal to
C . ΔV . Vdd that is independent of the cycle time. The
average dynamic power of this node, the average rate
of its energy consumption, is given by the following
equation [Chandrakasan & Brodersen 1995]:

 Pdynamic � C . ΔV . Vdd . � . f (EQ Ov.4)

Dividing by the charge/discharge period (i.e., mul-
tiplying by the clock frequency f) produces the rate of
energy consumption over that period. Multiplying by
the expected activity ratio α, the probability that the
node will switch (in which case it dissipates dynamic
power; otherwise, it does not), yields an average power
dissipation over a larger window of time for which the
activity ratio holds (e.g., this can yield average power
for an entire hour of computation, not just a nano-
second). The dynamic power for the whole chip is the
sum of this equation over all nodes in the circuit.

It is clear from EQ Ov.4 what can be done to reduce
the dynamic power dissipation of a system. We can
either reduce the capacitance being switched, the volt-
age swing, the power supply voltage, the activity ratio,
or the operating frequency. Most of these options are
available to a designer at the architecture level.

Note that, for a specifi c chip, the voltage swing
ΔV is usually proportional to Vdd, so EQ Ov.4 is often
simplifi ed to the following:

 Pdynamic � C . V 2dd . � . f (EQ Ov.5)

Moreover, the activity ratio α is often approximated
as 1/2, giving the following form:

 Pdynamic � 1 _
2

 . C . V 2dd . f (EQ Ov.6)

FIGURE Ov.12: Projections for dynamic and leakage, along with gate length. (Figure taken from Kim et al. [2004a]).

)
mu(htgne

L eta
G lac isyhP

re
woP pih

C lato
T dezila

mro
N

Year

1990 1995 2000 2005 2010 2015 2020

0

50

100

150

200

250

300

0.000001

0.0001

0.01

1

100

Dynamic Power

Subthreshold

Leakage Power Phy.

Gate Length

chOv_P379751.indd Sec2:27chOv_P379751.indd Sec2:27 8/8/07 4:33:37 PM8/8/07 4:33:37 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

28 Memory Systems: Cache, DRAM, Disk

Static leakage power is due to our inability to
completely turn off the transistor, which leaks cur-
rent in the subthreshold operating region [Taur &
Ning 1998]. The gate couples to the active channel
mainly through the gate oxide capacitance, but there
are other capacitances in a transistor that couple the
gate to a “fi xed charge” (charge which cannot move)
present in the bulk and not associated with current
fl ow [Peckerar et al. 1979, 1982]. If these extra capaci-
tances are large (note that they increase with each
process generation as physical dimensions shrink),
then changing the gate bias merely alters the densi-
ties of the fi xed charge and will not turn the channel
off. In this situation, the transistor becomes a leaky
faucet; it does not turn off no matter how hard you
turn it.

Leakage power is proportional to Vdd. It is a linear,
not a quadratic, relationship. For a particular process
technology, the per-device leakage power is given as
follows [Butts & Sohi 2000]:

 Pstatic � Ileakage . V 2dd (EQ Ov.7)

Leakage energy is the product of leakage power
times the duration of operation.

It is clear from EQ Ov.7 what can be done to reduce
the leakage power dissipation of a system: reduce
leakage current and/or reduce the power supply volt-
age. Both options are available to a designer at the
architecture level.

Heat in VLSI circuits is becoming a signifi cant and
related problem. The rate at which physical dimen-
sions such as gate length and gate oxide thickness
have been reduced is faster than for other parameters,
especially voltage, resulting in higher power densities
on the chip surface. To lower leakage power and main-
tain device operation, voltage levels are set according
to the silicon bandgap and intrinsic built-in potentials,
in spite of the conventional scaling algorithm. Thus,
power densities are increasing exponentially for next-
generation chips. For instance, the power density of
Intel’s Pentium chip line has already surpassed that
of a hot plate with the introduction of the Pentium
Pro [Gelsinger 2001]. The problem of power and heat
dissipation now extends to the DRAM system, which

traditionally has represented low power densities and
low costs. Today, higher end DRAMs are dynamically
throttled when, due to repeated high-speed access to
the same devices, their operating temperatures sur-
pass design thresholds. The next-generation memory
system embraced by the DRAM community, the Fully
Buffered DIMM architecture, specifi es a per-module
controller that, in many implementations, requires
a heatsink. This is a cost previously unthinkable in
DRAM-system design.

Disks have many components that dissipate
power, including the spindle motor driving the plat-
ters, the actuator that positions the disk heads, the
bus interface circuitry, and the microcontroller/s and
memory chips. The spindle motor dissipates the bulk
of the power, with the entire disk assembly typically
dissipating power in the tens of watts.

Schemes for Reducing Power and Energy
There are numerous mechanisms in the litera-

ture that attack the power dissipation and/or energy
consumption problem. Here, we will briefl y describe
three: dynamic voltage scaling, the powering down
of unused blocks, and circuit-level approaches for
reducing leakage power.

Dynamic Voltage Scaling Recall that total energy
is the sum of switching energy and leakage energy,
which, to a fi rst approximation, is equal to the
 following:

 Etot � [(Ctot . V 2dd . � . f)

 � (Ntot . Ileakage . Vdd)] . T (EQ Ov.8)

T is the time required for the computation, and
Ntot is the total number of devices leaking current.
Variations in processor utilization affect the amount
of switching activity (the activity ratio α). However,
a light workload produces an idle processor that
wastes clock cycles and energy because the clock
signal continues propagating and the operating
voltage remains the same. Gating the clock during
idle cycles reduces the switched capacitance Ctot
during idle cycles. Reducing the frequency f during

chOv_P379751.indd Sec2:28chOv_P379751.indd Sec2:28 8/8/07 4:33:38 PM8/8/07 4:33:38 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 29

periods of low workload eliminates most idle cycles
altogether.

None of the approaches, however, affects CtotV
2

dd
for the actual computation or substantially reduces
the energy lost to leakage current. Instead, reducing
the supply voltage Vdd in conjunction with the fre-
quency f achieves savings in switching energy and
reduces leakage energy. For high-speed digital CMOS,
a reduction in supply voltage increases the circuit
delay as shown by the following equation [Baker et al.
1998, Baker 2005]:

 Td �
CLVdd _________________

µCox(W/L)(Vdd�Vt)
2 (EQ Ov.9)

where

Td is the delay or the reciprocal of the
 frequency f
Vdd is the supply voltage
CL is the total node capacitance
µ is the carrier mobility
Cox is the oxide capacitance
Vt is the threshold voltage
W/L is the width-to-length ratio of the
transistors in the circuit

This can be simplifi ed to the following form, which
gives the maximum operating frequency as a func-
tion of supply and threshold voltages:

 fMAX � (Vdd � Vt)
2

Vdd
 (EQ Ov.10)

As mentioned earlier, the threshold voltage is
closely tied to the problem of leakage power, so it
cannot be arbitrarily lowered. Thus, the right-hand
side of the relation ends up being a constant pro-
portion of the operating voltage for a given process
technology. Microprocessors typically operate at
the maximum speed at which their operating volt-
age level will allow, so there is not much headroom
to arbitrarily lower Vdd by itself. However, Vdd can be
lowered if the clock frequency is also lowered in the
same proportion. This mechanism is called dynamic
voltage scaling (DVS) [Pering & Broderson 1998] and

•

•
•
•
•
•
•

is appearing in nearly every modern microprocessor.
The technique sets the microprocessor’s frequency to
the most appropriate level for performing each task
at hand, thus avoiding hurry-up-and-wait scenarios
that consume more energy than is required for the
computation (see Figure Ov.13). As Weiser points out,

Power V2F∝

Power V2F
2
---∝

Power V
2
---⎝ ⎠

⎛ ⎞ 2F
2
---∝

Time

Time

Time

Energy E

Energy E

Energy E/4

Task ready at time 0;

(a)

(b)

(c)

no other task is ready.
Task requires time T to
complete, assuming
top clock frequency F.

Task’s output
is not needed
until time 2T

Reducing the clock frequency F by half
lowers the processor’s power dissipation
and still allows task to complete by deadline.

The energy consumption remains the same.

Reducing the voltage level V by half reduces
the power dissipation further, without any
corresponding increase in execution time.

FIGURE Ov.13: Dynamic voltage scaling. Not every task
needs the CPU’s full computational power. In many cases, for
example, the processing of video and audio streams, the only
performance requirement is that the task meet a deadline,
see (a). Such cases create opportunities to run the CPU at
a lower performance level and achieve the same perceived
performance while consuming less energy. As (b) shows,
reducing the clock frequency of a processor reduces power
dissipation but simply spreads a computation out over time,
thereby consuming the same total energy as before. As (c)
shows,reducing the voltage level as well as the clock fre-
quency achieves the desired goal of reduced energy con-
sumption and appropriate performance level. Figure and
caption from Varma et al. [2003].

chOv_P379751.indd Sec2:29chOv_P379751.indd Sec2:29 8/8/07 4:33:38 PM8/8/07 4:33:38 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

30 Memory Systems: Cache, DRAM, Disk

idle time represents wasted energy, even if the CPU
is stopped [Weiser et al. 1994].

Note that it is not suffi cient to merely have a chip
that supports voltage scaling. There must be a heu-
ristic, either implemented in hardware or software,
that decides when to scale the voltage and by how
much to scale it. This decision is essentially a pre-
diction of the near-future computational needs of
the system and is generally made on the basis of
the recent computing requirements of all tasks and
threads running at the time. The development of
good heuristics is a tricky problem (pointed out by
Weiser et al. [1994]). Heuristics that closely track
performance requirements save little energy, while
those that save the most energy tend to do so at the
expense of performance, resulting in poor response
time, for example.

Most research quantifi es the effect that DVS has
on reducing dynamic power dissipation because
dynamic power follows Vdd in a quadratic relation-
ship: reducing Vdd can signifi cantly reduce dynamic
power. However, lowering Vdd also reduces leak-
age power, which is becoming just as signifi cant as
dynamic power. Though the reduction is only linear,
it is nonetheless a reduction.

Note also that even though DVS is commonly
applied to microprocessors, it is perfectly well suited
to the memory system as well. As a processor’s speed
is decreased through application of DVS, it requires
less speed out of its associated SRAM caches, whose
power supply can be scaled to keep pace. This will
reduce both the dynamic and the static power dissi-
pation of the memory circuits.

Powering-Down Unused Blocks A popular
mechanism for reducing power is simply to turn
off functional blocks that are not needed. This is
done at both the circuit level and the chip or I/O-
device level.

At the circuit level, the technique is called clock
gating. The clock signal to a functional block (e.g.,
an adder, multiplier, or predictor) passes through
a gate, and whenever a control circuit determines
that the functional block will be unused for several
cycles, the gate halts the clock signal and sends

a non-oscillating voltage level to the functional
block instead. The latches in the functional block
retain their information; do not change their out-
puts; and, because the data is held constant to the
combinational logic in the circuit, do not switch.
Therefore, it does not draw current or consume
energy.

