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OVERVIEW

Memory is essential to the operation of a computer 
system, and nothing is more important to the devel-
opment of the modern memory system than the con-
cept of the memory hierarchy. While a fl at memory 
system built of a single technology is attractive for 
its simplicity, a well-implemented hierarchy allows a 
memory system to approach simultaneously the per-
formance of the fastest component, the cost per bit of 
the cheapest component, and the energy consump-
tion of the most energy-effi cient component. 

For years, the use of a memory hierarchy has 
been very convenient, in that it has simplifi ed the 
process of designing memory systems. The use of a 
hierarchy allowed designers to treat system design 
as a modularized process—to treat the memory 
system as an abstraction and to optimize individual 
subsystems (caches, DRAMs [dynamic RAM], disks) 
in isolation. 

However, we are fi nding that treating the hierar-
chy in this way—as a set of disparate subsystems 
that interact only through well-defi ned functional 
interfaces and that can be optimized in isola-
tion—no longer suffi ces for the design of modern 
memory systems. One trend becoming apparent is 
that many of the underlying implementation issues 
are becoming signifi cant. These include the phys-
ics of device and interconnect scaling, the choice 
of signaling protocols and topologies to ensure 
signal integrity, design parameters such as granu-
larity of access and support for concurrency, and 
communication-related issues such as scheduling 
algorithms and queueing. These low-level details 
have begun to affect the higher level design process 

quite dramatically, whereas they were considered 
transparent only a design-generation ago. Cache 
architectures are appearing that play to the limita-
tions imposed by interconnect physics in deep sub-
micron processes; modern DRAM design is driven 
by circuit-level limitations that create system-level 
headaches; and modern disk performance is domi-
nated by the on-board caching and scheduling poli-
cies. This is a non-trivial environment in which to 
attempt optimal design.

This trend will undoubtedly become more impor-
tant as time goes on, and even now it has tremendous 
impact on design results. As hierarchies and their 
components grow more complex, systemic behav-
iors—those arising from the complex interaction of 
the memory system’s parts—have begun to domi-
nate. The real loss of performance is not seen in the 
CPU or caches or DRAM devices or disk assemblies 
themselves, but in the subtle interactions between 
these subsystems and in the manner in which 
these subsystems are connected. Consequently, it is 
becoming increasingly foolhardy to attempt system-
level optimization by designing/optimizing each of 
the parts in isolation (which, unfortunately, is often 
the approach taken in modern computer design). 
No longer can a designer remain oblivious to issues 
“outside the scope” and focus solely on design-
ing a subsystem. It has now become the case that a 
memory-systems designer, wishing to build a prop-
erly behaved memory hierarchy, must be intimately 
familiar with issues involved at all levels of an imple-
mentation, from cache to DRAM to disk. Thus, we 
wrote  this book. 

On Memory Systems 
and Their Design

chOv_P379751.indd   Sec2:1chOv_P379751.indd   Sec2:1 8/8/07   4:33:25 PM8/8/07   4:33:25 PM

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2008 Elsevier Inc. All rights reserved. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2008 Elsevier Inc. All rights reserved. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2008 Elsevier Inc. All rights reserved. 

2 Memory Systems: Cache, DRAM, Disk

Ov.1 Memory Systems
A memory hierarchy is designed to provide mul-

tiple functions that are seemingly mutually exclusive. 
We start at random-access memory (RAM): all micro-
processors (and computer systems in general) expect 
a  random-access memory out of which they operate. 
This is fundamental to the structure of modern soft-
ware, built upon the von Neumann model in which 
code and data are essentially the same and reside in 
the same place (i.e., memory). All requests, whether 
for instructions or for data, go to this random-access 
memory. At any given moment, any particular datum 
in memory may be needed; there is no requirement 
that data reside next to the code that manipulates 
it, and there is no requirement that two instructions 
executed one after the other need to be adjacent in 
memory. Thus, the memory system must be able to 
handle randomly addressed1 requests in a manner 
that favors no particular request. For instance, using 
a tape drive for this primary memory is unacceptable 
for performance reasons, though it might be accept-
able in the Turing-machine sense.

Where does the mutually exclusive part come in? 
As we said, all microprocessors are built to expect a 
random-access memory out of which they can oper-
ate. Moreover, this memory must be fast, match-
ing the machine’s processing speed; otherwise, the 
machine will spend most of its time tapping its foot 
and staring at its watch. In addition, modern soft-
ware is written to expect gigabytes of storage for data, 
and the modern consumer expects this storage to be 
cheap. How many memory technologies provide both 
tremendous speed and tremendous storage capacity 
at a low price? Modern processors execute instruc-
tions both out of order and speculatively—put sim-
ply, they execute instructions that, in some cases, are 
not meant to get executed—and system software is 
typically built to expect that certain changes to mem-
ory are permanent. How many memory technologies 
provide non- volatility and an undo operation?

While it might be elegant to provide all of these 
competing demands with a single technology (say, 

for example, a gigantic battery-backed SRAM [static 
RAM]), and though there is no engineering problem 
that cannot be solved (if ever in doubt about this, sim-
ply query a room full of engineers), the reality is that 
building a full memory system out of such a technol-
ogy would be prohibitively expensive today.2 The good 
news is that it is not necessary. Specialization and 
division of labor make possible all of these competing 
goals simultaneously. Modern memory systems often 
have a terabyte of storage on the desktop and provide 
instruction-fetch and data-access bandwidths of 128 
GB/s or more. Nearly all of the storage in the system 
is non-volatile, and speculative execution on the part 
of the microprocessor is supported. All of this can be 
found in a memory system that has an average cost of 
roughly 1/100,000,000 pennies per bit of storage.

The reason all of this is possible is because of a 
phenomenon called locality of reference [Belady 1966, 
Denning 1970]. This is an observed behavior that 
computer applications tend to exhibit and that, when 
exploited properly, allows a small memory to serve in 
place of a larger one. 

Ov.1.1 Locality of Reference Breeds the 
Memory Hierarchy

We think linearly (in steps), and so we program the 
computer to solve problems by working in steps. The 
practical implications of this are that a computer’s 
use of the memory system tends to be non-random 
and highly predictable. Thus is born the concept of 
locality of reference, so named because memory refer-
ences tend to be localized in time and space:

If you use something once, you are likely to 
use it again.
If you use something once, you are likely to 
use its neighbor.

The fi rst of these principles is called temporal local-
ity; the second is called spatial locality. We will discuss 
them (and another type of locality) in more detail in 
Part I: Cache of this book, but for now it  suffi ces to 

•

•

1Though “random” addressing is the commonly used term, authors actually mean arbitrarily addressed requests because, 
in most memory systems, a randomly addressed sequence is one of the most effi ciently handled events.
2Even Cray machines, which were famous for using SRAM as their main memory, today are built upon DRAM for their 
main memory.
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Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 3

say that one can exploit the locality principle and 
render a single-level memory system, which we just 
said was expensive, unnecessary. If a computer’s use 
of the memory system, given a small time window, is 
both predictable and limited in spatial extent, then 
it stands to reason that a program  does not need all 
of its data immediately accessible. A program would 
perform nearly as well if it had, for instance, a two-
level store, in which the fi rst level provides immediate 
access to a subset of the program’s data, the second 
level holds the remainder of the data but is slower and 
therefore cheaper, and some appropriate heuristic is 
used to manage the movement of data back and forth 
between the levels, thereby ensuring that the most-
needed data is usually in the fi rst-level store. 

This generalizes to the memory hierarchy: multiple 
levels of storage, each optimized for its assigned task. 
By choosing these levels wisely a designer can produce 
a system that has the best of all worlds: performance 
approaching that of the fastest component, cost per 
bit approaching that of the cheapest component, and 
energy consumption per access approaching that of 
the least power-hungry component.

The modern hierarchy is comprised of the following 
components, each performing a particular function or 
fi lling a functional niche within the system: 

Cache (SRAM): Cache provides access to 
program instructions and data that has 
very low latency (e.g., 1/4 nanosecond per 
access) and very high bandwidth (e.g., a 
16-byte instruction block and a 16-byte 

•

data block per cycle => 32 bytes per 1/4 
nanosecond, or 128 bytes per nanosecond, 
or 128 GB/s). It is also important to note 
that cache, on a per-access basis, also has 
relatively low energy requirements 
compared to other technologies.
DRAM: DRAM provides a random-access 
storage that is relatively large, relatively fast, 
and relatively cheap. It is large and cheap 
compared to cache, and it is fast compared 
to disk. Its main strength is that it is just fast 
enough and just cheap enough to act as an 
operating store. 
Disk: Disk provides permanent storage at 
an ultra-low cost per bit. As mentioned, 
nearly all computer systems expect some 
data to be modifi able yet permanent, so the 
memory system must have, at some level, a 
permanent store. Disk’s advantage is its very 
reasonable cost (currently less than 50¢ per 
gigabyte), which is low enough for users to 
buy enough of it to store thousands of songs, 
video clips, photos, and other memory hogs 
that users are wont to accumulate in their 
accounts (authors included).

Table Ov.1 lists some rough order-of-magnitude 
comparisons for access time and energy consump-
tion per access.

Why is it not feasible to build a fl at memory system 
out of these technologies? Cache is far too expensive 
to be used as permanent storage, and its cost to store a 
single album’s worth of audio would exceed that of the 

•

•

Technology Bytes per Access (typ.) Latency per Access Cost per Megabytea Energy per Access

On-chip Cache 10 100 of picoseconds $1–100 1 nJ 

Off-chip Cache 100 Nanoseconds $1–10 10–100 nJ

DRAM 1000 (internally 
fetched)

10–100 
nanoseconds

$0.1 1–100 nJ (per 
device)

Disk 1000 Milliseconds $0.001 100–1000 mJ

TABLE 0V.1 Cost-performance for various memory technologies

aCost of semiconductor memory is extremely variable, dependent much more on economic factors and sales volume than on 
manufacturing issues. In particular, on-chip caches (i.e., those integrated with a microprocessor core) can take up half of the 
die area, in which case their “cost” would be half of the selling price of that microprocessor. Depending on the market (e.g., 
embedded versus high end) and sales volume, microprocessor costs cover an enormous range of prices, from pennies per 
square millimeter to several dollars per square millimeter.
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4 Memory Systems: Cache, DRAM, Disk

original music CD by several orders of magnitude. Disk 
is far too slow to be used as an operating store, and its 
average seek time for random accesses is measured in 
milliseconds. Of the three, DRAM is the closest to pro-
viding a fl at memory system. DRAM is suffi ciently fast 
enough that, without the support of a cache front-end, 
it can act as an operating store for many embedded 
systems, and with battery back-up it can be made to 
function as a permanent store. However, DRAM alone 
is not cheap enough to serve the needs of human 
users, who often want nearly a terabyte of permanent 
storage, and, even with random access times in the 
tens of nanoseconds, DRAM is not quite fast enough to 
serve as the only memory for modern general-purpose 
microprocessors, which would prefer a new block of 
instructions every fraction of a nanosecond. 

So far, no technology has appeared that provides 
every desired characteristic: low cost, non-volatility, 
high bandwidth, low latency, etc. So instead we build 
a system in which each component is designed to offer 
one or more characteristics, and we manage the opera-
tion of the system so that the poorer characteristics of 
the various technologies are “hidden.” For example, if 
most of the memory references made by the micro-
processor are handled by the cache and/or DRAM 
subsystems, then the disk will be used only rarely, 
and, therefore, its extremely long latency will contrib-
ute very little to the average access time. If most of the 
data resides in the disk subsystem, and very little of it 
is needed at any given moment in time, then the cache 
and DRAM subsystems will not need much storage, and, 

therefore, their 
higher costs per 
bit will contrib-
ute very little to 
the average cost 
of the system. 
If done right, a 
memory system 
has an average 
cost approaching 
that of bottom-

most layer and an average access time and bandwidth 
approaching that of topmost layer.

The memory hierarchy is usually pictured as a pyra-
mid, as shown in Figure Ov.1. The higher levels in the 

hierarchy have better performance characteristics 
than the lower levels in the hierarchy; the higher levels 
have a higher cost per bit than the lower levels; and the 
system uses fewer bits of storage in the higher levels 
than found in the lower levels. 