Note that, in the naïve implementation, the cir-
cuits in this instance are still powered up, so they
still dissipate static power; clock gating is a tech-
nique that only reduces dynamic power. Other
gating techniques can reduce leakage as well. For
example, in caches, unused blocks can be pow-
ered down using Gated-Vdd [Powell et al. 2000]
or Gated-ground [Powell et al. 2000] techniques.
Gated-Vdd puts the power supply of the SRAM in
a series with a transistor as shown in Figure Ov.14.
With the stacking effect introduced by this tran-
sistor, the leakage current is reduced drastically.
This technique benefi ts from having both low-
leakage current and a simpler fabrication process
requirement since only a single threshold voltage
is conceptually required (although, as shown in
Figure Ov.14, the gating transistor can also have a
high threshold to decrease the leakage even further
at the expense of process complexity).

At the device level, for instance in DRAM chips
or disk assemblies, the mechanism puts the device
into a low-activity, low-voltage, and/or low-fre-
quency mode such as sleep or doze or, in the case
of disks, spin-down. For example, microprocessors
can dissipate anywhere from a fraction of a watt to
over 100 W of power; when not in use, they can be
put into a low-power sleep or doze mode that con-
sumes milli-watts. The processor typically expects
an interrupt to cause it to resume normal operation,
for instance, a clock interrupt, the interrupt output
of a watchdog timer, or an external device interrupt.
DRAM chips typically consume on the order of 1 W
each; they have a low-power mode that will reduce
this by more than an order of magnitude. Disks typi-
cally dissipate power in the tens of watts, the bulk
of which is in the spindle motor. When the disk is
placed in the “spin-down” mode (i.e., it is not rotat-
ing, but it is still responding to the disk controller),

chOv_P379751.indd Sec2:30chOv_P379751.indd Sec2:30 8/8/07 4:33:40 PM8/8/07 4:33:40 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 31

the disk assembly consumes a total of a handful of
watts [Gurumurthi et al. 2003].

Leakage Power in SRAMs Low-power SRAM
techniques provide good examples of approaches
for lowering leakage power. SRAM designs targeted
for low power have begun to account for the increas-
ingly larger amount of power consumed by leakage
currents.

One conceptually simple solution is the use of
multi-threshold CMOS circuits. This involves using
process-level techniques to increase the threshold
voltage of transistors to reduce the leakage cur-
rent. Increasing this threshold serves to reduce
the gate overdrive and reduces the gate’s drive
strength, resulting in increased delay. Because
of this, the technique is mostly used on the non-
critical paths of the logic, and fast, low-Vt transistors

are used for the critical paths. In this way the delay
penalty involved in using higher Vt transistors can
be hidden in the non-critical paths, while reducing
the leakage currents drastically. For example, multi-
Vt transistors are selectively used for memory cells
since they represent a majority of the circuit, reap-
ing the most benefi t in leakage power consumption
with a minor penalty in the access time. Different
multi-Vt confi gurations are shown in Figure Ov.15,
along with the leakage current path that each con-
fi guration is designed to minimize.

Another technique that reduces leakage power in
SRAMs is the Drowsy technique [Kim et al. 2004a].
This is similar to gated-Vdd and gated-ground
techniques in that it uses a transistor to condition-
ally enable the power supply to a given part of the
SRAM. The difference is that this technique puts
infrequently accessed parts of the SRAM into a

SLEEP

WL

BL BLB

High-Vt PMOS

FIGURE Ov.14: Gated-Vdd technique using a high-Vt transistor to gate Vdd.

high-Vt
NMOS

high-Vt
PMOS

FIGURE Ov.15: Different multi-Vt configurations for the 6T memory cell showing which leakage currents are reduced for each
configuration.

chOv_P379751.indd Sec2:31chOv_P379751.indd Sec2:31 8/8/07 4:33:40 PM8/8/07 4:33:40 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

32 Memory Systems: Cache, DRAM, Disk

state-preserving, low-power mode. A second power
supply with a lower voltage than the regular sup-
ply provides power to memory cells in the “drowsy”
mode. Leakage power is effectively reduced because
of its dependence on the value of the power sup-
ply. An SRAM cell of a drowsy cache is shown in
Figure Ov.16.

Ov.3.3 Reliability
Like performance, reliability means many things

to many people. For example, embedded systems
are computer systems, typically small, that run dedi-
cated software and are embedded within the context
of a larger system. They are increasingly appearing in
the place of traditional electromechanical systems,
whose function they are replacing because one can
now fi nd chip-level computer systems which can be
programmed to perform virtually any function at a
price of pennies per system. The reliability problem
stems from the fact that the embedded system is a
state machine (piece of software) executing within
the context of a relatively complex state machine
(real-time operating system) executing within the
context of an extremely complex state machine
(microprocessor and its memory system). We are
replacing simple electromechanical systems with ultra-
complex systems whose correct function cannot be
guaranteed. This presents an enormous problem
for the future, in which systems will only get more

complex and will be used increasingly in safety-
 critical situations, where incorrect functioning can
cause great harm.

This is a very deep problem, and one that is not
likely to be solved soon. A smaller problem that we
can solve right now—one that engineers currently
do—is to increase the reliability of data within the
memory system. If a datum is stored in the memory
system, whether in a cache, in a DRAM, or on disk, it
is reasonable to expect that the next time a processor
reads that datum, the processor will get the value that
was written.

How could the datum’s value change? Solid-state
memory devices (e.g., SRAMs and DRAMs) are sus-
ceptible to both hard failures and soft errors in the
same manner that other semiconductor-based elec-
tronic devices are susceptible to both hard failures
and soft failures. Hard failures can be caused by elec-
tromigration, corrosion, thermal cycling, or electro-
static shock. In contrast to hard failures, soft errors
are failures where the physical device remains func-
tional, but random and transient electronic noises
corrupt the value of the stored information in the
memory system. Transient noise and upset comes
from a multitude of sources, including circuit noise
(e.g., crosstalk, ground bounce, etc.), ambient radia-
tion (e.g., even from sources within the computer
chassis), clock jitter, or substrate interactions with
high-energy particles. Which of these is the most
common is obviously very dependent on the operat-
ing environment.

Figure Ov.17 illustrates the last of these examples. It
pictures the interactions between high-energy alpha
particles and neutrons with the silicon lattice. The fi g-
ure shows that when high-energy alpha particles pass
through silicon, the alpha particle leaves an ionized
trail, and the length of that ionized trail depends on
the energy of the alpha particle. The fi gure also illus-
trates that when high-energy neutrons pass through
silicon, some neutrons pass through without affect-
ing operations of the semiconductor device, but some
neutrons collide with nuclei in the silicon lattice. The
atomic collision can result in the creation of multiple
ionized trails as the secondary particles generated
in the collision scatter in the silicon lattice. In the
presence of an electric fi eld, the ionized trails of

VDD(1V) VDD(0.3V)

LowVolt LowVolt

VVDD

FIGURE Ov.16: A drowsy SRAM cell containing the transistors
that gate the desired power supply.

chOv_P379751.indd Sec2:32chOv_P379751.indd Sec2:32 8/8/07 4:33:41 PM8/8/07 4:33:41 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 33

electron-hole pairs behave as temporary surges in
current or as charges that can change the data values
in storage cells. In addition, charge from the ionized
trails of electron-hole pairs can impact the volt-
age level of bit lines as the value of the stored data
is resolved by the sense amplifi ers. The result is that
the soft error rate (SER) of a memory-storage device
depends on a combination of factors including the
type, number, and energy distribution of the incident
particles as well as the process technology design
of the storage cells, design of the bit lines and sense

amplifi ers, voltage level of the device, as well as the
design of the logic circuits that control the movement
of data in the DRAM device.

Table Ov.4 compares the failure rates for SRAM,
DRAM, and disk. SRAM device error rates have his-
torically tracked DRAM devices and did so up until
the 180-nm process generation. The combination
of reduced supply voltage and reduced critical cell
charge means that SRAM SERs have climbed dra-
matically for the 180-nm and 130-nm process gen-
erations. In a recent publication, Monolithic System

nucleus

(α, p, e, etc.)

neutronneutron

recoil
nucleusSi

α

p

data storage node (capacitor)

FIGURE Ov.17: Generation of electron-hole pairs in silicon by alpha particles and high-energy neutrons.

TABLE OV.4 Cross-comparison of failure rates for SRAM, DRAM, and disk

Technology

Failure Ratea

(SRAM & DRAM:
at 0.13 µm)

Frequency of Multi-bit
Errors
(Relative to Single-bit Errors) Expected Service Life

SRAM 100 per million device-hours Several years

DRAM 1 per million device-hours 10–20% Several years

Disk 1 per million device-hours Several years

aNote that failure rate, i.e., a variation of mean-time-between-failures, says nothing about the expected performance of a
single device. However, taken with the expected service life of a device, it can give a designer or administrator an idea of
expected performance. If the service life of a device is 5 years, then the part will last about 5 years. A very large installation
of those devices (e.g., in the case of disks or DRAMs, hundreds or more) will collectively see the expected failure rate: i.e.,
several hundred disks will collectively see several million device hours of operation before a single disk fails.

chOv_P379751.indd Sec2:33chOv_P379751.indd Sec2:33 8/8/07 4:33:42 PM8/8/07 4:33:42 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

34 Memory Systems: Cache, DRAM, Disk

Technology, Inc. (MoSys) claimed that for the 250-nm
process generation, SRAM SERs were reported to be
in the range of 100 failures per million device-hours
per megabit, while SERs were reported to be in the
range of 100,000 failures per megabit for the 130-nm
process generation. The generalized trend is expected
to continue to increase as the demand for low power
dissipation forces a continued reduction in supply
voltage and reduced critical charge per cell.

Solid-state memory devices (SRAMs and DRAMs)
are typically protected by error detection codes
and/or ECC. These are mechanisms wherein data
redundancy is used to detect and/or recover from
single- and even multi-bit errors. For instance, par-
ity is a simple scheme that adds a bit to a protected
word, indicating the number of even or odd bits in
the word. If the read value of the word does not match
the parity value, then the processor knows that the
read value does not equal the value that was initially
written, and an error has occurred. Error correction
is achieved by encoding a word such that a bit error
moves the resulting word some distance away from
the original word (in the Hamming-distance sense)
into an invalid encoding. The encoding space is cho-
sen such that the new, invalid word is closest in the
space to the original, valid word. Thus, the original
word can always be derived from an invalid code-
word, assuming a maximum number of bit errors.

Due to SRAM’s extreme sensitivity to soft errors,
modern processors now ship with parity and single-
bit error correction for the SRAM caches. Typically,
the tag arrays are protected by parity, whereas the
data arrays are protected by single-bit error cor-
rection. More sophisticated multi-bit ECC algo-
rithms are typically not deployed for on-chip SRAM
caches in modern processors since the addition
of sophisticated computation circuitry can add to
the die size and cause signifi cant delay relative to
the timing demands of the on-chip caches. More-
over, caches store frequently accessed data, and in
case an uncorrectable error is detected, a proces-
sor simply has to re-fetch the data from memory.
In this sense, it can be considered unnecessary to
detect and correct multi-bit errors, but suffi cient to
simply detect multi-bit errors. However, in the

physical design of modern SRAMs, often designers
will intentionally place capacitors above the SRAM
cell to improve SER.