Though modern memory systems are comprised of 
SRAM, DRAM, and disk, these are simply technologies 
chosen to serve particular needs of the system, namely 
permanent store, operating store, and a fast store. Any 
technology set would suffi ce if it (a) provides perma-
nent and operating stores and (b) satisfi es the given 
computer system’s performance, cost, and power 
requirements.

Permanent Store
The system’s permanent store is where everything 

lives … meaning it is home to data that can be modi-
fi ed (potentially), but whose modifi cations must be 
remembered across invocations of the system (power-
ups and power-downs). In general-purpose systems, 
this data typically includes the operating system’s 
fi les, such as boot program, OS (operating system) 
executable, libraries, utilities, applications, etc., and 
the users’ fi les, such as graphics, word-processing 
documents, spreadsheets, digital photographs, digi-
tal audio and video, email, etc. In embedded systems, 
this data typically includes the system’s executable 
image and any installation-specifi c confi guration 
information that it requires. Some embedded systems 
also maintain in permanent store the state of any par-
tially completed transactions to withstand worst-case 
scenarios such as the system going down before the 
transaction is fi nished (e.g., fi nancial transactions). 

These all represent data that should not disap-
pear when the machine shuts down, such as a user’s 
saved email messages, the operating system’s code 
and confi guration information, and applications and 
their saved documents. Thus, the storage must be non-
volatile, which in this context means not susceptible to 
power outages. Storage technologies chosen for perma-
nent store include magnetic disk, fl ash memory, and 
even EEPROM (electrically erasable programmable 
read-only memory), of which fl ash memory is a special 
type. Other forms of programmable ROM (read-only 
memory) such as ROM, PROM (programmable ROM), 

Speed

Permanent Store

Level 1
Level 2

Level i
…

…

Cost Size

FIGURE Ov.1: A memory hierachy.

chOv_P379751.indd   Sec2:4chOv_P379751.indd   Sec2:4 8/8/07   4:33:28 PM8/8/07   4:33:28 PM

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2008 Elsevier Inc. All rights reserved. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2008 Elsevier Inc. All rights reserved. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2008 Elsevier Inc. All rights reserved. 

Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 5

or EPROM (erasable programmable ROM) are suitable 
for non-writable permanent information such as the 
executable image of an embedded system or a gen-
eral-purpose system’s boot code and BIOS.3 Numerous 
exotic non-volatile technologies are in development, 
including magnetic RAM (MRAM), FeRAM (ferroelec-
tric RAM), and phase-change RAM (PCRAM).

In most systems, the cost per bit of this technology 
is a very important consideration. In general-purpose 
systems, this is the case because these systems tend 
to have an enormous amount of permanent storage. A 
desktop can easily have more than 500 GB of perma-
nent store, and a departmental server can have one 
hundred times that amount. The enormous number 
of bits in these systems translates even modest cost-
per-bit increases into signifi cant dollar amounts. 
In embedded systems, the cost per bit is important 
because of the signifi cant number of units shipped. 
Embedded systems are often consumer devices that 
are manufactured and sold in vast quantities, e.g., cell 
phones, digital cameras, MP3 players, programmable 
thermostats, and  disk drives. Each embedded system 
might not require more than a handful of megabytes 
of storage, yet a tiny 1¢ increase in the cost per mega-
byte of memory can translate to a $100,000 increase 
in cost per million units manufactured.

Operating (Random-Access) Store
As mentioned earlier, a typical microprocessor 

expects a new instruction or set of instructions on 
every clock cycle, and it can perform a data-read or 
data-write every clock cycle. Because the addresses 
of these instructions and data need not be sequential 
(or, in fact, related in any detectable way), the mem-
ory system must be able to handle random access—it 
must be able to provide instant access to any datum 
in the memory system. 

The machine’s operating store is the level of memory 
that provides random access at the microprocessor’s 
data granularity. It is the storage level out of which the 
microprocessor could conceivably operate, i.e., it is 
the storage level that can provide random access to its 

storage, one data word at a time. This storage level is 
 typically called “main memory.” Disks cannot serve as 
main memory or operating store and cannot provide 
random access for two reasons: instant access is pro-
vided for only the data underneath the disk’s head at 
any given moment, and the granularity of access is not 
what a typical processor requires. Disks are block-ori-
ented devices, which means they read and write data 
only in large chunks; the typical granularity is 512 B. Pro-
cessors, in contrast, typically operate at the granularity 
of 4 B or 8 B data words. To use a disk, a microprocessor 
must have additional buffering memory out of which it 
can read one instruction at a time and read or write one 
datum at a time. This buffering memory would become 
the de facto operating store of the  system. 

Flash memory and EEPROM (as well as the exotic 
non-volatile technologies mentioned earlier) are poten-
tially viable as an operating store for systems that have 
small permanent-storage needs, and the non-volatil-
ity of these technologies provides them with a distinct 
advantage. However, not all are set up as an ideal oper-
ating store; for example, fl ash memory supports word-
sized reads but supports only block-sized writes. If this 
type of issue can be handled in a manner that is trans-
parent to the processor (e.g., in this case through addi-
tional data buffering), then the memory technology can 
still serve as a reasonable hybrid operating store. 

Though the non-volatile technologies seem posi-
tioned perfectly to serve as operating store in all manner 
of devices and systems, DRAM is the most commonly 
used technology. Note that the only requirement of 
a memory system’s operating store is that it provide 
random access with a small access granularity. Non-
volatility is not a requirement, so long as it is provided 
by another level in the hierarchy. DRAM is a popular 
choice for operating store for several reasons: DRAM 
is faster than the various non-volatile technologies (in 
some cases much faster); DRAM supports an unlim-
ited number of writes, whereas some non-volatile 
technologies start to fail after being erased and rewrit-
ten too many times (in some technologies, as few as 
1–10,000 erase/write cycles); and DRAM processes 
are very similar to those used to build logic devices. 

3BIOS = basic input/output system, the code that provides to software low-level access to much of the hardware. 
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6 Memory Systems: Cache, DRAM, Disk

DRAM can be fabricated using similar materials and 
(relatively) similar silicon-based process technologies 
as most microprocessors, whereas many of the various 
non-volatile technologies require new materials and 
(relatively) different process technologies.

Fast (and Relatively Low-Power) Store
If these storage technologies provide such reason-

able operating store, why, then, do modern systems use 
cache? Cache is inserted between the processor and the 
main memory system whenever the access behavior 
of the main memory is not suffi cient for the needs or 
goals of the system. Typical fi gures of merit include per-
formance and energy consumption (or power dissipa-
tion). If the performance when operating out of main 
memory is insuffi cient, cache is interposed between the 
processor and main memory to decrease the average 
access time for data. Similarly, if the energy consumed 
when operating out of main memory is too high, cache 
is interposed between the processor and main memory 
to decrease the system’s energy consumption. 

The data in Table Ov.1 should give some intuition 
about the design choice. If a cache can reduce the 
number of accesses made to the next level down in the 
hierarchy, then it potentially reduces both execution 
time and energy consumption for an application. The 
gain is only potential because these numbers are valid 
only for certain technology parameters. For example, 
many designs use large SRAM caches that consume 
much more energy than several DRAM chips com-
bined, but because the caches can reduce execution 
time they are used in systems where performance is 
critical, even at the expense of energy consumption. 

It is important to note at this point that, even though 
the term “cache” is usually interpreted to mean SRAM, 
a cache is merely a concept and as such imposes 
no expectations on its implementation. Caches are 

best thought of as compact databases, as shown in 
Figure Ov.2. They contain data and, optionally, 
metadata such as the unique ID (address) of each 
data block in the array, whether it has been updated 
recently, etc. Caches can be built from SRAM, DRAM, 
disk, or virtually any storage technology. They can be 
managed completely in hardware and thus can be 
transparent to the running application and even to 
the memory system itself; and at the other extreme 
they can be explicitly managed by the running appli-
cation. For instance, Figure Ov.2 shows that there is 
an optional block of metadata, which if implemented 
in hardware would be called the cache’s tags. In that 
instance, a key is passed to the tags array, which 
produces either the location of the corresponding 
item in the data array (a cache hit) or an indication 
that the item is not in the data array (a cache miss). 
Alternatively, software can be written to index the 
array explicitly, using direct cache-array addresses, 
in which case the key lookup (as well as its associ-
ated tags array) is unnecessary. The confi guration 
chosen for the cache is called its organization. Cache 
organizations exist at all spots along the continuum 
between these two extremes. Clearly, the choice of 
organization will signifi cantly impact the cache’s per-
formance and energy consumption.

Predictability of access time is another common fi g-
ure of merit. It is a special aspect of performance that is 
very important when building real-time systems or sys-
tems with highly orchestrated data movement. DRAM 
is occasionally in a state where it needs to ignore exter-
nal requests so that it can guarantee the integrity of its 
stored data (this is called refresh and will be discussed in 
detail in Part II of the book). Such hiccups in data move-
ment can be disastrous for some applications. For this 
reason, many microprocessors, such as digital signal 
processors (DSPs) and processors used in embedded 
control applications (called microcontrollers), often 

Metadata Data

Input Key Entry in
Data Array

Data
Available

FIGURE Ov.2: An idealized cache lookup. A cache is logically comprised of two elements: the data array and some management 
information that indicates what is in the data array (labeled “metadata”). Note that the key information may be virtual, i.e., data 
addresses can be embedded in the software using the cache, in which case there is no explicit key lookup, and only the data 
array is needed.
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Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 7

have special caches that look like small main memo-
ries. These are scratch-pad RAMs whose implementa-
tion lies toward the end of the spectrum at which the 
running application manages the cache explicitly. DSPs 
typically have two of these scratch-pad SRAMs so that 
they can issue on every cycle a new multiply-accumu-
late (MAC) operation, an important DSP instruction 
whose repeated operation on a pair of data arrays pro-
duces its dot product. Performing a new MAC opera-
tion every cycle requires the memory system to load 
new elements from two different arrays simultaneously 
in the same cycle. This is most easily accomplished 
by having two separate data busses, each with its own 
independent data memory and each holding the ele-
ments of a different array. 

Perhaps the most familiar example of a software-
managed memory is the processor’s register fi le, an 
array of storage locations that is indexed directly by bits 
within the instruction and whose contents are dictated 
entirely by software. Values are brought into the register 
fi le explicitly by software instructions, and old values 
are only overwritten if done so explicitly by software. 
Moreover, the register fi le is signifi cantly smaller than 
most on-chip caches and typically consumes far less 
energy. Accordingly, software’s best bet is often to opti-
mize its use of the register fi le [Postiff & Mudge 1999].

Ov.1.2 Important Figures of Merit
The following issues have been touched on during 

the previous discussion, but at this point it would be 
valuable to formally present the various fi gures of merit 
that are important to a designer of memory systems. 
Depending on the environment in which the memory 
system will be used (supercomputer, departmental 
server, desktop, laptop, signal-processing system, 
embedded control system, etc.), each metric will carry 
more or less weight. Though most academic studies 
tend to focus on one axis at a time (e.g., performance), 
the design of a memory system is a multi-dimensional 
optimization problem, with all the adherent complex-
ities of analysis. For instance, to analyze something in 
this design space or to  consider one memory system 

over another, a designer should be familiar with con-
cepts such as Pareto optimality (described later in this 
chapter). The various fi gures of merit, in no particu-
lar order other than performance being fi rst due to 
its popularity, are performance, energy consumption 
and power dissipation, predictability of behavior (i.e., 
real time), manufacturing costs, and system reliability. 
This section describes them briefl y, collectively. Later 
sections will treat them in more detail. 