Disk reliability is a more-researched area than data
reliability in disks, because data stored in magnetic
disks tends to be more resistant to transient errors
than data stored in solid-state memories. In other
words, whereas reliability in solid-state memories is
largely concerned with correcting soft errors, reliabil-
ity in hard disks is concerned with the fact that disks
occasionally die, taking most or all of their data with
them. Given that the disk drive performs the function
of permanent store, its reliability is paramount, and,
as Table Ov.4 shows, disks tend to last several years.
This data is corroborated by a recent study from
researchers at Google [Pinheiro et al. 2007]. The study
tracks the behavior and environmental parameters of
a fl eet of over 100,000 disks for fi ve years.

Reliability in the disk system is improved in much
the same manner as ECC: data stored in the disk sys-
tem is done so in a redundant fashion. RAID (redun-
dant array of inexpensive disks) is a technique wherein
encoded data is striped across multiple disks, so that
even in the case of a disk’s total failure the data will
always be available.

Ov.3.4 Virtual Memory
Virtual memory is the mechanism by which the

operating system provides executing software access
to the memory system. In this regard, it is the primary
consumer of the memory system: its procedures, data
structures, and protocols dictate how the compo-
nents of the memory system are used by all software
that runs on the computer. It therefore behooves
the reader to know what the virtual memory system
does and how it does it. This section provides a brief
overview of the mechanics of virtual memory. More
detailed treatments of the topic can also be found
on-line in articles by the author [Jacob & Mudge
1998a–c].

In general, programs today are written to run on
no particular hardware confi guration. They have
no knowledge of the underlying memory system.
Processes execute in imaginary address spaces that

chOv_P379751.indd Sec2:34chOv_P379751.indd Sec2:34 8/8/07 4:33:42 PM8/8/07 4:33:42 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 35

are mapped onto the memory system (including
the DRAM system and disk system) by the operat-
ing system. Processes generate instruction fetches
and loads and stores using imaginary or “virtual”
names for their instructions and data. The ulti-
mate home for the process’s address space is non-
volatile permanent store, usually a disk drive; this
is where the process’s instructions and data come
from and where all of its permanent changes go
to. Every hardware memory structure between
the CPU and the permanent store is a cache for
the instructions and data in the process’s address
space. This includes main memory—main memory
is really nothing more than a cache for a process’s
virtual address space. A cache operates on the prin-

ciple that a small, fast storage device can hold the
most important data found on a larger, slower stor-
age device, effectively making the slower device
look fast. The large storage area in this case is the
process address space, which can range from kilo-
bytes to gigabytes or more in size. Everything in the
address space initially comes from the program fi le
stored on disk or is created on demand and defi ned
to be zero. This is illustrated in Figure Ov.18.

Address Translation
Translating addresses from virtual space to physi-

cal space is depicted in Figure Ov.19. Addresses are
mapped at the granularity of pages. Virtual memory is

Stack

Heap

Code/BSS

Stack

Heap

Code/BSS

(a) PROCESS VIEW (b) IDEAL PHYSICAL MODEL

(c) REALITY

STORES

LOADS
and

INSTRUCTION
FETCHES

CPU: CPU:

CPU:

Process Address Space Process Address Space

Cache
Hierarchy

Cache
Hierarchy

Main
Memory

HARDWARE-MEDIATED OS-MEDIATED

Dynamically
Allocated Data
Space

Permanent Store

FIGURE Ov.18: Caching the process address space. In the fi rst view, a process is shown referencing locations in its address
space. Note that all loads, stores, and fetches use virtual names for objects. The second view illustrates that a process references
locations in its address space indirectly through a hierarchy of caches. The third view shows that the address space is not a linear
object stored on some device, but is instead scattered across hard drives and dynamically allocated when necessary.

chOv_P379751.indd Sec2:35chOv_P379751.indd Sec2:35 8/8/07 4:33:42 PM8/8/07 4:33:42 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

36 Memory Systems: Cache, DRAM, Disk

 essentially a mapping of virtual page numbers (VPNs)
to page frame numbers (PFNs). The mapping is a func-
tion, and any virtual page can have only one location.
However, the inverse map is not necessarily a function.
It is possible and sometimes advantageous to have sev-
eral virtual pages mapped to the same page frame (to
share memory between processes or threads or to allow
different views of data with different protections, for
example). This is depicted in Figure Ov.19 by mapping
two virtual pages (0x00002 and 0xFFFFC) to PFN 12.

If DRAM is a cache, what is its organization? For
example, an idealized fully associative cache (one in
which any datum can reside at any location within
the cache’s data array) is pictured in Figure Ov.20.
A data tag is fed into the cache. The fi rst stage com-
pares the input tag to the tag of every piece of data
in the cache. The matching tag points to the data’s

location in the cache. However, DRAM is not physi-
cally built like a cache. For example, it has no inher-
ent concept of a tags array: one merely tells memory
what data location one wishes to read or write, and
the datum at that location is read out or overwritten.
There is no attempt to match the address against a
tag to verify the contents of the data location. How-
ever, if main memory is to be an effective cache for
the virtual address space, the tags mechanism must
be implemented somewhere. There is clearly a myr-
iad of possibilities, from special DRAM designs that
include a hardware tag feature to software algorithms
that make several memory references to look up one
datum. Traditional virtual memory has the tags array
implemented in software, and this software structure
often holds more entries than there are entries in the
data array (i.e., pages in main memory). The software

. . .

VIRTUAL SPACE
Divided into uniform virtual pages,
each identified by its virtual page

number.

PHYSICAL MEMORY
Divided into uniform page frames,
each identified by its page frame

number.

0

1
2

3

4

5
6

7

8

9
10

11

12

13
14

15

16

0x00000

0x00001

0x00002

0x00003

0x00004

0x00005

0x00006

0x00007

0x00008

0x00009

0x0000a

0xFFFFB

0xFFFFC

0xFFFFD

0xFFFFE

0xFFFFF

One page

FIGURE Ov.19: Mapping virtual pages into physical page frames.

chOv_P379751.indd Sec2:36chOv_P379751.indd Sec2:36 8/8/07 4:33:43 PM8/8/07 4:33:43 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 37

structure is called a page table; it is a database of
 mapping information.

The page table performs the function of the tags
array depicted in Figure Ov.20. For any given memory
reference, it indicates where in main memory (corre-
sponding to “data array” in the fi gure) that page can
be found. There are many different possible organi-
zations for page tables, most of which require only a
few memory references to fi nd the appropriate tag
entry. However, requiring more than one memory
reference for a page table lookup can be very costly,
and so access to the page table is sped up by cach-
ing its entries in a special cache called the transla-

tion lookaside buffer (TLB) [Lee 1960], a hardware
 structure that typically has far fewer entries than
there are pages in main memory. The TLB is a hard-
ware cache which is usually implemented as a con-
tent addressable memory (CAM), also called a fully
associative cache.

The TLB takes as input a VPN, possibly extended
by an address-space identifi er, and returns the cor-
responding PFN and protection information. This is
illustrated in Figure Ov.21. The address-space identi-
fi er, if used, extends the virtual address to distinguish it
from similar virtual addresses produced by other pro-
cesses. For a load or store to complete successfully, the

Tags Array Data Array

tag ---: invalid

tag WER: slot 3

tag ASD: slot 7

tag ---: invalid

tag KJH: slot 2

tag POI: slot 5

tag ZXC: slot 1

tag QWE: slot 4

data slot 7

data slot 6

data slot 5

data slot 4

data slot 3

data slot 2

data slot 1

data slot 0

Input Key: ZXC

Entry in
Data Array

Data
Available

Tags Array Data Array

Input Key Entry in
Data Array

Data
Available

FIGURE Ov.20: An idealized cache lookup. A cache is comprised of two parts: the tag’s array and the data array. In the example
organization, the tags act as a database. They accept as input a key (an address) and output either the location of the item in the
data array or an indication that the item is not in the data array.

Virtual Page Number (VPN) Page Offset

 Page Frame Number (PFN)Physical Address: Page Offset

Virtual Address:

TLB

Address Space Identifier (ASID)

FIGURE Ov.21: Virtual-to-physical address translation using a TLB.

chOv_P379751.indd Sec2:37chOv_P379751.indd Sec2:37 8/8/07 4:33:43 PM8/8/07 4:33:43 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

38 Memory Systems: Cache, DRAM, Disk

TLB must contain the mapping information for that
virtual location. If it does not, a TLB miss occurs, and
the system9 must search the page table for the appro-
priate entry and place it into the TLB. If the system fails
to fi nd the mapping information in the page table, or
if it fi nds the mapping but it indicates that the desired
page is on disk, a page fault occurs. A page fault inter-
rupts the OS, which must then retrieve the page from
disk and place it into memory, create a new page if the
page does not yet exist (as when a process allocates a
new stack frame in virgin territory), or send the pro-
cess an error signal if the access is to illegal space.

Shared Memory
Shared memory is a feature supported by vir-

tual memory that causes many problems and gives
rise to cache-management issues. It is a mecha-
nism whereby two address spaces that are normally

 protected from each other are allowed to intersect at
points, still retaining protection over the non-inter-
secting regions. Several processes sharing portions
of their address spaces are pictured in Figure Ov.22.
The shared memory mechanism only opens up a
pre-defi ned portion of a process’s address space; the
rest of the address space is still protected, and even
the shared portion is only unprotected for those pro-
cesses sharing the memory. For instance, in Figure
Ov.22, the region of A’s address space that is shared
with process B is unprotected from whatever actions
B might want to take, but it is safe from the actions
of any other processes. It is therefore useful as a sim-
ple, secure means for inter-process communication.
Shared memory also reduces requirements for physi-
cal memory, as when the text regions of processes are
shared whenever multiple instances of a single pro-
gram are run or when multiple instances of a com-
mon library are used in different programs.

9In the discussions, we will use the generic term “system” when the acting agent is implementation-dependent and can
refer to either a hardware state machine or the operating system. For example, in some implementations, the page table
search immediately following a TLB miss is performed by the operating system (MIPS, Alpha); in other implementations, it
is performed by the hardware (PowerPC, x86).

Process D

Process A
Process C

Process B

Shared by A & B Shared by B &
C

Shared by C &
D

Shared by B &
D

Shared by B &
C & D

FIGURE Ov.22: Shared memory. Shared memory allows processes to overlap portions of their address space while retaining
protection for the nonintersecting regions. This is a simple and effective method for inter-process communication. Pictured are
four process address spaces that have overlapped. The darker regions are shared by more than one process, while the lightest
regions are still protected from other processes.

chOv_P379751.indd Sec2:38chOv_P379751.indd Sec2:38 8/8/07 4:33:44 PM8/8/07 4:33:44 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 39

The mechanism works by ensuring that shared
pages map to the same physical page. This can be
done by simply placing the same PFN in the page
tables of two processes sharing a page. An example is
shown in Figure Ov.23. Here, two very small address
spaces are shown overlapping at several places, and
one address space overlaps with itself; two of its vir-
tual pages map to the same physical page. This is
not just a contrived example. Many operating sys-
tems allow this, and it is useful, for example, in the
 implementation of user-level threads.

Some Commercial Examples
A few examples of what has been done in industry

can help to illustrate some of the issues involved.