Performance
The term “performance” means many things to 

many people. The performance of a system is typically 
measured in the time it takes to execute a task (i.e., task 
latency), but it can also be measured in the number of 
tasks that can be handled in a unit time period (i.e., 
task bandwidth). Popular fi gures of merit for perfor-
mance include the following:4

Cycles per Instruction (CPI)

�   
Total execution cycles

   _________________________________   
Total user-level instructions committed

  

Memory-system CPI overhead 

� Real CPI – CPI assuming perfect memory

Memory Cycles per Instruction (MCPI) 

�   Total cycles spent in memory system   _________________________________   
Total user-level instructions committed

  

Cache miss rate �   Total cache misses  _________________  
Total cache accesses

  

Cache hit rate � 1 – Cache miss rate

Average access time 

�  (hit rate . average to service hit)�                   
(miss rate . average to service miss)

 

Million Instructions per Second (MIPS) 

�     
Instructions executed (seconds) 

   _____________________________   
 106 • Average required for execution

  

•

•

•

•

•

•

•

4Note that the MIPS metric is easily abused. For instance, it is inappropriate for comparing different instruction-set 
architectures, and marketing literature often takes the defi nition of “instructions executed” to mean any particular given 
window of time as opposed to the full execution of an application. In such cases, the metric can mean the highest possible 
issue rate of instructions that the machine can achieve (but not necessarily sustain for any realistic period of time).
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8 Memory Systems: Cache, DRAM, Disk

A cautionary note: using a metric of performance 
for the memory system that is independent of a pro-
cessing context can be very deceptive. For instance, 
the MCPI metric does not take into account how much 
of the memory system’s activity can be overlapped 
with processor activity, and, as a result, memory sys-
tem A which has a worse MCPI than memory system 
B might actually yield a computer system with better 
total performance. As Figure Ov.5 in a later section 
shows, there can be signifi cantly different amounts 
of overlapping activity between the memory system 
and CPU execution. 

How to average a set of performance metrics cor-
rectly is still a poorly understood topic, and it is very 
sensitive to the weights chosen (either explicitly or 
implicitly) for the various benchmarks considered 
[John 2004]. Comparing performance is always the 
least ambiguous when it means the amount of time 
saved by using one design over another. When we ask 
the question this machine is how much faster than 
that machine? the implication is that we have been 
using that machine for some time and wish to know 
how much time we would save by using this machine 
instead. The true measure of performance is to com-
pare the total execution time of one machine to 
another, with each machine running the benchmark 
programs that represent the user’s typical workload 
as often as a user expects to run them. For instance, 
if a user compiles a large software application ten 
times per day and runs a series of regression tests 
once per day, then the total execution time should 
count the compiler’s execution ten times more than 
the  regression test. 

Energy Consumption and Power Dissipation
Energy consumption is related to work accom-

plished (e.g., how much computing can be done 
with a given battery), whereas power dissipation is 
the rate of consumption. The instantaneous power 
dissipation of CMOS (complementary metal-oxide-
 semiconductor) devices, such as microprocessors, 
is measured in watts (W) and represents the sum 
of two components: active power, due to switching 
activity, and static power, due primarily to subthresh-
old  leakage. To a fi rst approximation, average power 

 dissipation is equal to the following (we will present a 
more detailed model later):

Pavg � (Pdynamic � Pstatic) � Ctot V 2dd
 f � IleakVdd (EQ Ov.1)

where Ctot is the total capacitance switched, Vdd is 
the power supply, f is the switching frequency, and Ileak 
is the leakage current, which includes such sources 
as subthreshold and gate leakage. With each genera-
tion in process technology, active power is decreas-
ing on a device level and remaining roughly constant 
on a chip level. Leakage power, which used to be 
 insignifi cant relative to switching power, increases as 
devices become smaller and has recently caught up 
to switching power in magnitude [Grove 2002]. In the 
future, leakage will be the primary concern. 

Energy is related to power through time. The energy 
consumed by a computation that requires T seconds is 
measured in joules (J) and is equal to the integral of the 
instantaneous power over time T. If the power dissipa-
tion remains constant over T, the resultant energy con-
sumption is simply the product of power and time. 

E � (Pavg
.T) � CtotV 2ddN � IleakVddT  (EQ Ov.2)

where N is the number of switching events that occurs 
during the computation.

In general, if one is interested in extending battery 
life or reducing the electricity costs of an enterprise 
computing center, then energy is the appropriate 
metric to use in an analysis comparing approaches. 
If one is concerned with heat removal from a system 
or the thermal effects that a functional block can cre-
ate, then power is the appropriate metric. In informal 
discussions (i.e., in common-parlance prose rather 
than in equations where units of measurement are 
inescapable), the two terms “power” and “energy” are 
frequently used interchangeably, though such use is 
technically incorrect. Beware, because this can lead to 
ambiguity and even misconception, which is usually 
unintentional, but not always so. For instance, micro-
processor manufacturers will occasionally claim to 
have a “low-power” microprocessor that beats its pre-
decessor by a factor of, say, two. This is easily accom-
plished by running the microprocessor at half the 
clock rate, which does reduce its power dissipation, 
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Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 9

but remember that power is the rate at which energy 
is consumed. However, to a fi rst order, doing so dou-
bles the time over which the processor dissipates that 
power. The net result is a processor that consumes the 
same amount of energy as before, though it is branded 
as having lower power, which is technically not a lie. 

Popular fi gures of merit that incorporate both 
energy/power and performance include the following:

Energy-Delay Product 

�  �  Energy required           
to perform task

   �  •  �  Time required
          

to perform task
  � 

Power-Delay Product 

�   �  Power required
          

to perform task
   �  

m

  •    �   Time required           
 to perform task

  �  
n

 

MIPS per watt 

�   Performance of benchmark in MIPS   _________________________________    
Average power dissipated by benchmark

  

The second equation was offered as a generalized 
form of the fi rst (note that the two are equivalent when 
m � 1 and n � 2) so that designers could place more 
weight on the metric (time or energy/power) that 
is most important to their design goals [Gonzalez & 
Horowitz 1996, Brooks et al. 2000a].

Predictable (Real-Time) Behavior
Predictability of behavior is extremely important 

when analyzing real-time systems, because correct-
ness of operation is often the primary design goal for 
these systems (consider, for example, medical equip-
ment, navigation systems, anti-lock brakes, fl ight 
control systems, etc., in which failure to perform as 
predicted is not an option). 

Popular fi gures of merit for expressing predictabil-
ity of behavior include the following:

Worst-Case Execution Time (WCET), taken 
to mean the longest amount of time a func-
tion could take to execute
Response time, taken to mean the time 
between a stimulus to the system and the 
system’s response (e.g., time to respond to 
an external interrupt)

•

•

•

•

•

Jitter, the amount of deviation from an 
 average timing value

These metrics are typically given as single num-
bers (average or worst case), but we have found that 
the probability density function makes a valuable aid 
in system analysis [Baynes et al. 2001, 2003].

Design (and Fabrication and Test) Costs
Cost is an obvious, but often unstated, design goal. 

Many consumer devices have cost as their primary 
consideration: if the cost to design and manufacture 
an item is not low enough, it is not worth the effort 
to build and sell it. Cost can be represented in many 
different ways (note that energy consumption is a 
measure of cost), but for the purposes of this book, by 
“cost” we mean the cost of producing an item: to wit, 
the cost of its design, the cost of testing the item, and/
or the cost of the item’s manufacture. Popular fi gures 
of merit for cost include the following:

Dollar cost (best, but often hard to even 
approximate)

Design size, e.g., die area (cost of manufactur-
ing a VLSI (very large scale integration) design 
is proportional to its area cubed or more)

Packaging costs, e.g., pin count

Design complexity (can be expressed in 
terms of number of logic gates, number of 
transistors, lines of code, time to compile 
or synthesize, time to verify or run DRC 
(design-rule check), and many others, 
including a design’s impact on clock cycle 
time [Palacharla et al. 1996])

Cost is often presented in a relative sense, allowing 
differing technologies or approaches to be placed on 
equal footing for a comparison.

Cost per storage bit/byte/KB/MB/etc. 
(allows cost comparison between different 
storage technologies)
Die area per storage bit (allows size-
effi ciency comparison within same process 
technology)

•

•

•

•

•

•

•
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10 Memory Systems: Cache, DRAM, Disk

In a similar vein, cost is especially informative 
when combined with performance metrics. The 
following are variations on the theme:

Bandwidth per package pin (total sustain-
able bandwidth to/from part, divided by 
total number of pins in package)
Execution-time-dollars (total execution time 
multiplied by total cost; note that cost can 
be expressed in other units, e.g., pins, die 
area, etc.)

An important note: cost should incorporate all 
sources of that cost. Focusing on just one source of 
cost blinds the analysis in two ways: fi rst, the true cost 
of the system is not considered, and second, solutions 
can be unintentionally excluded from the analysis. 
If cost is expressed in pin count, then all pins should 
be considered by the analysis; the analysis should not 
focus solely on data pins, for example. Similarly, if 
cost is expressed in die area, then all sources of die 
area should be considered by the analysis; the analy-
sis should not focus solely on the number of banks, 
for example, but should also consider the cost of 
building control logic (decoders, muxes, bus lines, 
etc.) to select among the various banks. 

Reliability
Like the term “performance,” the term “reliabil-
ity” means many things to many different people. 
In this book, we mean reliability of the data stored 
within the memory system: how easily is our stored 
data corrupted or lost, and how can it be protected 
from corruption or loss? Data integrity is depen-
dent upon physical devices, and physical devices 
can fail. 

Approaches to guarantee the integrity of stored 
data typically operate by storing redundant infor-
mation in the memory system so that in the case of 
device failure, some but not all of the data will be lost 
or corrupted. If enough redundant information is 
stored, then the missing data can be reconstructed. 
Popular fi gures of merit for measuring reliability 

•

•

characterize both device fragility and robustness of a 
proposed solution. They include the following:

Mean Time Between Failures (MTBF): 5 
given in time (seconds, hours, etc.) or num-
ber of uses
Bit-error tolerance, e.g., how many bit errors 
in a data word or packet the mechanism can 
correct, and how many it can detect (but not 
necessarily correct)
Error-rate tolerance, e.g., how many errors 
per second in a data stream the mechanism 
can correct
Application-specifi c metrics, e.g., how 
much radiation a design can tolerate before 
failure, etc.

Note that values given for MTBF often seem astro-
nomically high. This is because they are not meant 
to apply to individual devices, but to system-wide 
device use, as in a large installation. For instance, if 
the expected service lifetime of a device is several 
years, then that device is expected to fail in several 
years. If an administrator swaps out devices every 
few years (before the service lifetime is up), then the 
administrator should expect to see failure frequen-
cies consistent with the MTBF rating. 

Ov.1.3 The Goal of a Memory Hierarchy
As already mentioned, a well-implemented hierar-

chy allows a memory system to approach simultane-
ously the performance of the fastest component, the 
cost per bit of the cheapest component, and the energy 
consumption of the most energy-effi cient component. 
A modern memory system typically has performance 
close to that of on-chip cache, the fastest component 
in the system. The rate at which microprocessors 
fetch and execute their instructions is measured in 
nanoseconds or fractions of a nanosecond. A modern 
low-end desktop machine has several hundred giga-
bytes of storage and sells for under $500, roughly half 
of which goes to the on-chip caches, off-chip caches, 
DRAM, and disk. This represents an average cost of 

•

•

•

•

5A common variation is “Mean Time To Failure (MTTF).”
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Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 11

several dollars per gigabyte—very close to that of disk, 
the cheapest component. Modern desktop systems 
have an energy cost that is typically in the low tens of 
nanojoules per instruction executed—close to that of 
on-chip SRAM cache, the least energy-costly compo-
nent in the system (on a per-access basis). 

The goal for a memory-system designer is to create 
a system that behaves, on average and from the point 
of view of the processor, like a big cache that has the 
price tag of a disk. A successful memory hierarchy is 
much more than the sum of its parts; moreover, suc-
cessful memory-system design is non-trivial. 

How the system is built, how it is used (and what 
parts of it are used more heavily than others), and on 
which issues an engineer should focus most of his effort 
at design time—all these are highly dependent on the 
target application of the memory system. Two com-
mon categories of target applications are (a) general-
purpose systems, which are characterized by their 
need for universal applicability for just about any 
type of computation, and (b) embedded systems, 
which are characterized by their tight design restric-
tions along multiple axes (e.g., cost, correctness of 
design, energy consumption, reliability) and the fact 
that each executes only a single, dedicated software 
application its entire lifespan, which opens up pos-
sibilities for optimization that are less appropriate for 
general-purpose systems. 