MIPS Page Table Design MIPS [Heinrich 1995,
Kane & Heinrich 1992] eliminated the page table-
walking hardware found in traditional memory man-
agement units and, in doing so, demonstrated that
software can table-walk with reasonable effi ciency. It
also presented a simple hierarchical page table design,
shown in Figure Ov.24. On a TLB miss, the VPN of the

Process A’s Address Space Process B’s Address Space

 A’s Page Table: B’s Page Table:

Physical Memory

FIGURE Ov.23: An example of shared memory. Two process address spaces—one comprised of six virtual pages and the other
of seven virtual pages—are shown sharing several pages. Their page tables maintain information on where virtual pages are
located in physical memory. The darkened pages are mapped to several locations; note that the darkest page is mapped at two
locations in the same address space.

A 4-byte PTE,
which maps 4KB

A 4KB PTE Page: 1024
PTEs, maps 4MB

4 B

4 KB

A 4MB virtual
region

4 MB

Maps

Maps

Unmapped Physical Memory

Mapped Virtual Memory

...

...

...
User address space: 2GB

User page table: 2MB

Root page table: 2KB

A 4-byte PTE, which maps the darkened
4KB virtual page in the user address space

4KB page

Structure typically wired down in physical
memory while process is running

Structure generally kept in virtual space so that
it is contiguous and can be paged; usually kept
in kernel’s mapped area

FIGURE Ov.24: The MIPS 32-bit hierarchical page table. MIPS hardware provides support for a 2-MB linear virtual page table that
maps the 2-GB user address space by constructing a virtual address from a faulting virtual address that indexes the mapping PTE
(page-table entry) in the user page table. This 2-MB page table can easily be mapped by a 2-KB user root page table.

chOv_P379751.indd Sec2:39chOv_P379751.indd Sec2:39 8/8/07 4:33:44 PM8/8/07 4:33:44 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

40 Memory Systems: Cache, DRAM, Disk

address that missed the TLB is used as an index into
the user page table, which is accessed using a virtual
address. The architecture provides hardware support
for this activity, storing the virtual address of the base
of the user-level page table in a hardware register
and forming the concatenation of the base address
with the VPN. This is illustrated in Figure Ov.25. On
a TLB miss, the hardware creates a virtual address
for the mapping PTE in the user page table, which
must be aligned on a 2-MB virtual boundary for the
hardware’s lookup address to work. The base pointer,
called PTEBase, is stored in a hardware register and is
usually changed on context switch.

PowerPC Segmented Translation The IBM 801
introduced a segmented design that persisted through
the POWER and PowerPC architectures [Chang
& Mergen 1988, IBM & Motorola 1993, May et al. 1994,
Weiss & Smith 1994]. It is illustrated in Figure Ov.26.
Applications generate 32-bit “effective” addresses that
are mapped onto a larger “virtual” address space at the
granularity of segments, 256-MB virtual regions. Sixteen
segments comprise an application’s address space. The
top four bits of the effective address select a segment
identifi er from a set of 16 registers. This segment ID
is concatenated with the bottom 28 bits of the effec-
tive address to form an extended virtual address. This
extended address is used in the TLB and page table.
The operating system performs data movement and
relocation at the granularity of pages, not segments.

The architecture does not use explicit address-
space identifi ers; the segment registers ensure
address space protection. If two processes duplicate
an identifi er in their segment registers, they share
that virtual segment by defi nition. Similarly, protec-
tion is guaranteed if identifi ers are not duplicated. If
memory is shared through global addresses, the TLB
and cache need not be fl ushed on context switch10
because the system behaves like a single address
space operating system. For more details, see Chapter
31, Section 31.1.7, Perspective: Segmented Addressing
Solves the Synonym Problem.

10Flushing is avoided until the system runs out of identifi ers and must reuse them. For example, the address-space identi-
fi ers on the MIPS R3000 and Alpha 21064 are six bits wide, with a maximum of 64 active processes [Digital 1994, Kane &
Heinrich 1992]. If more processes are desired, identifi ers must be constantly reassigned, requiring TLB and virtual-cache
fl ushes.

Page OffsetFaulting Virtual Address Virtual Page Number

0Virtual Page NumberPTEBase

Virtual address for PTE

LOAD

 Page Frame Number

Page Table Entry

Status Bits

TLB Context:

Inserted into TLB, along with Virtual Page Number

FIGURE Ov.25: The use of the MIPS TLB context register. The
VPN of the faulting virtual address is placed into the context
register, creating the virtual address of the mapping PTE. This
PTE goes directly into the TLB.

Segment Offset

32-bit Effective Address

Page Offset

DATA

Segno

Segment Registers

Segment Offset Page OffsetSegment ID

52-bit
Virtual
Address

TLB and
Page Table

TAG COMPARE

Virtual Page Number

Cache

FIGURE Ov.26: PowerPC segmented address translation. Pro-
cesses generate 32-bit effective addresses that are mapped
onto a 52-bit address space via 16 segment registers, using the
top 4 bits of the effective address as an index. It is this extended
virtual address that is mapped by the TLB and page table. The
segments provide address space protection and can be used for
shared memory.

chOv_P379751.indd Sec2:40chOv_P379751.indd Sec2:40 8/8/07 4:33:45 PM8/8/07 4:33:45 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 41

Ov.4 An Example Holistic Analysis
Disk I/O accounts for a substantial fraction of an
application’s execution time and power dissipation.
A new DRAM technology called Fully Buffered DIMM
(FB-DIMM) has been in development in the industry
[Vogt 2004a, b, Haas & Vogt 2005], and, though it provides
storage scalability signifi cantly beyond the current
DDRx architecture, FB-DIMM has met with some resis-
tance due to its high power dissipation. Our modeling
results show that the energy consumed in a moderate-
size FB-DIMM system is indeed quite large, and it can
easily approach the energy consumed by a disk.

This analysis looks at a trade-off between storage in
the DRAM system and in the disk system, focusing on
the disk-side write buffer; if confi gured and managed
correctly, the write buffer enables a system to approach
the performance of a large DRAM installation at half
the energy. Disk-side caches and write buffers have
been proposed and studied, but their effect upon total
system behavior has not been studied. We present
the impact on total system execution time, CPI, and
memory-system power, including the effects of the
operating system. Using a full-system, execution-
based simulator that combines Bochs, Wattch, CACTI,
DRAMsim, and DiskSim and boots the RedHat Linux
6.0 kernel, we have investigated the memory-system
behavior of the SPEC CPU2000 applications. We study
the disk-side cache in both single-disk and RAID-5
organizations. Cache parameters include size, orga-
nization, whether the cache supports write caching
or not, and whether it prefetches read blocks or not.
Our results are given in terms of L1/L2 cache accesses,
power dissipation, and energy consumption; DRAM-
system accesses, power dissipation, and energy con-
sumption; disk-system accesses, power dissipation,
and energy consumption; and execution time of the
application plus operating system, in seconds. The
results are not from sampling, but rather from a simu-
lator that calculates these values on a cycle-by-cycle
basis over the entire execution of the application.

Ov.4.1 Fully-Buffered DIMM vs. the Disk Cache
It is common knowledge that disk I/O is expen-

sive in both power dissipated and time spent wait-
ing on it. What is less well known is the system-wide

breakdown of disk power versus cache power versus
DRAM power, especially in light of the newest DRAM
architecture adopted by industry, the FB-DIMM. This
new DRAM standard replaces the conventional mem-
ory bus with a narrow, high-speed interface between
the memory controller and the DIMMs. It has been
shown to provide performance similar to that of
DDRx systems, and thus, it represents a relatively low-
overhead mechanism (in terms of execution time) for
scaling DRAM-system capacity. FB-DIMM’s latency
degradation is not severe. It provides a noticeable
bandwidth improvement, and it is relatively insensi-
tive to scheduling policies [Ganesh et al. 2007].

FB-DIMM was designed to solve the problem of
storage scalability in the DRAM system, and it pro-
vides scalability well beyond the current JEDEC-style
DDRx architecture, which supports at most two to
four DIMMs in a fully populated dual-channel sys-
tem (DDR2 supports up to two DIMMs per channel;
proposals for DDR3 include limiting a channel to a
single DIMM). The daisy-chained architecture of
FB-DIMM supports up to eight DIMMs per channel,
and its narrow bus requires roughly one-third the
pins of a DDRx SDRAM system. Thus, an FB-DIMM
system supports an order of magnitude more DIMMs
than DDRx. This scalability comes at a cost, however.
The DIMM itself dissipates almost an order of mag-
nitude more power than a traditional DDRx DIMM.
Couple this with an order-of-magnitude increase in
DIMMs per system, and one faces a serious problem.

To give an idea of the problem, Figure Ov.27 shows
the simulation results of an entire execution of the
gzip benchmark from SPEC CPU2000 on a complete-
system simulator. The memory system is only mod-
erate in size: one channel and four DIMMs, totalling
a half-gigabyte. The graphs demonstrate numerous
important issues, but in this book we are concerned
with two items in particular:

Program initialization is lengthy and repre-
sents a signifi cant portion of an application’s
run time. As the CPI graph shows, the fi rst
two-thirds of execution time are spent deal-
ing with the disk, and the corresponding CPI
(both average and instantaneous) ranges
from the 100s to the 1000s. After this initial-
ization phase, the application settles into a

•

chOv_P379751.indd Sec2:41chOv_P379751.indd Sec2:41 8/8/07 4:33:46 PM8/8/07 4:33:46 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

0
20
40
60
80

100

)
W(re

woP

DRAM
DISK

DRAM & Disk Power/Cumulative Energy/Access Numbers
gzip — 512MB

0
200
400
600
800

1000

)J(yg renE c ca

10

100

1000

10000

1e+05sess ec c
A

M
A

R
D

10 15 20 25 30 35 40 45 50 55 60 65

ti ()

1
10

100
1000

10000
1e+05sessec c

A ksi
D

0

5e+06

1e+07

1.5e+07

2e+07s sec c
A eh cacI

Cache Accesses (per 10 ms) and System CPI
gzip — 512MB

0

5e+06

1e+07

1.5e+07

2e+07sse cc
A ehc ac

D

0
1e+05
2e+05
3e+05
4e+05
5e+05ssecc

A ehcac2L

10 15 20 25 30 35 40 45 50 55 60 65

time(s)

1

10

100

1000

10000

I P
C

CPI@10ms
Cum. CPI

0.1

1

10

100

1000)
W(re

w oP eh cacI

Cache Power (per 10 ms) and Cumulative Energy
gzip — 512MB

0.1

1

10

100

1000

)
W(re

woP ehcac
D

0.1

1

10

100

)
W(r e

wo P ehca c2L

10 15 20 25 30 35 40 45 50 55 60 65

time(s)

0

50

100

150

200)J(yg renE .
mu c

L1-I
L1-D
L2

FIGURE Ov.27: Full execution of Gzip. The fi gure shows the entire run of gzip. System confi guration is a 2-GHz Pentium proces-
sor with 512 MB of DDR2-533 FB-DIMM main memory and a 12k-RPM disk drive with built-in disk cache. The fi gure shows the
interaction between all components of the memory system, including the L1 instruction and data caches, the unifi ed L2 cache, the
DRAM system, and the disk drive. All graphs use the same x-axis, which represents execution time in seconds. The x-axis does not
start at zero; the measurements exclude system boot time, invocation of the shell, etc. Each data point represents aggregated (not
sampled) activity within a 10-ms epoch. The CPI graph shows two system CPI values: one is the average CPI for each 10-ms epoch,
and the other is the cumulative average CPI. A duration with no CPI data point indicates that no instructions were executed due to
I/O latency. During such a window the CPI is essentially infi nite, and thus, it is possible for the cumulative average to range higher
than the displayed instantaneous CPI. Note that the CPI, the DRAM accesses, and the disk accesses are plotted on log scales.