General-Purpose Computer Systems
General-purpose systems are what people normally 

think of as “computers.” These are the machines on 
your desktop, the machines in the refrigerated server 
room at work, and the laptop on the kitchen table. 
They are designed to handle any and all tasks thrown 
at them, and the software they run on a day-to-day 
basis is radically different from machine to machine.

General-purpose systems are typically overbuilt. 
By defi nition they are expected by the consumer to 
run all possible software applications with accept-
able speed, and therefore, they are built to handle 
the average case very well and the worst case at least 
tolerably well. Were they optimized for any particu-
lar task, they could easily become less than optimal 
for all dissimilar tasks. Therefore, general-purpose 

systems are optimized for everything, which is another 
way of saying that they are actually optimized for 
nothing in particular. However, they make up for this 
in raw performance, pure number-crunching. The 
average notebook computer is capable of perform-
ing orders of magnitude more operations per sec-
ond than that required by a word processor or email 
client, tasks to which the average notebook is fre-
quently relegated, but because the general-purpose 
system may be expected to handle virtually anything 
at any time, it must have signifi cant spare number-
crunching ability, just in case. 

It stands to reason that the memory system of this 
computer must also be designed in a Swiss-army-
knife fashion. Figure Ov.3 shows the organization of 
a typical personal computer, with the components 
of the memory system highlighted in grey boxes. The 
cache levels are found both on-chip (i.e., integrated 
on the same die as the microprocessor core) and 
off-chip (i.e., on a separate die). The DRAM system 
is comprised of a memory controller and a number 
of DRAM chips organized into DIMMs (dual in-line 
memory modules, printed circuit boards that contain 
a handful of DRAMs each). The memory controller 
can be located on-chip or off-chip, but the DRAMs 
are always separate from the CPU to allow memory 
upgrades. The disks in the system are considered 
peripheral devices, and so their access is made 
through one or more levels of controllers, each rep-
resenting a potential chip-to-chip crossing (e.g., here 
a disk request passes through the system controller 
to the PCI (peripheral component interconnect) bus 
controller, to the SCSI (small computer system inter-
face) controller, and fi nally to the disk itself).

The software that runs on a general-purpose sys-
tem typically executes in the context of a robust 
operating system, one that provides virtual memory. 
Virtual memory is a mechanism whereby the operat-
ing system can provide to all running user-level soft-
ware (i.e., email clients, web browsers, spreadsheets, 
word-processing packages, graphics and video edit-
ing software, etc.) the illusion that the user-level soft-
ware is in direct control of the computer, when in fact 
its use of the computer’s resources is managed by the 
operating system. This is a very effective way for an 
operating system to provide simultaneous access by 
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12 Memory Systems: Cache, DRAM, Disk

large numbers of software packages to small num-
bers of limited-use resources (e.g., physical memory, 
the hard disk, the network, etc.).

The virtual memory system is the primary constit-
uent of the memory system, in that it is the primary 
determinant of the manner/s in which the memory 
system’s components are used by software run-
ning on the computer. Permanent data is stored on 
the disk, and the operating store, DRAM, is used as 
a cache for this permanent data. This DRAM-based 
cache is explicitly managed by the operating system. 
The operating system decides what data from the 
disk should be kept, what should be discarded, what 
should be sent back to the disk, and, for data retained, 

where it should be placed in the DRAM system. The 
primary and secondary caches are usually transpar-
ent to software, which means that they are managed 
by hardware, not software (note, however, the use of 
the word “usually”—later sections will delve into this 
in more detail). In general, the primary and second-
ary caches hold demand-fetched data, i.e., running 
software demands data, the hardware fetches it from 
memory, and the caches retain as much of it as pos-
sible. The DRAM system contains data that the oper-
ating system deems worthy of keeping around, and 
because fetching data from the disk and writing it 
back to the disk are such time-consuming processes, 
the operating system can exploit that lag time (during 
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FIGURE Ov.3: Typical PC organization. The memory subsystem is one part of a relatively complex whole. This fi gure illustrates a 
two-way multiprocessor, with each processor having its own dedicated off-chip cache. The parts most relevant to this text are 
shaded in grey: the CPU and its cache system, the system and memory controllers, the DIMMs and their component DRAMs, and 
the hard drive/s.
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Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 13

which it would otherwise be stalled, doing nothing) 
to use sophisticated heuristics to decide what data to 
retain.

Embedded Computer Systems
Embedded systems differ from general-purpose 

systems in two main aspects. First and foremost, 
the two are designed to suit very different purposes. 
While general-purpose systems run a myriad of 
unrelated software packages, each having poten-
tially very different performance requirements and 
dynamic behavior compared to the rest, embed-
ded systems perform a single function their entire 
lifetime and thus execute the same code day in and 
day out until the system is discarded or a software 
upgrade is performed. Second, while performance is 
the primary (in many instances, the only) fi gure of 
merit by which a general-purpose system is judged, 
optimal embedded-system designs usually represent 
trade-offs between several goals, including manufac-
turing cost (e.g., die area), energy consumption, and 
performance. 

As a result, we see two very different design strat-
egies in the two camps. As mentioned, general-
purpose systems are typically overbuilt; they are 
optimized for nothing in particular and must make 
up for this in raw performance. On the other hand, 
embedded systems are expected to handle only one 
task that is known at design time. Thus, it is not only 
possible, but highly benefi cial to optimize an embed-
ded design for its one suited task. If general-purpose 
systems are overbuilt, the goal for an embedded sys-
tem is to be appropriately built. In addition, because 
effort spent at design time is amortized over the life 
of a product, and because many embedded systems 
have long lifetimes (tens of years), many embedded 
design houses will expend signifi cant resources up 
front to optimize a design, using techniques not gen-
erally used in general-purpose systems (for instance, 
compiler optimizations that require many days or 
weeks to perform).

The memory system of a typical embedded system 
is less complex than that of a general-purpose sys-
tem.6 Figure Ov.4 illustrates an average digital signal-
processing system with dual tagless SRAMs on-chip, 

6Note that “less complex” does not necessarily imply “small,” e.g., consider a typical iPod (or similar MP3 player), whose 
primary function is to store gigabytes’ worth of a user’s music and/or image files.
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FIGURE Ov.4: DSP-style memory system. Example based on Texas Instruments’ TMS320C3x DSP family.
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14 Memory Systems: Cache, DRAM, Disk

an off-chip programmable ROM (e.g., PROM, EPROM, 
fl ash ROM, etc.) that holds the executable image, and 
an off-chip DRAM that is used for computation and 
holding variable data. External memory and device 
controllers can be used, but many embedded micro-
processors already have such controllers integrated 
onto the CPU die. This cuts down on the system’s die 
count and thus cost. Note that it would be possible 
for the entire hierarchy to lie on the CPU die, yielding 
a single-chip solution called a system-on-chip. This 
is relatively common for systems that have limited 
memory requirements. Many DSPs and microcon-
trollers have programmable ROM embedded within 
them. Larger systems that require megabytes of stor-
age (e.g., in Cisco routers, the instruction code alone 
is more than a 12 MB) will have increasing numbers 
of memory chips in the system. 

On the right side of Figure Ov.4 is the software’s 
view of the memory system. The primary distinction 
is that, unlike general-purpose systems, is that the 
SRAM caches are visible as separately addressable 
memories, whereas they are transparent to software 
in general-purpose systems. 

Memory, whether SRAM or DRAM, usually rep-
resents one of the more costly components in an 
embedded system, especially if the memory is 
located on-CPU because once the CPU is fabricated, 
the memory size cannot be increased. In nearly all 
system-on-chip designs and many microcontrollers 
as well, memory accounts for the lion’s share of avail-
able die area. Moreover, memory is one of the pri-
mary consumers of energy in a system, both on-CPU 
and off-CPU. As an example, it has been shown that, 
in many digital signal-processing applications, the 
memory system consumes more of both energy and 
die area than the processor datapath. Clearly, this is 
a resource on which signifi cant time and energy is 
spent performing optimization.

Ov.2 Four Anecdotes on Modular Design
It is our observation that computer-system design 

in general, and memory-hierarchy design in par-
ticular, has reached a point at which it is no lon-
ger suffi cient to design and optimize subsystems 

in isolation. Because memory systems and their 
subsystems are so complex, it is now the rule, and not 
the exception, that the subsystems we thought to be 
independent actually interact in unanticipated ways. 
Consequently, our traditional design methodologies 
no longer work because their underlying assump-
tions no longer hold. Modular design, one of the 
most widely adopted design methodologies, is an oft-
praised engineering design principle in which clean 
functional interfaces separate subsystems (i.e., mod-
ules) so that subsystem design and optimization can 
be performed independently and in parallel by dif-
ferent designers. Applying the principles of modular 
design to produce a complex product can reduce the 
time and thus the cost for system-level design, inte-
gration, and test; optimization at the modular level 
guarantees optimization at the system level, provided 
that the system-level architecture and resulting mod-
ule-to-module interfaces are optimal.

That last part is the sticking point: the principle 
of modular design assumes no interaction between 
module-level implementations and the choice of 
system-level architecture, but that is exactly the kind 
of interaction that we have observed in the design 
of modern, high-performance memory systems. 
Consequently, though modular design has been 
a staple of memory-systems design for decades, 
allowing cache designers to focus solely on caches, 
DRAM designers to focus solely on DRAMs, and disk 
designers to focus solely on disks, we fi nd that, going 
forward, modular design is no longer an appropriate 
methodology.

Earlier we noted that, in the design of memory 
systems, many of the underlying implementation 
issues have begun to affect the higher level design 
process quite signifi cantly: cache design is driven 
by interconnect physics; DRAM design is driven by 
circuit-level limitations that have dramatic sys-
tem-level effects; and modern disk performance is 
dominated by the on-board caching and scheduling 
policies. As hierarchies and their components grow 
more complex, we fi nd that the bulk of performance 
is lost not in the CPUs or caches or DRAM devices or 
disk assemblies themselves, but in the subtle interac-
tions between these subsystems and in the manner in 
which these subsystems are connected. The bulk of lost 
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Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 15

performance is due to poor confi guration of system-
level parameters such as bus widths, granularity of 
access, scheduling policies, queue organizations, and 
so forth. 

This is extremely important, so it bears repeat-
ing: the bulk of lost performance is not due to the 
number of CPU pipeline stages or functional units or 
choice of branch prediction algorithm or even CPU 
clock speed; the bulk of lost performance is due to 
poor confi guration of system-level parameters such 
as bus widths, granularity of access, scheduling poli-
cies, queue organizations, etc. Today’s computer-
system performance is dominated by the manner in 
which data is moved between subsystems, i.e., the 
scheduling of transactions, and so it is not surprising 
that seemingly insignifi cant details can cause such a 
headache, as scheduling is known to be highly sensi-
tive to such details. 

Consequently, one can no longer attempt system-
level optimization by designing/optimizing each of 
the parts in isolation (which, unfortunately, is often 
the approach taken in modern computer design). In 
subsystem design, nothing can be considered “out-
side the scope” and thus ignored. Memory-system 
design must become the purview of architects, and 
a subsystem designer must consider the system-level 
ramifi cations of even the slightest low-level design 
decision or modifi cation. In addition, a designer must 
understand the low-level implications of system-
level design choices. A simpler form of this maxim is 
as follows:

A designer must consider the system-level 
ramifi cations of circuit- and device-level 
decisions as well as the circuit- and device-
level ramifi cations of system-level decisions.

To illustrate what we mean and to motivate our 
point, we present several anecdotes. Though they 
focus on the DRAM system, their message is global, 
and we will show over the course of the book that the 
relationships they uncover are certainly not restricted 
to the DRAM system alone. We will return to these 
anecdotes and discuss them in much more detail 
in Chapter 27, The Case for Holistic Design, which 
follows the technical section of the book.