42 Memory Systems: Cache, DRAM, Disk

chOv_P379751.indd Sec2:42chOv_P379751.indd Sec2:42 8/8/07 4:33:46 PM8/8/07 4:33:46 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 43

more compute-intensive phase in which the
CPI asymptotes down to the theoretical sus-
tainable performance, the single-digit values
that architecture research typically reports.
By the end of execution, the total energy
consumed in the FB-DIMM DRAM system
(a half a kilojoule) almost equals that of
the energy consumed by the disk, and
it is twice that of the L1 data cache, L1
 instruction cache, and unifi ed L2 cache
combined.

Currently, there is substantial work happening
in both industry and academia to address the lat-
ter issue, with much of the work focusing on access
scheduling, architecture improvements, and data
migration. To complement this work, we look at
a wide range of organizational approaches, i.e.,
attacking the problem from a parameter point of
view rather than a system-redesign, component-
redesign, or new-proposed-mechanism point of
view, and fi nd signifi cant synergy between the disk
cache and the memory system. Choices in the disk-
side cache affect both system-level performance and
system-level (in particular, DRAM-subsystem-level)
energy consumption. Though disk-side caches have
been proposed and studied, their effect upon the total
system behavior, namely execution time or CPI or
total memory-system power including the effects of
the operating system, is as yet unreported. For exam-
ple, Zhu and Hu [2002] evaluate disk built-in cache
using both real and synthetic workloads and report
the results in terms of average response time. Smith
[1985a and b] evaluates a disk cache mechanism
with real traces collected in real IBM mainframes
on a disk cache simulator and reports the results in
terms of miss rate. Huh and Chang [2003] evaluate
their RAID controller cache organization with a syn-
thetic trace. Varma and Jacobson [1998] and Solworth
and Orji [1990] evaluate destaging algorithms and
write caches, respectively, with synthetic workloads.
This study represents the fi rst time that the effects of
the disk-side cache can be viewed at a system level
(considering both application and operating-system
effects) and compared directly to all the other com-
ponents of the memory system.

•

We use a full-system, execution-based simulator
combining Bochs [Bochs 2006], Wattch [Brooks et al.
2000], CACTI [Wilton & Jouppi 1994], DRAMsim [Wang
et al. 2005, September], and DiskSim [Ganger et al.
2006]. It boots the RedHat Linux 6.0 kernel and there-
fore can capture all application behavior, and all operat-
ing-system behavior, including I/O activity, disk-block
buffering, system-call overhead, and virtual memory
overhead such as translation, table walking, and page
swapping. We investigate the disk-side cache in both
single-disk and RAID-5 organizations. Cache parame-
ters include size, organization, whether the cache sup-
ports write caching or not, and whether it prefetches
read blocks or not. Additional parameters include disk
rotational speed and DRAM-system capacity.

We fi nd a complex trade-off between the disk
cache, the DRAM system, and disk parameters like
rotational speed. The disk cache, particularly its
write-buffering feature, represents a very powerful
tool enabling signifi cant savings in both energy and
execution time. This is important because, though the
cache’s support for write buffering is often enabled in
desktop operating systems (e.g., Windows and some
but not all fl avors of Unix/Linux [Ng 2006]), it is typi-
cally disabled in enterprise computing applications
[Ng 2006], and these are the applications most likely
to use FB-DIMMs [Haas & Vogt 2005]. We fi nd sub-
stantial improvement between existing implemen-
tations and an ideal write buffer (i.e., this is a limit
study). In particular, the disk cache’s write-buffering
ability can offset the total energy consumption of
the memory system (including caches, DRAMs, and
disks) by nearly a factor of two, while sacrifi cing a
small amount of performance.

Ov.4.2 Fully Buffered DIMM: Basics
The relation between a traditional organiza-

tion and a FB-DIMM organization is shown in Fig-
ure Ov.28, which motivates the design in terms of a
graphics-card organization. The fi rst two drawings
show a multi-drop DRAM bus next to a DRAM bus
organization typical of graphics cards, which use
point-to-point soldered connections between the
DRAM and memory controller to achieve higher
speeds. This arrangement is used in FB-DIMM.

chOv_P379751.indd Sec2:43chOv_P379751.indd Sec2:43 8/8/07 4:33:47 PM8/8/07 4:33:47 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

44 Memory Systems: Cache, DRAM, Disk

A slave memory controller has been added onto each
DIMM, and all connections in the system are point
to point. A narrow, high-speed channel connects the
master memory controller to the DIMM-level mem-
ory controllers (called Advanced Memory Buffers or
AMBs). Since each DIMM-to-DIMM connection is
a point-to-point connection, a channel becomes a
de facto multi-hop store and forward network. The
FB-DIMM architecture limits the channel length to
eight DIMMs, and the narrower inter-module bus
requires roughly one-third as many pins as a tradi-
tional organization. As a result, an FB-DIMM orga-
nization can handle roughly 24 times the storage
capacity of a single-DIMM DDR3-based system,
without sacrifi cing any bandwidth and even leaving
headroom for increased intra-module bandwidth.

The AMB acts like a pass-through switch, directly
forwarding the requests it receives from the controller

to successive DIMMs and forwarding frames from
southerly DIMMs to northerly DIMMs or the mem-
ory controller. All frames are processed to determine
whether the data and commands are for the local
DIMM. The FB-DIMM system uses a serial packet-
based protocol to communicate between the memory
controller and the DIMMs. Frames may contain data
and/or commands. Commands include DRAM com-
mands such as row activate (RAS), column read (CAS),
refresh (REF) and so on, as well as channel commands
such as write to confi guration registers, synchroniza-
tion commands, etc. Frame scheduling is performed
exclusively by the memory controller. The AMB only
converts the serial protocol to DDRx-based commands
without implementing any scheduling functionality.

The AMB is connected to the memory control-
ler and/or adjacent DIMMs via unidirectional links:
the southbound channel which transmits both data

Controller

DIMMs

DRAMsPackage Pins

Edge Connectors

Memory

Controller

DIMM 0 DIMM 1

Memory

Controller

Controller DRAM

Package Pins

Traditional (JEDEC) Organization Graphics-Card Organization Fully Buffered DIMM

DIMM 0

DIMM 1

DIMM 2

Organization

Memory Controller

AMB

AMB

AMB

Northbound Channel Southbound Channel

14 10

. . . up to 8 ModulesDDRx SDRAM device

FIGURE Ov.28: FB-DIMM and its motivation. The fi rst two pictures compare the memory organizations of a JEDEC SDRAM system
and a graphics card. Above each design is its side-profi le, indicating potential impedance mismatches (sources of refl ections). The
organization on the far right shows how the FB-DIMM takes the graphics-card organization as its de facto DIMM. In the FB-DIMM
organization, there are no multi-drop busses; DIMM-to-DIMM connections are point to point. The memory controller is connected
to the nearest AMB via two unidirectional links. The AMB is, in turn, connected to its southern neighbor via the same two links.

chOv_P379751.indd Sec2:44chOv_P379751.indd Sec2:44 8/8/07 4:33:47 PM8/8/07 4:33:47 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 45

and commands and the northbound channel which
transmits data and status information. The south-
bound and northbound datapaths are 10 bits and
14 bits wide, respectively. The FB-DIMM channel
clock operates at six times the speed of the DIMM
clock; i.e., the link speed is 4 Gbps for a 667-Mbps
DDRx system. Frames on the north- and southbound
channel require 12 transfers (6 FB-DIMM channel
clock cycles) for transmission. This 6:1 ratio ensures
that the FB-DIMM frame rate matches the DRAM
command clock rate.

Southbound frames comprise both data and
commands and are 120 bits long; northbound
frames are data only and are 168 bits long. In addi-
tion to the data and command information, the
frames also carry header information and a frame
CRC (cyclic redundancy check) checksum that is
used to check for transmission errors. A north-
bound read-data frame transports 18 bytes of data
in 6 FB-DIMM clocks or 1 DIMM clock. A DDRx sys-
tem can burst back the same amount of data to the
memory controller in two successive beats lasting
an entire DRAM clock cycle. Thus, the read band-

width of an FB-DIMM system is the same as that of
a single channel of a DDRx system. Due to the nar-
rower southbound channel, the write bandwidth
in FB-DIMM systems is one-half that available in a
DDRx system. However, this makes the total band-
width available in an FB-DIMM system 1.5 times
that of a DDRx system.

Figure Ov.29 shows the processing of a read trans-
action in an FB-DIMM system. Initially, a command
frame is used to transmit a command that will per-
form row activation. The AMB translates the request
and relays it to the DIMM. The memory controller
schedules the CAS command in a following frame.
The AMB relays the CAS command to the DRAM
devices which burst the data back to the AMB. The
AMB bundles two consecutive bursts of data into
a single northbound frame and transmits it to the
memory controller. In this example, we assume a
burst length of four corresponding to two FB-DIMM
data frames. Note that although the fi gures do not
identify parameters like t_CAS, t_RCD, and t_CWD,
the memory controller must ensure that these con-
straints are met.

RAS CAS

D0 D1 D2 D3

Southbound

Bus

FB-DIMM

clock

DIMM

clock

DIMM

Command

DIMM

Data Bus

Bus

Northbound

Bus

D0-D1 D2-D3

CASRAS

FIGURE Ov.29: Read transaction in an FB-DIMM system. The fi gure shows how a read transaction is performed in an FB-DIMM
system. The FB-DIMM serial busses are clocked at six times the DIMM busses. Each FB-DIMM frame on the southbound bus takes
six FB-DIMM clock periods to transmit. On the northbound bus a frame comprises two DDRx data bursts.

chOv_P379751.indd Sec2:45chOv_P379751.indd Sec2:45 8/8/07 4:33:48 PM8/8/07 4:33:48 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

46 Memory Systems: Cache, DRAM, Disk

The primary dissipater of power in an FB-DIMM
channel is the AMB, and its power depends on its
position within the channel. The AMB nearest to
the memory controller must handle its own traffi c
and repeat all packets to and from all downstream
AMBs, and this dissipates the most power. The AMB
in DDR2-533 FB-DIMM dissipates 6 W, and it is cur-
rently 10 W for 800 Mbps DDR2 [Staktek 2006]. Even
if one averages out the activity on the AMB in a long
channel, the eight AMBs in a single 800-Mbps chan-
nel can easily dissipate 50 W. Note that this number
is for the AMBs only; it does not include power dis-
sipated by the DRAM devices.