Ov.2.1 Anecdote I: Systemic Behaviors Exist
In 1999–2001, we performed a study of DRAM 

systems in which we explicitly studied only system-
level effects—those that had nothing to do with the 
CPU architecture, DRAM architecture, or even DRAM 
interface protocol. In this study, we held constant the 
CPU and DRAM architectures and considered only a 
handful of parameters that would affect how well the 
two communicate with each other. Figure Ov.5 shows 
some of the results [Cuppu & Jacob 1999, 2001, Jacob 
2003]. The varied parameters in Figure Ov.5 are all 
seemingly innocuous parameters, certainly not the 
type that would account for up to 20% differences in 
system performance (execution time) if one param-
eter was increased or decreased by a small amount, 
which is indeed the case. Moreover, considering the 
top two graphs, all of the choices represent intui-
tively “good” confi gurations. None of the displayed 
values represent strawmen, machine confi gurations 
that one would avoid putting on one’s own desktop. 
Nonetheless, the performance variability is signifi -
cant. When the analysis considers a wider range of 
bus speeds and burst lengths, the problematic behav-
ior increases. As shown in the bottom graph, the ratio 
of best to worst execution times can be a factor of 
three, and the local optima are both more frequent 
and more exaggerated. Systems with relatively low 
bandwidth (e.g., 100, 200, 400 MB/s) and relatively 
slow bus speeds (e.g., 100, 200 MHz), if confi gured 
well, can match or exceed the performance of sys-
tem confi gurations with much faster hardware that is 
poorly confi gured. 

Intuitively, one would expect the design space to 
be relatively smooth: as system bandwidth increases, 
so should system performance. Yet the design space 
is far from smooth. Performance variations of 20% or 
more can be found in design points that are imme-
diately adjacent to one another. The variations from 
best-performing to worst-performing design exceed a 
factor of three across the full space studied, and local 
minima and maxima abound. Moreover, the behav-
iors are related. Increasing one parameter by a fac-
tor of two toward higher expected performance (e.g., 
increasing the channel width) can move the system off 
a local optimum, but local optimality can be restored 
by changing other related parameters to follow suit, 
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16 Memory Systems: Cache, DRAM, Disk

such as increasing the burst length and cache block 
size to match the new channel width. This complex 
interaction between parameters previously thought 
to be independent arises because of the complexity 

of the system under study, and so we have named 
these “systemic” behaviors.7 This study represents 
the moment we realized that systemic behaviors exist 
and that they are signifi cant. Note that the behavior 
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FIGURE Ov.5: Execution time as a function of bandwidth, channel organization, and granularity of access. Top two graphs from 
Cuppu & Jacob [2001] (© 2001 IEEE ); bottom graph from Jacob [2003] (© 2003 IEEE ).

7There is a distinction between this type of behavior and what in complex system theory is called “emergent system” 
behaviors or properties. Emergent system behaviors are those of individuals within a complex system, behaviors that 
an individual may perform in a group setting that the individual would never perform alone. In our environment, the 
 behaviors are observations we have made of the design space, which is derived from the system as a whole.
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Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 17

is not restricted to the DRAM system. We have seen 
it in the disk system as well, where the variations in 
performance from one confi guration to the next are 
even more pronounced.

Recall that this behavior comes from the varying 
of parameters that are seemingly unimportant in the 
grand scheme of things—at least they would certainly 
seem to be far less important than, say, the cache 
architecture or the number of functional units in the 
processor core. The bottom line, as we have observed, 
is that systemic behaviors—unanticipated interac-
tions between seemingly innocuous parameters 
and mechanisms—cause signifi cant losses in per-
formance, requiring in-depth, detailed design-space 
exploration to achieve anything close to an optimal 
design given a set of technologies and limitations. 

Ov.2.2 Anecdote II: The DLL in DDR SDRAM
Beginning with their fi rst generation, DDR (double 

data rate) SDRAM devices have included a circuit-level 
mechanism that has generated signifi cant contro-
versy within JEDEC (Joint Electron Device Engineer-
ing Council), the industry consortium that created 
the DDR SDRAM standard. The mechanism is a delay-
locked loop (DLL), whose purpose is to more precisely 

align the output of the DDR part with the clock on the 
system bus. The controversy stems from the cost of the 
technology versus its benefi ts. 

The system’s global clock signal, as it enters the 
chip, is delayed by the DLL so that the chip’s inter-
nal clock signal, after amplifi cation and distribution 
across the chip, is exactly in-phase with the origi-
nal system clock signal. This more precisely aligns 
the DRAM part’s output with the system clock. The 
trade-off is extra latency in the datapath as well as 
a higher power and heat dissipation because the 
DLL, a dynamic control mechanism, is continuously 
running. By aligning each DRAM part in a DIMM 
to the system clock, each DRAM part is effectively 
de-skewed with respect to the other parts, and the 
DLLs cancel out timing differences due to process 
variations and thermal gradients. 

Figure Ov.6 illustrates a small handful of alterna-
tive solutions considered by JEDEC, who ultimately 
chose Figure Ov.6(b) for the standard. The interest-
ing thing is that the data strobe is not used to cap-
ture data at the memory controller, bringing into 
question its purpose if the DLL is being used to help 
with data transfer to the memory controller. There is 
signifi cant disagreement over the value of the cho-
sen design; an anonymous JEDEC member, when 
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FIGURE Ov.6: Several alternatives to the per-DRAM DLL. The fi gure illustrates a half dozen different timing conventions (a dotted 
line indicates a signal is unused for capturing data): (a) the scheme in single data rate SDRAM; (b) the scheme chosen for DDR 
SDRAM; (c) moving the DLL onto the module, with a per-DRAM static delay element (Vernier); (d) moving the DLL onto the memory 
controller, with a per-DRAM static delay; (e) using a separate read clock per DRAM or per DIMM; and (f) using only a static delay 
element and recalibrating periodically to address dynamic changes.
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18 Memory Systems: Cache, DRAM, Disk

asked “what is the DLL doing on the DDR chip?” 
answered with a grin, “burning power.” In applica-
tions that require low latency and low power dissipa-
tion, designers turn off the DLL entirely and use only 
the data strobe for data capture, ignoring the system 
clock (as in Figure Ov.6(a))  [Kellogg 2002, Lee 2002, 
Rhoden 2002]. 

The argument for the DLL is that it de-skews 
the DRAM devices on a DIMM and provides a path 
for system design that can use a global clocking 
scheme, one of the simplest system designs known. 
The argument against the DLL is that it would be 
unnecessary if a designer learned to use the data 
strobe—this would require a more sophisticated 
system design, but it would achieve better perfor-
mance at a lower cost. At the very least, it is clear 
that a DLL is a circuit-oriented solution to the prob-
lem of system-level skew, which could explain the 
controversy. 

Ov.2.3 Anecdote III: A Catch-22 in the Search 
for Bandwidth

With every DRAM generation, timing parameters 
are added. Several have been added to the DDR spec-
ifi cation to address the issues of power dissipation 
and synchronization. 

tFAW (Four-bank Activation Window) and 
tRRD (Row-to-Row activation Delay) put a 
ceiling on the maximum current draw of a 
single DRAM part. These are protocol-level 
limitations whose values are chosen to pre-
vent a memory controller from exceeding 
circuit-related thresholds. 
tDQS is our own name for the DDR system-
bus turnaround time; one can think of it as 
the DIMM-to-DIMM switching time that 
has implications only at the system level 
(i.e., it has no meaning or effect if consid-
ering read requests in a system with but a 
single DIMM). By obeying tDQS , one can 
ensure that a second DIMM will not drive 

•

•

the data bus at the same time as a fi rst when 
switching from one DIMM to another for 
data output. 

These are per-device timing parameters that were 
chosen to improve the behavior (current draw, timing 
uncertainty) of individual devices. However, they do 
so at the expense of a signifi cant loss in system-level 
performance. When reading large amounts of data 
from the DRAM system, an application will have to 
read, and thus will have to activate, numerous DRAM 
rows. At this point, the tFAW and tRRD timing param-
eters kick in and limit the available read bandwidth. 
The tRRD parameter specifi es the minimum time 
between two successive row activation commands 
to the same DRAM device (which implies the same 
DIMM, because all the DRAMs on a DIMM are slaved 
together8). The tFAW parameter represents a slid-
ing window of time during which no more than four 
row activation commands to the same device may 
appear. 

The parameters are specifi ed in nanoseconds and 
not bus cycles, so they become increasingly problem-
atic at higher bus frequencies. Their net effect is to 
limit the bandwidth available from a DIMM by limit-
ing how quickly one can get the data out of the DRAM’s 
storage array, irrespective of how fast the DRAM’s I/O 
circuitry can ship the data back to the memory con-
troller. At around 1 GBps, sustainable bandwidth hits 
a ceiling and remains fl at no matter how fast the bus 
runs because the memory controller is limited in how 
quickly it can activate a new row and start reading 
data from it.

The obvious solution is to interleave data from 
different DIMMs on the bus. If one DIMM is limited 
in how quickly it can read data from its arrays, then 
one should populate the bus with many DIMMs and 
move through them in a round-robin fashion. This 
should bring the system bandwidth up to maximum. 
 However, the function of tDQS is to prevent exactly 
that: tDQS is the bus turnaround time, inserted to 
account for skew on the bus and to prevent different 
bus masters from driving the bus at the same time. 

8This is a minor oversimplifi cation. We would like to avoid having to explain details of DRAM-system organization, such as 
the concept of rank, at this point.
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Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 19

To avoid such collisions, a second DIMM must wait 
at least tDQS after a fi rst DIMM has fi nished before 
 driving the bus. So we have a catch: 

One set of parameters limits device-level 
bandwidth and expects a designer to go to 
the system level to reclaim performance.
The other parameter limits system-level 
bandwidth and expects a designer to go to 
the device level to reclaim performance.

The good news is that the problem is solvable 
(see Chapter 15, Section 15.4.3, DRAM Command 
Scheduling Algorithms), but this is nonetheless a 
very good example of low-level design decisions that 
create headaches at the system level.

Ov.2.4 Anecdote IV: Proposals to Exploit 
Variability in Cell Leakage

The last anecdote is an example of a system-level 
design decision that ignores circuit- and device-level 
implications. Ever since DRAM was invented, it has 
been observed that different DRAM cells exhibit dif-
ferent data-retention time characteristics, typically 
ranging between hundreds of milliseconds to tens 
of seconds. DRAM manufacturers typically set the 
refresh requirement conservatively and require that 
every row in a DRAM device be refreshed at least once 
every 64 or 32 ms to avoid losing data. Though refresh 
might not seem to be a signifi cant concern, in mobile 
devices researchers have observed that refresh can 
account for one-third of the power in otherwise 
idle systems, prompting action to address the issue. 
Several recent papers propose moving the refresh 
function into the memory controller and refreshing 
each row only when needed. During an initialization 
phase, the controller would characterize each row 
in the memory system, measuring DRAM data-
retention time on a row-by-row basis, discarding 
leaky rows entirely, limiting its DRAM use to only 
those rows deemed non-leaky, and refreshing once 
every tens of seconds instead of once every tens of 
milliseconds. 

The problem is that these proposals ignore 
another, less well-known phenomenon of DRAM cell 

•

•

variability, namely that a cell with a long retention 
time can suddenly (in the time frame of seconds) 
exhibit a short retention time [Yaney et al. 1987, 
Restle et al. 1992, Ueno et al. 1998, Kim 2004]. Such 
an effect would render these power-effi cient pro-
posals functionally erroneous. The phenomenon is 
called variable retention time (VRT), and though its 
occurrence is infrequent, it is non-zero. The occur-
rence rate is low enough that a system using one of 
these reduced-refresh proposals could protect itself 
against VRT by using error correcting codes (ECC, 
described in detail in Chapter 30, Memory Errors and 
Error Correction), but none of the proposals so far 
discuss VRT or ECC.

Ov.2.5 Perspective
To summarize so far: 

Anecdote I: Systemic behaviors exist and are sig-
nifi cant (they can be responsible for factors of two to 
three in execution time).

Anecdote II: The DLL in DDR SDRAM is a circuit-
level solution chosen to address system-level skew.

Anecdote III: tDQS represents a circuit-level solu-
tion chosen to address system-level skew in DDR 
SDRAM; tFAW and tRRD are circuit-level limitations 
that signifi cantly limit system-level performance. 

Anecdote IV: Several research groups have rec-
ently proposed system-level solutions to the DRAM-
refresh problem, but fail to account for  circuit-level 
details that might compromise the correctness of the 
 resulting  system. 

Anecdotes II and III show that a common practice 
in industry is to focus at the level of devices and cir-
cuits, in some cases ignoring their system-level rami-
fi cations. Anecdote IV shows that a common practice 
in research is to design systems that have device- and 
circuit-level ramifi cations while abstracting away the 
details of the devices and circuits involved. Anecdote I 
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illustrates that both approaches are doomed to  failure 
in future memory-systems design.

It is clear that in the future we will have to move 
away from modular design; one can no longer 
safely abstract away details that were previously 
considered “out of scope.” To produce a credible 
analysis, a designer must consider many different 
subsystems of a design and many different levels 
of abstraction—one must consider the forest when 
designing trees and consider the trees when design-
ing the forest. 

Ov.3 Cross-Cutting Issues
Though their implementation details might apply 

at a local level, most design decisions must be con-
sidered in terms of their system-level effects and 
side-effects before they become part of the system/
hierarchy. For instance, power is a cross-cutting, 
system-level phenomenon, even though most power 
optimizations are specifi c to certain technologies and 
are applied locally; reliability is a system-level issue, 
even though each level of the hierarchy implements 
its own techniques for improving it; and, as we have 
shown, performance optimizations such as widening 
a bus or increasing support for concurrency rarely 
result in system performance that is globally optimal. 
Moreover, design decisions that locally optimize along 
one axis (e.g., power) can have even larger effects on 
the system level when all axes are considered. Not 
only can the global power dissipation be thrown off 
optimality by blindly making a local decision, it is 
even easier to throw the system off a global optimum 
when more than one axis is considered (e.g., power/
performance). 

Designing the best system given a set of con-
straints requires an approach that considers multiple 
axes simultaneously and measures the system-level 
effects of all design choices. Such a holistic approach 
requires an understanding of many issues, includ-
ing cost and performance models, power, reliabil-
ity, and software structure. The following sections 
provide overviews of these cross-cutting issues, and 
Part IV of the book will treat these topics in more 
detail.

Ov.3.1 Cost/Performance Analysis
To perform a cost/performance analysis correctly, 

the designer must defi ne the problem correctly, use 
the appropriate tools for analysis, and apply those 
tools in the manner for which they were designed. 
This section provides a brief, intuitive look at the 
problem. Herein, we will use cost as an example of 
problem defi nition, Pareto optimality as an example 
of an appropriate tool, and sampled averages as an 
example to illustrate correct tool usage. We will dis-
cuss these issues in more detail with more examples 
in Chapter 28, Analysis of Cost and Performance. 

Problem Defi nition: Cost
A designer must think in an all-inclusive manner 

when accounting for cost. For example, consider a 
cost-performance analysis of a DRAM system wherein 
performance is measured in sustainable bandwidth 
and cost is measured in pin count. 

To represent the cost correctly, the analysis 
should consider all pins, including those for con-
trol, power, ground, address, and data. Otherwise, 
the resulting analysis can incorrectly portray the 
design space, and workable solutions can get left 
out of the analysis. For example, a designer can 
reduce latency in some cases by increasing the 
number of address and command pins, but if the 
cost analysis only considers data pins, then these 
optimizations would be cost-free. Consider DRAM 
addressing, which is done half of an address at a 
time. A 32-bit physical address is sent to the DRAM 
system 16 bits at a time in two different commands; 
one could potentially decrease DRAM latency by 
using an SRAM-like wide address bus and sending 
the entire 32 bits at once. This represents a real cost 
in design and manufacturing that would be higher, 
but an analysis that accounts only for data pins 
would not consider it as such.

Power and ground pins must also be counted 
in a cost analysis for similar reasons. High-speed 
chip-to-chip interfaces typically require more 
power and ground pins than slower interfaces. The 
extra power and ground signals help to isolate the 
I/O drivers from each other and the signal lines 
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Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 21

from each other, both improving signal integrity 
by reducing crosstalk, ground bounce, and related 
effects. I/O systems with higher switching speeds 
would have an unfair advantage over those with 
lower switching speeds (and thus fewer power/
ground pins) in a cost-performance analysis if 
power and ground pins were to be excluded from 
the analysis. The inclusion of these pins would pro-
vide for an effective and easily quantifi ed trade-off 
between cost and bandwidth. 

Failure to include address, control, power, and 
ground pins in an analysis, meaning failure to be all-
inclusive at the conceptual stages of design, would 
tend to blind a designer to possibilities. For example, 
an architecturally related family of solutions that at 
fi rst glance gives up total system bandwidth so as to 
be more cost-effective might be thrown out at the 
conceptual stages for its intuitively lower perfor-
mance. However, considering all sources of cost in the 
analysis would allow a designer to look more closely 
at this family and possibly to recover lost bandwidth 
through the addition of pins. 

Comparing SDRAM and Rambus system archi-
tectures provides an excellent example of consid-

ering cost as the total number of pins leading to a 
 continuum of designs. The Rambus memory sys-
tem is a narrow-channel architecture, compared 
to SDRAM’s wide-channel architecture, pictured 
in Figure Ov.7 Rambus uses fewer address and 
command pins than SDRAM and thus incurs an 
additional latency at the command level. Rambus 
also uses fewer data pins and occurs an additional 
latency when transmitting data as well. The trade-off 
is the ability to run the bus at a much higher bus fre-
quency, or pin-bandwidth in bits per second per pin, 
than SDRAM. The longer channel of the DRDRAM 
(direct Rambus DRAM) memory system contributes 
directly to longer read-command latencies and lon-
ger bus turnaround times. However, the longer chan-
nel also allows for more devices to be connected to 
the memory system and reduces the likelihood that 
consecutive commands access the same device. The 
width and depth of the memory channels impact 
the bandwidth, latency, pin count, and various cost 
components of the respective memory systems. The 
effect that these organizational differences have on 
the DRAM access protocol is shown in Figure Ov.8 
which illustrates a row activation and column read 
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command for both DDR SDRAM and Direct Rambus 
DRAM. 

Contemporary SDRAM and DDR SDRAM memory 
chips operating at a frequency of 200 MHz can activate a 
row in 3 clock cycles. Once the row is activated, memory 
controllers in SDRAM or DDR SDRAM memory systems 
can retrieve data using a simple column address strobe 
command with a latency of 2 or 3 clock cycles. In  Figure 
Ov.8(a), Step 1 shows the assertion of a row activation 
command, and Step 2 shows the assertion of the column 
address strobe signal. Step 3 shows the relative timing 
of a high-performance DDR SDRAM memory module 
with a CASL (CAS latency) of 2 cycles. For a fair compar-
ison against the DRDRAM memory system, we include 
the bus cycle that the memory controller uses to assert 
the load command to the memory chips. With this addi-
tional cycle included, a DDR SDRAM memory system 
has a read latency of 6 clock cycles (to critical data). In a 
SDRAM or DDR SDRAM memory system that operates 
at 200 MHz, 6 clock cycles translate to 30 ns of latency for 
a memory load command with row activation latency 

inclusive. These latency values are the same for high-
performance SDRAM and DDR SDRAM memory 
 systems.

The DRDRAM memory system behaves very 
 differently from SDRAM and DDR SDRAM memory sys-
tems. Figure Ov.8(b) shows a row activation command in 
Step 1, followed by a column access command in Step 2. 
The requested data is then returned by the memory 
chip to the memory controller in Step 3. The row acti-
vation command in Step 1 is transmitted by the mem-
ory controller to the memory chip in a packet format 
that spans 4 clock cycles. The minimum delay between 
the row activation and column access is 7 clock cycles, 
and, after an additional (also minimum) CAS (column 
address strobe) latency of 8 clock cycles, the DRDRAM 
chip begins to transmit the data to the memory control-
ler. One caveat to the computation of the access latency 
in the DRDRAM memory system is that CAS delay in the 
DRDRAM memory system is a function of the number 
of devices on a single DRDRAM memory channel. On a 
DRDRAM memory system with a full load of 32 devices 
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FIGURE Ov.8: Memory access latency in SDRAM and DDR SDRAM memory systems (top) and DRDRAM (bottom).
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Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 23

on the data bus, the CAS-latency delay may be as large 
as 12 clock cycles. Finally, it takes 4 clock cycles for the 
DRDRAM memory system to transport the data packet. 
Note that we add half the transmission time of the data 
packet in the computation of the latency of a memory 
request in a DRDRAM memory system due to the fact 
that the DRDRAM memory system does not support 
critical word forwarding, and the critically requested 
data may exist in the latter parts of the data packet; 
on average, it will be somewhere in the middle. This 
yields a total latency of 21 cycles, which, in a DRDRAM 
memory system operating at 600 MHz, translates to a 
latency of 35 ns. 

The Rambus memory system trades off a longer 
latency for fewer pins and higher pin bandwidth (in 
this example, three times higher bandwidth). How do 
the systems compare in performance? 

Peak bandwidth of any interface depends solely 
on the channel width and the operating frequency 
of the channel. In Table Ov.2, we summarize the sta-
tistics of the interconnects and compute the peak 
bandwidths of the memory systems at the interface 

of the memory controller and at the interface of the 
memory chips as well.

Table Ov.3 compares a 133-MHz SDRAM, a 200-
MHz DDR SDRAM system, and a 600-MHz DRDRAM 
system. The 133-MHz SDRAM system, as represented 
by a PC-133 compliant SDRAM memory system on 
an AMD Athlon-based computer system, has a the-
oretical peak bandwidth of 1064 MB/s. The maxi-
mum sustained bandwidth for the single channel of 
SDRAM, as measured by the use of the add kernel 
in the STREAM benchmark, reaches 540 MB/s. The 
maximum  sustained bandwidth for DDR SDRAM 
and DRDRAM was also measured on STREAM, yield-
ing 1496 and 1499 MB/s, respectively. The pin cost of 
each system is factored in, yielding bandwidth per 
pin on both a per-cycle basis and a per-nanosecond 
basis.

Appropriate Tools: Pareto Optimality
It is convenient to represent the “goodness” of a 

design solution, a particular system confi guration, 

TABLE OV.2 Peak bandwidth statistics of SDRAM, DDR SDRAM, and DRDRAM memory systems

Operating
Frequency 
(Data)

Data
Channel
Pin Count

Data
Channel
Bandwidth

Control
Channel
Pin Count

Command
Channel
Bandwidth

Address
Channel
Pin Count

Address
Channel
Bandwidth

SDRAM controller 133 64 1064 MB/s 28 465 MB/s 30 500 MB/s

DDR SDRAM controller 2 * 200 64 3200 MB/s 42 1050 MB/s 30 750 MB/s

DRDRAM controller 2 * 600 16 2400 MB/s 9 1350 MB/s 8 1200 MB/s

x16 SDRAM chip 133 16 256 MB/s 9 150 MB/s 15 250 MB/s

x16 DDR SDRAM chip 2 *200 16 800 MB/s 11 275 MB/s 15 375 MB/s

TABLE OV.3 Cross-comparison of SDRAM, DDR SDRAM, and DRDRAM memory systems

DRAM 
Technology

Operating 
Frequency 
(Data Bus)

Pin Count
per Channel

Peak Band-
width

Sustained 
BW on 
StreamAdd

Bits per
Pin per 
Cycle 
(Peak)

Bits per Pin
per Cycle
(Sustained)

SDRAM 133 152 1064 MB/s 540 MB/s 0.4211 0.2139

DDR SDRAM 2 * 200 171 3200 MB/s 1496 MB/s 0.3743 0.1750

DRDRAm 2 * 600 117 2400 MB/s 1499 MB/s 0.1368 0.0854
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24 Memory Systems: Cache, DRAM, Disk

as a single number so that one can readily compare 
the number with the goodness ratings of other can-
didate design solutions and thereby quickly fi nd the 
“best” system confi guration. However, in the design 
of memory systems, we are inherently dealing with 
a multi-dimensional design space (e.g., one that 
encompasses performance, energy consumption, 
cost, etc.), and so using a single number to represent 
a solution’s worth is not really appropriate, unless 
we can assign exact weights to the various fi gures 
of merit (which is dangerous and will be discussed 
in more detail later) or we care about one aspect to 
the exclusion of all others (e.g., performance at any 
cost).

Assuming that we do not have exact weights for the 
fi gures of merit and that we do care about more than 
one aspect of the system, a very powerful tool to aid 
in system analysis is the concept of Pareto optimality 
or Pareto effi ciency, named after the Italian economist 
Vilfredo Pareto, who invented it in the early 1900s. 