Ov.4.3 Disk Caches: Basics
Today’s disk drives all come with a built-in cache

as part of the drive controller electronics, ranging in
size from 512 KB for the micro-drive to 16 MB for the
largest server drives. Figure Ov.30 shows the cache
and its place within a system. The earliest drives
had no cache memory, as they had little control
electronics. As the control of data transfer migrated

from the host-side control logic to the drive’s own
controller, a small amount of memory was needed
to act as a speed-matching buffer, because the disk’s
media data rate is different from that of the inter-
face. Buffering is also needed because when the
head is at a position ready to do data transfer, the
host or the interface may be busy and not ready to
receive read data. DRAM is usually used as this buf-
fer memory.

In a system, the host typically has some memory
dedicated for caching disk data, and if a drive is
attached to the host via some external controller, that
controller also typically has a cache. Both the system
cache and the external cache are much larger than
the disk drive’s internal cache. Hence, for most work-
loads, the drive’s cache is not likely to see too many
reuse cache hits. However, the disk-side cache is very
effective in opportunistically prefetching data, as
only the controller inside the drive knows the state
the drive is in and when and how it can prefetch
without adding any cost in time. Finally, the drive
needs cache memory if it is to support write cach-
ing/buffering.

Web

Server

Disk

etc.
Applications

Buffer cache

Module
Operating system Kernel

Hardware

DRAM

Cached data

Cached

data

(a)

(b)

Buffer cache

Disk cache

FIGURE Ov.30: Buffer caches and disk caches. Disk blocks are cached in several places, including (a) the operating system’s
buffer cache in main memory and (b), on the disk, in another DRAM buffer, called a disk cache.

chOv_P379751.indd Sec2:46chOv_P379751.indd Sec2:46 8/8/07 4:33:48 PM8/8/07 4:33:48 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 47

With write caching, the drive controller services a
write request by transferring the write data from the
host to the drive’s cache memory and then reports
back to the host that the write is “done,” even
though the data has not yet been written to the disk
media (data not yet written out to disk is referred to
as dirty). Thus, the service time for a cached write is
about the same as that for a read cache hit, involving
only some drive controller overhead and electronic
data transfer time but no mechanical time. Clearly,
write caching does not need to depend on having
the right content in the cache memory for it to work,
unlike read caching. Write caching will always work,
i.e., a write command will always be a cache hit, as
long as there is available space in the cache mem-
ory. When the cache becomes full, some or all of the
dirty data are written out to the disk media to free
up space. This process is commonly referred to as
destage.

Ideally, destage should be done while the drive
is idle so that it does not affect the servicing of read
requests. However, this may not be always possible.
The drive may be operating in a high-usage system
with little idle time ever, or the writes often arrive in
bursts which quickly fi ll up the limited memory space
of the cache. When destage must take place while the
drive is busy, such activity adds to the load of drive
at that time, and a user will notice a longer response
time for his requests. Instead of providing the full
benefi t of cache hits, write caching in this case merely
delays the disk writes.

Zhu and Hu [2002] have suggested that large
disk built-in caches will not signifi cantly benefi t
the overall system performance because all mod-
ern operating systems already use large fi le system
caches to cache reads and writes. As suggested by
Przybylski [1990], the reference stream missing a
fi rst-level cache and being handled by a second-
level cache tends to exhibit relatively low locality. In
a real system, the reference stream to the disk sys-
tem has missed the operating system’s buffer cache,
and the locality in the stream tends to be low. Thus,
our simulation captures all of this activity. In our
experiments, we investigate the disk cache, includ-
ing the full effects of the operating system’s fi le-sys-
tem caching.

Ov.4.4 Experimental Results
Figure Ov.27 showed the execution of the GZIP

benchmark with a moderate-sized FB-DIMM DRAM
system: half a gigabyte of storage. At 512 MB, there is no
page swapping for this application. When the storage
size is cut in half to 256 MB, page swapping begins but
does not affect the execution time signifi catly. When
the storage size is cut to one-quarter of its original size
(128 MB), the page swapping is signifi cant enough
to slow the application down by an order of magni-
tude. This represents the hard type of decision that a
memory-systems designer would have to face: if one
can reduce power dissipation by cutting the amount
of storage and feel negligible impact on performance,
then one has too much storage to begin with.

Figure Ov.31 shows the behavior of the system
when storage is cut to 128 MB. Note that all aspects
of system behavior have degraded; execution time
is longer, and the system consumes more energy.
Though the DRAM system’s energy has decreased
from 440 J to just under 410 J, the execution time has
increased from 67 to 170 seconds, the total cache
energy has increased from 275 to 450 J, the disk energy
has increased from 540 to 1635 J, and the total energy
has doubled from 1260 to 2515 J. This is the result of
swapping activity—not enough to bring the system to
its knees, but enough to be relatively painful.

We noticed that there exists in the disk subsystem
the same sort of activity observed in a microproces-
sor’s load/store queue: reads are often stalled waiting
for writes to fi nish, despite the fact that the disk has
a 4-MB read/write cache on board. The disk’s cache
is typically organized to prioritize prefetch activity
over write activity because this tends to give the best
performance results and because the write buffering
is often disabled by the operating system. The solu-
tion to the write-stall problem in microprocessors
has been to use write buffers; we therefore modifi ed
DiskSim to implement an ideal write buffer on the
disk side that would not interfere with the disk cache.
Figure Ov.32 indicates that the size of the cache seems
to make little difference to the behavior of the system.
The important thing is that a cache is present. Thus,
we should not expect read performance to suddenly
increase as a result of moving writes into a separate
write buffer.

chOv_P379751.indd Sec2:47chOv_P379751.indd Sec2:47 8/8/07 4:33:49 PM8/8/07 4:33:49 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

0

5

10

15

20

)
W(re

woP

DRAM
DISK

DRAM & Disk Power/Cumulative Energy/Access Numbers
gzip — 128MB

0

500

1000

1500

2000

)J(yg renE c ca

10

100

1000

10000

1e+05sess ec c
A

M
A

R
D

20 40 60 80 100 120 140 160

time(s)

1
10

100
1000

10000
1e+05sessec c

A ksi
D

0

5e+06

1e+07

1.5e+07

2e+07s sec c
A eh cacI

Cache Accesses (per 10 ms) and System CPI
gzip — 128MB

0

5e+06

1e+07

1.5e+07

2e+07sse cc
A ehc ac

D

0
50000
1e+05

1.5e+05
2e+05

2.5e+05
3e+05

3.5e+05ss ecc
A ehcac2 L

20 40 60 80 100 120 140 160

time(s)

1

10

100

1000

10000

I P
C

CPI@10ms
Cum. CPI

0.1

1

10

100

1000)
W(re

w oP eh cacI

Cache Power (per 10 ms) and Cumulative Energy
gzip — 128MB

0.1

1

10

100

1000

)
W(re

woP ehcac
D

0.1

1

10

100

)
W(r e

wo P ehca c2L

20 40 60 80 100 120 140 160

time(s)

0
100
200
300
400
500)J(yg renE .

mu c

L1-I
L1-D
L2

FIGURE Ov.31: Full execution of GZIP, 128 MB DRAM. The fi gure shows the entire run of GZIP. System confi guration is a 2 GHz
Pentium processor with 128 MB of FB-DIMM main memory and a 12 K-RPM disk drive with built-in disk cache. The fi gure shows
the interaction between all components of the memory system, including the L1 instruction cache, the L1 data cache, the unifi ed
L2 cache, the DRAM system, and the disk drive. All graphs use the same x-axis, which represents the execution time in seconds.
The x-axis does not start at zero; the measurements exclude system boot time, invocation of the shell, etc. Each data point repre-
sents aggregated (not sampled) activity within a 10-ms epoch. The CPI graph shows 2 system CPI values: one is the average CPI
for each 10-ms epoch, the other is the cumulative average CPI. A duration with no CPI data point indicates that no instructions
were executed due to I/O latency. The application is run in single-user mode, as is common for SPEC measurements; therefore,
disk delay shows up as stall time. Note that the CPI, the DRAM accesses, and the Disk accesses are plotted on log scales.

48 Memory Systems: Cache, DRAM, Disk

chOv_P379751.indd Sec2:48chOv_P379751.indd Sec2:48 8/8/07 4:33:49 PM8/8/07 4:33:49 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

ammp bzip2 gcc gzip mcf mgrid parser twolf vortex
0

100

200

300

400

500

600

700

800

900

1000

1100

 I
P

C

 no$

1x512 sectors (256 KB total)

2x512 sectors (512 KB total)

16x512 sectors (4 MB total)

24x512 sectors (6 MB total)

FIGURE Ov.32: The effects of disk cache size by varying the number of segments. The fi gure shows the effects of a different
number of segments with the same segment size in the disk cache. The system confi guration is 128 MB of DDR SDRAM with a
12k-RPM disk. There are fi ve bars for each benchmark, which are (1) no cache, (2) 1 segment of 512 sectors each, (3) 2 segments
of 512 sectors each, (4) 16 segment of 512 sectors each, and (5) 24 segment of 512 sectors each. Note that the CPI values are for
the disk-intensive portion of application execution, not the CPU-intensive portion of application execution (which could otherwise
blur distinctions).

Figure Ov.33 shows the behavior of the system with
128 MB and an ideal write buffer. As mentioned, the
performance increase and energy decrease is due to
the writes being buffered, allowing read requests to
progress. Execution time is 75 seconds (compared
to 67 seconds for a 512 MB system); and total energy
is 1100 J (compared to 1260 J for a 512-MB system).
For comparison, to show the effect of faster read and
write throughput, Figure Ov.34 shows the behavior of
the system with 128 MB and an 8-disk RAID-5 system.
Execution time is 115 seconds, and energy consump-
tion is 8.5 KJ. This achieves part of the performance
effect as write buffering by improving write time,
thereby freeing up read bandwidth sooner. However,
the benefi t comes at a signifi cant cost in energy.

Table Ov.5 gives breakdowns for gzip in tabu-
lar form, and the graphs beneath the table give the
breakdowns for gzip, bzip2, and ammp in graphical
form and for a wider range of parameters (different
disk RPMs). The applications all demonstrate the
same trends: to cut down the energy of a 512-MB
system by reducing the memory to 128 MB which

causes both the performance and the energy to get
worse. Performance degrades by a factor of 5–10;
energy increases by 1.5� to 10�. Ideal write buffer-
ing can give the best of both worlds (performance of
a large memory system and energy consumption of
a small memory system), and its benefi t is indepen-
dent of the disk’s RPM. Using a RAID system does
not gain signifi cant performance improvement, but
it consumes energy proportionally to the number
of disks. Note, however, that this is a uniprocessor
model running in single-user mode, so RAID is not
expected to shine.

Figure Ov.35 shows the effects of disk caching
and prefetching on both single-disk and RAID sys-
tems. In RAID systems, disk caching has only mar-
ginal effects to both the CPI and the disk average
response time. However, disk caching with prefetch-
ing has signifi cant benefi ts. In a slow disk system (i.e.,
5400 RPM), RAID has more tangible benefi ts over a
non-RAID system. Nevertheless, the combination of
using RAID, disk cache, and fast disks can improve
the overall performance up to a factor of 10. For the

Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 49

chOv_P379751.indd Sec2:49chOv_P379751.indd Sec2:49 8/8/07 4:33:51 PM8/8/07 4:33:51 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

0

5

10

15

20

)
W(re

woP

DRAM
DISK

DRAM & Disk Power/Cumulative Energy/Access Numbers
gzip — 128MB + write buffer

0

500

1000

1500

2000

)J(ygrenE cca

10

100

1000

10000

1e+05sessecc
A

M
A

R
D

10 15 20 25 30 35 40 45 50 55 60 65 70 75

time(s)

1
10

100
1000

10000
1e+05sessecc

A ksi
D

0.1

1

10

100

1000)
W(re

woP ehcacI

Cache Power (per 10 ms) and Cumulative Energy
gzip — 128MB + write buffer

0.1

1

10

100

1000

)
W(re

woP ehcac
D

0.1

1

10

100

)
W(re

woP ehcac2L

10 15 20 25 30 35 40 45 50 55 60 65 70 75

time(s)

0
100
200
300
400
500)J(ygrenE .

muc

L1-I
L1-D
L2

0

5e+06

1e+07

1.5e+07

2e+07s sec c
A eh cacI

Cache Accesses (per 10 ms) and System CPI
gzip — 128MB + write buffer

0

5e+06

1e+07

1.5e+07

2e+07sse cc
A ehc ac

D

0
50000
1e+05

1.5e+05
2e+05

2.5e+05
3e+05

3.5e+05ss ecc
A ehcac2 L

10 15 20 25 30 35 40 45 50 55 60 65 70 75

time(s)

1

10

100

1000

10000

IP
C

CPI@10ms
Cum. CPI

FIGURE Ov.33: Full execution of GZIP, 128 MB DRAM and ideal write buffer. The fi gure shows the entire run of GZIP. System
confi guration is a 2 GHz Pentium processor with 128 MB of FB-DIMM main memory and a 12 K-RPM disk drive with built-in disk
cache. The fi gure shows the interaction between all components of the memory system, including the L1 instruction cache, the
L1 data cache, the unifi ed L2 cache, the DRAM system, and the disk drive. All graphs use the same x-axis, which represents
the execution time in seconds. The x-axis does not start at zero; the measurements exclude system boot time, invocation of
the shell, etc. Each data point represents aggregated (not sampled) activity within a 10-ms epoch. The CPI graph shows two
system CPI values: one is the average CPI for each 10-ms epoch, the other is the cumulative average CPI. A duration with no
CPI data point indicates that no instructions were executed due to I/O latency. The application is run in single-user mode, as is
common for SPEC measurements; therefore, disk delay shows up as stall time. Note that the CPI, the DRAM accesses, and the
Disk accesses are plotted on log scales.

50 Memory Systems: Cache, DRAM, Disk

chOv_P379751.indd Sec2:50chOv_P379751.indd Sec2:50 8/8/07 4:33:51 PM8/8/07 4:33:51 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

0
20
40
60
80

100

)
W(re

woP

DRAM
DISK

DRAM & Disk Power/Cumulative Energy/Access Numbers
gzip — 128MB + 8-disk RAID-5

0
2000
4000
6000
8000

10000

)J(yg renE c ca

10

100

1000

10000

1e+05s es secc
A

M
A

R
D

20 40 60 80 100

time(s)

1
10

100
1000

10000
1e+05se ssecc

A ksi
D

0.1

1

10

100

1000)
W(re

woP ehca cI

Cache Power (per 10 ms) and Cumulative Energy
gzip — 128MB + 8-disk RAID-5

0.1

1

10

100

1000

)
W(re

wo P ehcac
D

0.1

1

10

100

)
W(re

w oP ehca c2L

20 40 60 80 100

time(s)

0
100
200
300
400
500)J(yg renE .

muc

0

5e+06

1e+07

1.5e+07

2e+07s sec c
A eh cacI

Cache Accesses (per 10 ms) and System CPI
gzip — 128MB + 8-disk RAID-5

0

5e+06

1e+07

1.5e+07

2e+07sse cc
A ehc ac

D

0
50000
1e+05

1.5e+05
2e+05

2.5e+05
3e+05

3.5e+05ss ecc
A ehcac2 L

20 40 60 80 100

time(s)

1

10

100

1000

10000

I P
C CPI@10ms

Cum. CPI

L1-I
L1-D
L2

FIGURE Ov.34: Full execution of GZIP, 128 MB DRAM and RAID-5 disk system. The fi gure shows the entire run of GZIP. System
confi guration is a 2 GHz Pentium processor with 128 MB of FB-DIMM main memory and a RAID-5 system of eight 12-K-RPM disk
drives with built-in disk cache. The fi gure shows the interaction between all components of the memory system, including the L1
instruction cache, the L1 data cache, the unifi ed L2 cache, the DRAM system, and the disk drive. All graphs use the same x-axis,
which represents the execution time in seconds. The x-axis does not start at zero; the measurements exclude system boot time,
invocation of the shell, etc. Each data point represents aggregated (not sampled) activity within a 10-ms epoch. The CPI graph
shows two system CPI values: one is the average CPI for each 10-ms epoch, the other is the cumulative average CPI. A duration
with no CPI data point indicates that no instructions were executed due to I/O latency. The application is run in single-user mode,
as is common for SPEC measurements; therefore, disk delay shows up as stall time. Note that the CPI, the DRAM accesses, and
the Disk accesses are plotted on log scales.

Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 51

chOv_P379751.indd Sec2:51chOv_P379751.indd Sec2:51 8/8/07 4:33:53 PM8/8/07 4:33:53 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

52 Memory Systems: Cache, DRAM, Disk

average response time, even though the write
response time in a RAID system is much higher than
the write response time in a single-disk system, this
trend does not translate directly into the overall per-
formance. The write response time in a RAID system
is higher due to parity calculations, especially the
benchmarks with small writes. Despite the improve-
ment in performance, care must be taken in applying
RAID because RAID increases the energy proportion-
ally to the number of the disks.

Perhaps the most interesting result in Figure Ov.35 is
that the CPI values (top graph) track the disk’s average
read response time (bottom graph) and not the disk’s
average response time (which includes both reads and
writes, also bottom graph). This observation holds true
for both read-dominated applications and applications
with signifi cant write activity (as are gzip and bzip2).
The reason this is interesting is that the disk commu-
nity tends to report performance numbers in terms of
average response time and not average read response

time, presumably believing the former to be a better
indicator of system-level performance than the latter.
Our results suggest that the disk community would
be better served by continuing to model the effects of
write traffi c (as it affects read latency) by reporting per-
formance as the average read response time.

Ov.4.5 Conclusions
We fi nd that the disk cache can be an effective tool

for improving performance at the system level. There
is a signifi cant interplay between the DRAM system
and the disk’s ability to buffer writes and prefetch
reads. An ideal write buffer homed within the disk has
the potential to move write traffi c out of the way and
begin working on read requests far sooner, with the
result that a system can be made to perform nearly
as well as one with four times the amount of main
memory, but with roughly half the energy consump-
tion of the confi guration with more main memory.

TABLE OV.5 Execution time and energy breakdowns for GZIP and BZIP2

System Confi guration
(DRAM Size - Disk RPM -
Option)

Ex. Time
(sec)

L1-I
Energy (J)

L1-D
Energy (J)

L2
Energy (J)

DRAM
Energy (J)

Disk
Energy (J)

Total
Energy (J)

GZIP

512 MB–12 K 66.8 129.4 122.1 25.4 440.8 544.1 1261.8

128 MB–12 K 169.3 176.5 216.4 67.7 419.6 1635.4 2515.6

128 MB–12 K–WB 75.8 133.4 130.2 28.7 179.9 622.5 1094.7

128 MB–12 K–RAID 113.9 151 165.5 44.8 277.8 7830 8469.1

k5R4
k5R1

k5B
WR1

k5diarR1

k21R4
k21R1

k21B
WR1

k21diarR1

k02R4
k02R1

k02B
WR1

k02diarR1

0

500

1000

1500

2000

2500

3000

)J(ygrenE

L1Icache
L1Dcache
L2 cache
DRAM
Disk

System Breakdown Energy and Execution Time
AMMP 32MB per rank (1 rank or 4 ranks); disk RPM: 5k, 12k, 20k; 1 disk or 8 RAID disks

0

20

40

60

80

100

)s(e
mit noitucexE

k5R4
k5R1

k5B
WR1

k5diarR1

k21R4
k21R1

k21B
WR1

k21diarR1

k02R4
k02R1

k02B
WR1

k02diarR1

0

2000

4000

6000

8000

)J(ygrenE

L1Icache
L1Dcache
L2 cache
DRAM
Disk

System Breakdown Energy and Execution Time
BZIP2 128MB per rank (1 rank or 4 ranks); disk RPM: 5k, 12k, 20k; 1 disk or 8 RAID disks

0

50

100

150

200

250

300

)s(e
mit noitu cexE

k5R4
k5R1

k5B
WR1

k5diarR1

k21R4
k21R1

k21B
WR1

k21diarR1

k02R4
k02R1

k02B
WR1

k02diarR1

0

2000

4000

6000

8000

10000

12000

)J(ygrenE

L1Icache
L1Dcache
L2 cache
DRAM
Disk

System Breakdown Energy and Execution Time
GZIP 128MB per rank (1 rank or 4 ranks); disk RPM: 5k, 12k, 20k; 1 disk or 8 RAID disks

0

50

100

150

200

250

300

)s(e
mit n oitucexE

chOv_P379751.indd Sec2:52chOv_P379751.indd Sec2:52 8/8/07 4:33:54 PM8/8/07 4:33:54 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 53

5k no$ pf&$ 12k no$ pf&$ 20k no$ pf&$no pf no pf no pf10
1

10
2

10
3

10
4

10
5

)
s

m(
e

mit
p

s
er

e
g

ar
e

v
a

K
SI

D

avrg Write resp time

avrg resp time

avrg Read resp time

5k RPM 12k RPM 20k RPM
0

1000

2000

3000

4000

5000

6000

 I
P

C

no cache no prefetch

w/ cache no prefetch

w/ cache & prefetch

bzip2 112MB (1ds/4ds/8ds)

1 disk
4 disks

8 disks

1 disk
4 disks

8 disks

FIGURE Ov.35: The effects of disk prefetching. The experiment tries to identify the effects of prefetching and caching in the disk
cache. The confi guration is 112 MB of DDR SDRAM running bzip2. The three bars in each group represent a single-disk system,
4-disk RAID-5 system, and 8-disk RAID-5 system. The fi gure above shows the CPI of each confi guration, and the fi gure below
shows the average response time of the disk requests. Note that the CPI axis is in linear scale, but the disk average response time
axis is in log scale. The height of the each bar in the average response time graph is the absolute value.

chOv_P379751.indd Sec2:53chOv_P379751.indd Sec2:53 8/8/07 4:33:55 PM8/8/07 4:33:55 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

54 Memory Systems: Cache, DRAM, Disk

This is extremely important, because FB-DIMM
systems are likely to have signifi cant power-dissipa-
tion problems, and because of this they will run at
the cutting edge of the storage-performance trade-
off. Administrators will confi gure these systems to
use the least amount of storage available to achieve
the desired performance, and thus a simple reduc-
tion in FB-DIMM storage will result in an unaccept-
able hit to performance. We have shown that an ideal
write buffer in the disk system will solve this problem,
transparently to the operating system.