Pareto optimality asserts that one candidate solution 
to a problem is better than another candidate solution 
only if the fi rst dominates the second, i.e., if the fi rst is 
better than or equal to the second in all fi gures of merit. 
If one solution has a better value in one dimension but 
a worse value in another, then the two candidates are 
Pareto equivalent. The best solution is actually a set 

Execution time
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Execution time

Cost

Execution time

Cost
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Execution time
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(a) a set of data points (b) the Pareto-optimal wavefront

(c) the addition of four new points to set (d) the new Pareto-optimal wavefront

A

B

C

D

FIGURE Ov.9: Pareto optimality. Members of the Pareto-optimal set are shown in solid black; non-optimal points are grey.
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Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 25

of candidate solutions: the set of Pareto-equivalent 
solutions that is not dominated by any solution. 

Figure Ov.9(a) shows a set of candidate solutions 
in a two-dimensional space that represent a cost/
performance metric. The x-axis represents system 
performance in execution time (smaller numbers 
are better), and the y-axis represents system cost in 
dollars (smaller numbers are better). Figure Ov.9(b) 
shows the Pareto-optimal set in solid black and 
connected by a line; non-optimal data points are 
shown in grey. The Pareto-optimal set forms a wave-
front that approaches both axes simultaneously. 
Figures Ov.9(c) and (d) show the effect of adding four 
new candidate solutions to the space: one lies inside 
the wavefront, one lies on the wavefront, and two lie 
outside the wavefront. The fi rst two new additions, 
A and B, are both dominated by at least one member 
of the Pareto-optimal set, and so neither is considered 
Pareto optimal. Even though B lies on the wavefront, 
it is not considered Pareto optimal. The point to the 
left of B has better performance than B at equal cost. 
Thus, it dominates B.

Point C is not dominated by any member of the 
Pareto-optimal set, nor does it dominate any mem-
ber of the Pareto-optimal set. Thus, candidate-
solution C is added to the optimal set, and its addition 
changes the shape of the wavefront slightly. The last 
of the additional points, D, is dominated by no mem-
bers of the optimal set, but it does dominate several 
members of the optimal set, so D’s inclusion in the 
optimal set excludes those dominated members from 
the set. As a result, candidate-solution D changes 

the shape of the wave front more signifi cantly than 
candidate-solution C.

Tool Use: Taking Sampled Averages Correctly
In many fi elds, including the fi eld of computer 

engineering, it is quite popular to fi nd a sampled 
average, i.e., the average of a sampled set of numbers, 
rather than the average of the entire set. This is useful 
when the entire set is unavailable, diffi cult to obtain, 
or expensive to obtain. For example, one might want 
to use this technique to keep a running performance 
average for a real microprocessor, or one might want 
to sample several windows of execution in a terabyte-
size trace fi le. Provided that the sampled subset is 
representative of the set as a whole, and provided that 
the technique used to collect the samples is correct, 
this mechanism provides a low-cost alternative that 
can be very accurate.

The discussion will use as an example a mecha-
nism that samples the miles-per-gallon performance 
of an automobile under way. The trip we will study is 
an out and back trip with a brief pit stop, as shown 
in Figure Ov.10. The automobile will follow a simple 
course that is easily analyzed:

 1. The auto will travel over even ground for 
60 miles at 60 mph, and it will achieve 30 
mpg during this window of time.

 2. The auto will travel uphill for 20 miles at 60 
mph, and it will achieve 10 mpg during this 
window of time.

60 miles, 60 mph, 30 mpg

m 02

seli

m 06 ,

hp

:pu

m 01 

gp

od
:nw

m 003 

gp

10 minutes idling
0 mph, 0 mpg

FIGURE Ov.10: Course taken by the automobile in the example.
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26 Memory Systems: Cache, DRAM, Disk

 3. The auto will travel downhill for 20 miles at 
60 mph, and it will achieve 300 mpg during 
this window of time.

 4. The auto will travel back home over even 
ground for 60 miles at 60 mph, and it will 
achieve 30 mpg during this window of time.

 5. In addition, before returning home, the driver 
will sit at the top of the hill for 
10 minutes, enjoying the view, with the auto 
idling, consuming gasoline at the rate of 1 gal-
lon every 5 hours. This is equivalent to 1/300 
gallon per minute or 1/30 of a gallon during 
the 10-minute respite. Note that the auto will 
achieve 0 mpg during this window of time. 

Our car’s algorithm samples evenly in time, so for 
our analysis we need to break down the segments of 
the trip by the amount of time that they take:

Outbound: 60 minutes
Uphill: 20 minutes
Idling: 10 minutes
Downhill: 20 minutes
Return: 60 minutes

This is displayed graphically in Figure Ov.11, in 
which the time for each segment is shown to scale. 
Assume, for the sake of simplicity, that the sampling 
algorithm samples the car’s miles-per-gallon every 
minute and adds that sampled value to the running 
average (it could just as easily sample every second 
or millisecond). Then the algorithm will sample the 
value 30 mpg 60 times during the fi rst segment of the 
trip, the value 10 mpg 20 times during the second 
segment of the trip, the value 0 mpg 10 times during 

•
•
•
•
•

the third segment of the trip, and so on. Over the trip, 
the car is operating for a total of 170 minutes. Thus, 
we can derive the sampling algorithm’s results as fol-
lows:

  60 ___ 170  30 �   20 ___ 170  10 �   10 ___ 170  0 �   20 ___ 170  300 �   60 ___ 170  30 � 57.5mpg 

  (EQ Ov.3)

The sampling algorithm tells us that the auto 
achieved 57.5 mpg during our trip. However, a quick 
reality check will demonstrate that this cannot be 
correct; somewhere in our analysis we have made 
an invalid assumption. What is the correct answer, 
the correct approach? In Part IV of the book we will 
revisit this example and provide a complete picture. 
In the meantime, the reader is encouraged to fi gure 
the answer out for him- or herself.

Ov.3.2 Power and Energy
Power has become a “fi rst-class” design goal in 

recent years within the computer architecture and 
design community. Previously, low-power circuit, 
chip, and system design was considered the purview 
of specialized communities, but this is no longer the 
case, as even high-performance chip manufacturers 
can be blindsided by power dissipation problems. 

Power Dissipation in Computer Systems
Power dissipation in CMOS circuits arises from two 

different mechanisms: static power, which is primar-
ily leakage power and is caused by the transistor not 
completely turning off, and dynamic power, which 
is largely the result of switching capacitive loads 

FIGURE Ov.11: Sampling miles-per-gallon (mpg) over time. The figure shows the trip in time, with each segment of time labeled 
with the average miles-per-gallon for the car during that segment of the trip. Thus, whenever the sampling algorithm samples 
miles-per-gallon during a window of time, it will add that value to the running average.

60 minutes

30 mpg

60 minutes

30 mpg
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10 mpg

20 min

300 mpg

10 min

0mpg 170 min
total
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Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 27

between two different voltage states. Dynamic power 
is dependent on frequency of circuit activity, since no 
power is dissipated if the node values do not change, 
while static power is independent of the frequency 
of activity and exists whenever the chip is powered 
on. When CMOS circuits were fi rst used, one of their 
main advantages was the negligible leakage current 
fl owing with the gate at DC or steady state. Practically 
all of the power consumed by CMOS gates was due 
to dynamic power consumed during the transition 
of the gate. But as transistors become increasingly 
smaller, the CMOS leakage current starts to become 
signifi cant and is projected to be larger than the 
dynamic power, as shown in Figure Ov.12.

In charging a load capacitor C up ΔV volts and 
discharging it to its original voltage, a gate pulls 
an amount of current equal to C . ΔV from the Vdd 
supply to charge up the capacitor and then sinks 
this charge to ground discharging the node. At the 
end of a charge/discharge cycle, the gate/capacitor 
combination has moved C . ΔV of charge from Vdd 
to ground, which uses an amount of energy equal to 
C . ΔV . Vdd that is independent of the cycle time. The 
average dynamic power of this node, the average rate 
of its energy consumption, is given by the following 
equation [Chandrakasan & Brodersen 1995]:

 Pdynamic � C . ΔV . Vdd . � . f  (EQ Ov.4)

Dividing by the charge/discharge period (i.e., mul-
tiplying by the clock frequency f ) produces the rate of 
energy consumption over that period. Multiplying by 
the expected activity ratio α, the probability that the 
node will switch (in which case it dissipates dynamic 
power; otherwise, it does not), yields an average power 
dissipation over a larger window of time for which the 
activity ratio holds (e.g., this can yield average power 
for an entire hour of computation, not just a nano-
second). The dynamic power for the whole chip is the 
sum of this equation over all nodes in the circuit. 

It is clear from EQ Ov.4 what can be done to reduce 
the dynamic power dissipation of a system. We can 
either reduce the capacitance being switched, the volt-
age swing, the power supply voltage, the activity ratio, 
or the operating frequency. Most of these options are 
available to a designer at the architecture level.

Note that, for a specifi c chip, the voltage swing 
ΔV is usually proportional to Vdd, so EQ Ov.4 is often 
simplifi ed to the following: 

 Pdynamic � C . V 2dd . � . f (EQ Ov.5)

Moreover, the activity ratio α is often approximated 
as 1/2, giving the following form:

 Pdynamic �   1 _ 
2

   . C . V 2dd . f (EQ Ov.6)

FIGURE Ov.12: Projections for dynamic and leakage, along with gate length. (Figure taken from Kim et al. [2004a]).  
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Static leakage power is due to our inability to 
completely turn off the transistor, which leaks cur-
rent in the subthreshold operating region [Taur & 
Ning 1998]. The gate couples to the active channel 
mainly through the gate oxide capacitance, but there 
are other capacitances in a transistor that couple the 
gate to a “fi xed charge” (charge which cannot move) 
present in the bulk and not associated with current 
fl ow [Peckerar et al. 1979, 1982]. If these extra capaci-
tances are large (note that they increase with each 
process generation as physical dimensions shrink), 
then changing the gate bias merely alters the densi-
ties of the fi xed charge and will not turn the channel 
off. In this situation, the transistor becomes a leaky 
faucet; it does not turn off no matter how hard you 
turn it. 

Leakage power is proportional to Vdd. It is a linear, 
not a quadratic, relationship. For a particular process 
technology, the per-device leakage power is given as 
follows [Butts & Sohi 2000]:

 Pstatic � Ileakage . V 2dd (EQ Ov.7)

Leakage energy is the product of leakage power 
times the duration of operation. 

It is clear from EQ Ov.7 what can be done to reduce 
the leakage power dissipation of a system: reduce 
leakage current and/or reduce the power supply volt-
age. Both options are available to a designer at the 
architecture level. 

Heat in VLSI circuits is becoming a signifi cant and 
related problem. The rate at which physical dimen-
sions such as gate length and gate oxide thickness 
have been reduced is faster than for other parameters, 
especially voltage, resulting in higher power densities 
on the chip surface. To lower leakage power and main-
tain device operation, voltage levels are set according 
to the silicon bandgap and intrinsic built-in potentials, 
in spite of the conventional scaling algorithm. Thus, 
power densities are increasing exponentially for next-
generation chips. For instance, the power density of 
Intel’s Pentium chip line has already surpassed that 
of a hot plate with the introduction of the Pentium 
Pro [Gelsinger 2001]. The problem of power and heat 
dissipation now extends to the DRAM system, which 

traditionally has represented low power densities and 
low costs. Today, higher end DRAMs are dynamically 
throttled when, due to repeated high-speed access to 
the same devices, their operating temperatures sur-
pass design thresholds. The next-generation memory 
system embraced by the DRAM community, the Fully 
Buffered DIMM architecture, specifi es a per-module 
controller that, in many implementations, requires 
a heatsink. This is a cost previously unthinkable in 
DRAM-system design.

Disks have many components that dissipate 
power, including the spindle motor driving the plat-
ters, the actuator that positions the disk heads, the 
bus interface circuitry, and the microcontroller/s and 
memory chips. The spindle motor dissipates the bulk 
of the power, with the entire disk assembly typically 
dissipating power in the tens of watts. 