Ov.5 What to Expect
What are the more important architecture-level

issues in store for these technologies? On what prob-
lems should a designer concentrate?

For caches and SRAMs in particular, power dis-
sipation and reliability are primary issues. A rule of
thumb is that SRAMs typically account for at least
one-third of the power dissipated by microproces-
sors, and the reliability for SRAM is the worst of the
three technologies.

For DRAMs, power dissipation is becoming an
issue with the high I/O speeds expected of future sys-
tems. The FB-DIMM, the only proposed architecture
seriously being considered for adoption that would
solve the capacity-scaling problem facing DRAM
systems, dissipates roughly two orders of magnitude
more power than a traditional organization (due to
an order of magnitude higher per DIMM power dis-
sipation and the ability to put an order of magnitude
more DIMMs into a system).

For disks, miniaturization and development of
heuristics for control are the primary consider-

ations, but a related issue is the reduction of power
dissipation in the drive’s electronics and mechanisms.
Another point is that some time this year, the indus-
try will be seeing the fi rst generation of hybrid disk
drives: those with fl ash memory to do write caching.
Initially, hybrid drives will be available only for mobile
applications. One reason for a hybrid drive is to be
able to have a disk drive in spin-down mode longer
(no need to spin up to do a write). This will save more
power and make the battery of a laptop last longer.

For memory systems as a whole, a primary issue
is optimization in the face of subsytems that have
unanticipated interactions in their design param-
eters.

From this book, a reader should expect to learn
the details of operation and tools of analysis that
are necessary for understanding the intricacies and
optimizing the behavior of modern memory systems.
The designer should expect of the future a memory-
system design space that will become increasingly
diffi cult to analyze simply and in which alternative
fi gures of merit (e.g., energy consumption, cost, reli-
ability) will become increasingly important. Future
designers of memory systems will have to perform
design-space explorations that consider the effects of
design parameters in all subsystems of the memory
hierarchy, and they will have to consider multiple
dimensions of design criteria (e.g., performance,
energy consumption, cost, reliability, and real-time
behavior).

In short, a holistic approach to design that con-
siders the whole hierarchy is warranted, but this
is very hard to do. Among other things, it requires
in-depth understanding at all the levels of the hierar-
chy. It is our goal that this book will enable just such
an approach.

chOv_P379751.indd Sec2:54chOv_P379751.indd Sec2:54 8/8/07 4:33:55 PM8/8/07 4:33:55 PM

© 2008 Elsevier Inc. All rights reserved.

© 2008 Elsevier Inc. All rights reserved.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Albertus-ExtraBold
 /Albertus-Medium
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /AllegroBT-Regular
 /AntiqueOlive
 /AntiqueOlive-Bold
 /AntiqueOlive-Compact
 /AntiqueOlive-Italic
 /AntiqueOlive-Roman
 /Apple-Chancery
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Demi
 /AvantGardeITCbyBT-DemiOblique
 /BabyKruffy
 /BankGothicBT-Medium
 /BenguiatITCbyBT-Bold
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BremenBT-Bold
 /CGOmega
 /CGOmega-Bold
 /CGOmega-BoldItalic
 /CGOmega-Italic
 /CGTimes
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /Candid
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /Chicago
 /Chick
 /Clarendon
 /Clarendon-Bold
 /Clarendon-Condensed-Bold
 /Clarendon-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CooperBlack-Italic
 /Copperplate-ThirtyThreeBC
 /Copperplate-ThirtyTwoBC
 /CopperplateGothicBT-Bold
 /Coronet
 /Coronet-Regular
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /English111VivaceBT-Regular
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /Euclid-Italic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /Eurostile
 /Eurostile-Bold
 /Eurostile-BoldExtendedTwo
 /Eurostile-ExtendedTwo
 /Fat
 /Fences
 /FencesPlain
 /FranklinGothic-Book
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Freshbot
 /Frosty
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-Light
 /FuturaBT-LightItalic
 /FuturaBlackBT-Regular
 /Garamond
 /Garamond-Antiqua
 /Garamond-Bold
 /Garamond-Book
 /Garamond-BookItalic
 /Garamond-Halbfett
 /Garamond-Italic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Gautami
 /Geneva
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /GillSans
 /GillSans-Bold
 /GillSans-BoldCondensed
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-ExtraBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /Goudy
 /Goudy-Bold
 /Goudy-BoldItalic
 /Goudy-ExtraBold
 /Goudy-Italic
 /GoudyHandtooledBT-Regular
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Compressed
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-ExtraCompressed
 /Helvetica-Fraction
 /Helvetica-FractionBold
 /Helvetica-Light
 /Helvetica-LightOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /Helvetica-UltraCompressed
 /HelveticaCyr-Bold
 /HelveticaCyr-BoldInclined
 /HelveticaCyr-Inclined
 /HelveticaCyr-Upright
 /HelveticaInserat-Roman
 /HelveticaInseratCyr-Upright
 /HelveticaNeue-Black
 /HelveticaNeue-BlackCond
 /HelveticaNeue-BlackCondObl
 /HelveticaNeue-BlackExt
 /HelveticaNeue-BlackExtObl
 /HelveticaNeue-BlackItalic
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldCond
 /HelveticaNeue-BoldCondObl
 /HelveticaNeue-BoldExt
 /HelveticaNeue-BoldExtObl
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-BoldOutline
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-ExtBlackCond
 /HelveticaNeue-ExtBlackCondObl
 /HelveticaNeue-Extended
 /HelveticaNeue-ExtendedObl
 /HelveticaNeue-Heavy
 /HelveticaNeue-HeavyCond
 /HelveticaNeue-HeavyCondObl
 /HelveticaNeue-HeavyExt
 /HelveticaNeue-HeavyExtObl
 /HelveticaNeue-HeavyItalic
 /HelveticaNeue-Italic
 /HelveticaNeue-Light
 /HelveticaNeue-LightCond
 /HelveticaNeue-LightCondObl
 /HelveticaNeue-LightExt
 /HelveticaNeue-LightExtObl
 /HelveticaNeue-LightItalic
 /HelveticaNeue-Medium
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-MediumExt
 /HelveticaNeue-MediumExtObl
 /HelveticaNeue-MediumItalic
 /HelveticaNeue-Roman
 /HelveticaNeue-Thin
 /HelveticaNeue-ThinCond
 /HelveticaNeue-ThinCondObl
 /HelveticaNeue-ThinExt
 /HelveticaNeue-ThinExtObl
 /HelveticaNeue-ThinItalic
 /HelveticaNeue-UltraLigCond
 /HelveticaNeue-UltraLigCondObl
 /HelveticaNeue-UltraLigExt
 /HelveticaNeue-UltraLigExtObl
 /HelveticaNeue-UltraLight
 /HelveticaNeue-UltraLightItal
 /HoeflerText-Black
 /HoeflerText-BlackItalic
 /HoeflerText-Italic
 /HoeflerText-Ornaments
 /HoeflerText-Regular
 /Humanist521BT-Bold
 /Humanist521BT-BoldItalic
 /Humanist521BT-Italic
 /Humanist521BT-Roman
 /Impact
 /Jenkinsv20
 /Jenkinsv20Thik
 /JoannaMT
 /JoannaMT-Bold
 /JoannaMT-BoldItalic
 /JoannaMT-Italic
 /Jokewood
 /KabelITCbyBT-Book
 /KabelITCbyBT-Ultra
 /Kartika
 /Latha
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldSlanted
 /LetterGothic-Italic
 /LetterGothic-Slanted
 /LubalinGraph-Book
 /LubalinGraph-BookOblique
 /LubalinGraph-Demi
 /LubalinGraph-DemiOblique
 /LucidaConsole
 /LucidaSansUnicode
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Mangal-Regular
 /Marigold
 /MathExt
 /MathPiFiveBold
 /MathPiFiveBoldItalic
 /MathPiFiveItalic
 /MathePiEig
 /MathePiSev
 /MathematicalPi-Five
 /MathematicalPi-Four
 /MathematicalPi-One
 /MathematicalPi-Six
 /MathematicalPi-Three
 /MathematicalPi-Two
 /MathematicalPi-TwoBold
 /MathematicalPiLTStd-1
 /MathematicalPiLTStd-2
 /MathematicalPiLTStd-3
 /MathematicalPiLTStd-4
 /MathematicalPiLTStd-5
 /MathematicalPiLTStd-6
 /Meridien-Bold
 /Meridien-BoldItalic
 /Meridien-Italic
 /Meridien-Medium
 /Meridien-MediumItalic
 /Meridien-Roman
 /MicrosoftSansSerif
 /Minion-Black
 /Minion-Bold
 /Minion-BoldItalic
 /Minion-DisplayItalic
 /Minion-DisplayRegular
 /Minion-Italic
 /Minion-Regular
 /Minion-Semibold
 /Minion-SemiboldItalic
 /MonaLisa-Recut
 /Monaco
 /MonotypeCorsiva
 /Myriad-BdWeb
 /Myriad-CnItWeb
 /Myriad-CnWeb
 /Myriad-ItWeb
 /Myriad-Web
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewYork
 /Optima
 /Optima-Bold
 /Optima-BoldItalic
 /Optima-Italic
 /Oxford
 /OzHandicraftBT-Roman
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /Palatino-Roman
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Poornut
 /Porkys
 /PorkysHeavy
 /PosterBodoniBT-Roman
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RefSpecialty
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /SerifaBT-Bold
 /SerifaBT-Italic
 /SerifaBT-Roman
 /SerifaBT-Thin
 /Shruti
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /Staccato222BT-Regular
 /StempelGaramond-Bold
 /StempelGaramond-BoldItalic
 /StempelGaramond-Italic
 /StempelGaramond-Roman
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /StoneSerif
 /StoneSerif-Bold
 /StoneSerif-BoldItalic
 /StoneSerif-Italic
 /StoneSerif-Semibold
 /StoneSerif-SemiboldItalic
 /Swiss911BT-ExtraCompressed
 /Sylfaen
 /Symbol
 /SymbolMT
 /Taffy
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /Times-Roman
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TypoUprightBT-Regular
 /Univers
 /Univers-Black
 /Univers-BlackOblique
 /Univers-Bold
 /Univers-BoldExt
 /Univers-BoldExtObl
 /Univers-BoldItalic
 /Univers-BoldOblique
 /Univers-Condensed
 /Univers-Condensed-Bold
 /Univers-Condensed-BoldItalic
 /Univers-Condensed-Medium
 /Univers-Condensed-MediumItalic
 /Univers-CondensedBold
 /Univers-CondensedBoldOblique
 /Univers-CondensedOblique
 /Univers-Extended
 /Univers-ExtendedObl
 /Univers-Light
 /Univers-LightOblique
 /Univers-Medium
 /Univers-MediumItalic
 /Univers-Oblique
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /Vrinda
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /Webdings
 /WeltronUrban
 /Wingdings-Regular
 /Wingdings2
 /Wingdings3
 /ZWAdobeF
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZurichBT-RomanExtended
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [504.000 720.000]
>> setpagedevice