Schemes for Reducing Power and Energy
There are numerous mechanisms in the litera-

ture that attack the power dissipation and/or energy 
consumption problem. Here, we will briefl y describe 
three: dynamic voltage scaling, the powering down 
of unused blocks, and circuit-level approaches for 
reducing leakage power. 

Dynamic Voltage Scaling Recall that total energy 
is the sum of switching energy and leakage energy, 
which, to a fi rst approximation, is equal to the 
 following:

 Etot � [(Ctot . V 2dd . � . f  ) 

 � (Ntot . Ileakage . Vdd )] . T  (EQ Ov.8)

T is the time required for the computation, and 
Ntot is the total number of devices leaking current. 
Variations in processor utilization affect the amount 
of switching activity (the activity ratio α). However, 
a light workload produces an idle processor that 
wastes clock cycles and energy because the clock 
signal continues propagating and the operating 
voltage remains the same. Gating the clock during 
idle cycles reduces the switched capacitance Ctot 
during idle cycles. Reducing the frequency f during 
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Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 29

periods of low workload eliminates most idle cycles 
altogether. 

None of the approaches, however, affects CtotV
2

dd 
for the actual computation or substantially reduces 
the energy lost to leakage current. Instead, reducing 
the supply voltage Vdd in conjunction with the fre-
quency f achieves savings in switching energy and 
reduces leakage energy. For high-speed digital CMOS, 
a reduction in supply voltage increases the circuit 
delay as shown by the following equation [Baker et al. 
1998, Baker 2005]: 

 Td �   
CLVdd _________________  

µCox(W/L)(Vdd�Vt)
2   (EQ Ov.9)

where 

Td is the delay or the reciprocal of the 
 frequency f
Vdd is the supply voltage 
CL is the total node capacitance
µ is the carrier mobility 
Cox is the oxide capacitance
Vt is the threshold voltage 
W/L is the width-to-length ratio of the 
transistors in the circuit

This can be simplifi ed to the following form, which 
gives the maximum operating frequency as a func-
tion of supply and threshold voltages:

 fMAX �   (Vdd � Vt)
2
 _________ 

Vdd
    (EQ Ov.10)

As mentioned earlier, the threshold voltage is 
closely tied to the problem of leakage power, so it 
cannot be arbitrarily lowered. Thus, the right-hand 
side of the relation ends up being a constant pro-
portion of the operating voltage for a given process 
technology. Microprocessors typically operate at 
the maximum speed at which their operating volt-
age level will allow, so there is not much headroom 
to arbitrarily lower Vdd by itself. However, Vdd can be 
lowered if the clock frequency is also lowered in the 
same proportion. This mechanism is called dynamic 
voltage scaling (DVS) [Pering & Broderson 1998] and 

•

•
•
•
•
•
•

is appearing in nearly every modern microprocessor. 
The technique sets the microprocessor’s frequency to 
the most appropriate level for performing each task 
at hand, thus avoiding hurry-up-and-wait scenarios 
that consume more energy than is required for the 
computation (see Figure Ov.13). As Weiser points out, 

Power V2F∝

Power V2F
2
---∝

Power V
2
---⎝ ⎠

⎛ ⎞ 2F
2
---∝

Time

Time

Time

Energy E

Energy E

Energy E/4

Task ready at time 0; 

(a)

(b)

(c)

no other task is ready.
Task requires time T to 
complete, assuming 
top clock frequency F.

Task’s output
is not needed
until time 2T

Reducing the clock frequency F by half
lowers the processor’s power dissipation
and still allows task to complete by deadline.

The energy consumption remains the same.

Reducing the voltage level V by half reduces 
the power dissipation further, without any
corresponding increase in execution time.

FIGURE Ov.13: Dynamic voltage scaling. Not every task 
needs the CPU’s full computational power. In many cases, for 
example, the processing of video and audio streams, the only 
performance requirement is that the task meet a deadline, 
see (a). Such cases create opportunities to run the CPU at 
a lower performance level and achieve the same perceived 
performance while consuming less energy. As (b) shows, 
reducing the clock frequency of a processor reduces power 
dissipation but simply spreads a computation out over time, 
thereby consuming the same total energy as before. As (c) 
shows,reducing the voltage level as well as the clock fre-
quency achieves the desired goal of reduced energy con-
sumption and appropriate performance level. Figure and 
caption from Varma et al. [2003].
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idle time represents wasted energy, even if the CPU 
is stopped [Weiser et al. 1994].

Note that it is not suffi cient to merely have a chip 
that supports voltage scaling. There must be a heu-
ristic, either implemented in hardware or software, 
that decides when to scale the voltage and by how 
much to scale it. This decision is essentially a pre-
diction of the near-future computational needs of 
the system and is generally made on the basis of 
the recent computing requirements of all tasks and 
threads running at the time. The development of 
good heuristics is a tricky problem (pointed out by 
Weiser et al. [1994]). Heuristics that closely track 
performance requirements save little energy, while 
those that save the most energy tend to do so at the 
expense of performance, resulting in poor response 
time, for example. 

Most research quantifi es the effect that DVS has 
on reducing dynamic power dissipation because 
dynamic power follows  Vdd in a quadratic relation-
ship: reducing Vdd can signifi cantly reduce dynamic 
power. However, lowering Vdd also reduces leak-
age power, which is becoming just as signifi cant as 
dynamic power. Though the reduction is only linear, 
it is nonetheless a reduction. 

Note also that even though DVS is commonly 
applied to microprocessors, it is perfectly well suited 
to the memory system as well. As a processor’s speed 
is decreased through application of DVS, it requires 
less speed out of its associated SRAM caches, whose 
power supply can be scaled to keep pace. This will 
reduce both the dynamic and the static power dissi-
pation of the memory circuits. 

Powering-Down Unused Blocks A popular 
mechanism for reducing power is simply to turn 
off functional blocks that are not needed. This is 
done at both the circuit level and the chip or I/O-
device level.

At the circuit level, the technique is called clock 
gating. The clock signal to a functional block (e.g., 
an adder, multiplier, or predictor) passes through 
a gate, and whenever a control circuit determines 
that the functional block will be unused for several 
cycles, the gate halts the clock signal and sends 

a non-oscillating voltage level to the functional 
block instead. The latches in the functional block 
retain their information; do not change their out-
puts; and, because the data is held constant to the 
combinational logic in the circuit, do not switch. 
Therefore, it does not draw current or consume 
energy. 

Note that, in the naïve implementation, the cir-
cuits in this instance are still powered up, so they 
still dissipate static power; clock gating is a tech-
nique that only reduces dynamic power. Other 
gating techniques can reduce leakage as well. For 
example, in caches, unused blocks can be pow-
ered down using Gated-Vdd [Powell et al. 2000] 
or Gated-ground [Powell et al. 2000] techniques. 
Gated-Vdd puts the power supply of the SRAM in 
a series with a transistor as shown in Figure Ov.14. 
With the stacking effect introduced by this tran-
sistor, the leakage current is reduced drastically. 
This technique benefi ts from having both low-
leakage current and a simpler fabrication process 
requirement since only a single threshold voltage 
is conceptually required (although, as shown in 
Figure Ov.14, the gating transistor can also have a 
high threshold to decrease the leakage even further 
at the expense of process complexity).

At the device level, for instance in DRAM chips 
or disk assemblies, the mechanism puts the device 
into a low-activity, low-voltage, and/or low-fre-
quency mode such as sleep or doze or, in the case 
of disks, spin-down. For example, microprocessors 
can  dissipate anywhere from a fraction of a watt to 
over 100 W of power; when not in use, they can be 
put into a low-power sleep or doze mode that con-
sumes milli-watts. The processor typically expects 
an interrupt to cause it to resume normal operation, 
for instance, a clock interrupt, the interrupt output 
of a watchdog timer, or an external device interrupt. 
DRAM chips typically consume on the order of 1 W 
each; they have a low-power mode that will reduce 
this by more than an order of magnitude. Disks typi-
cally dissipate power in the tens of watts, the bulk 
of which is in the spindle motor. When the disk is 
placed in the “spin-down” mode (i.e., it is not rotat-
ing, but it is still responding to the disk controller), 
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Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 31

the disk assembly consumes a total of a handful of 
watts [Gurumurthi et al. 2003]. 

Leakage Power in SRAMs Low-power SRAM 
techniques provide good examples of approaches 
for lowering leakage power. SRAM designs targeted 
for low power have begun to account for the increas-
ingly larger amount of power consumed by leakage 
currents. 

One conceptually simple solution is the use of 
multi-threshold CMOS circuits. This involves using 
process-level techniques to increase the threshold 
voltage of transistors to reduce the leakage cur-
rent. Increasing this threshold serves to reduce 
the gate overdrive and reduces the gate’s drive 
strength, resulting in increased delay. Because 
of this, the technique is mostly used on the non-
critical paths of the logic, and fast, low-Vt  transistors 

are used for the critical paths. In this way the delay 
penalty involved in using higher Vt transistors can 
be hidden in the non-critical paths, while reducing 
the leakage currents drastically. For example, multi-
Vt  transistors are selectively used for memory cells 
since they represent a majority of the circuit, reap-
ing the most benefi t in leakage power consumption 
with a minor penalty in the access time. Different 
multi-Vt confi gurations are shown in Figure Ov.15, 
along with the leakage current path that each con-
fi guration is designed to minimize.

Another technique that reduces leakage power in 
SRAMs is the Drowsy technique [Kim et al. 2004a]. 
This is similar to gated-Vdd and gated-ground 
techniques in that it uses a transistor to condition-
ally enable the power supply to a given part of the 
SRAM. The difference is that this technique puts 
infrequently accessed parts of the SRAM into a 

SLEEP

WL

BL BLB

High-Vt PMOS

FIGURE Ov.14: Gated-Vdd technique using a high-Vt transistor to gate Vdd.

high-Vt
NMOS

high-Vt
PMOS

FIGURE Ov.15:  Different multi-Vt configurations for the 6T memory cell showing which leakage currents are reduced for each 
configuration. 
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state-preserving, low-power mode. A second power 
supply with a lower voltage than the regular sup-
ply provides power to memory cells in the “drowsy” 
mode. Leakage power is effectively reduced because 
of its dependence on the value of the power sup-
ply. An SRAM cell of a drowsy cache is shown in 
Figure Ov.16.

Ov.3.3 Reliability
Like performance, reliability means many things 

to many people. For example, embedded systems 
are computer systems, typically small, that run dedi-
cated software and are embedded within the context 
of a larger system. They are increasingly appearing in 
the place of traditional electromechanical systems, 
whose function they are replacing because one can 
now fi nd chip-level computer systems which can be 
programmed to perform virtually any function at a 
price of pennies per system. The reliability problem 
stems from the fact that the embedded system is a 
state machine (piece of software) executing within 
the context of a relatively complex state machine 
(real-time operating system) executing within the 
context of an extremely complex state machine 
(microprocessor and its memory system). We are 
replacing simple electromechanical systems with ultra-
complex systems whose correct function cannot be 
guaranteed. This presents an enormous problem 
for the future, in which systems will only get more 

complex and will be used increasingly in safety-
 critical situations, where incorrect functioning can 
cause great harm. 

This is a very deep problem, and one that is not 
likely to be solved soon. A smaller problem that we 
can solve right now—one that engineers currently 
do—is to increase the reliability of data within the 
memory system. If a datum is stored in the memory 
system, whether in a cache, in a DRAM, or on disk, it 
is reasonable to expect that the next time a processor 
reads that datum, the processor will get the value that 
was written. 

How could the datum’s value change? Solid-state 
memory devices (e.g., SRAMs and DRAMs) are sus-
ceptible to both hard failures and soft errors in the 
same manner that other semiconductor-based elec-
tronic devices are susceptible to both hard failures 
and soft failures. Hard failures can be caused by elec-
tromigration, corrosion, thermal cycling, or electro-
static shock. In contrast to hard failures, soft errors 
are failures where the physical device remains func-
tional, but random and transient electronic noises 
corrupt the value of the stored information in the 
memory system. Transient noise and upset comes 
from a multitude of sources, including circuit noise 
(e.g., crosstalk, ground bounce, etc.), ambient radia-
tion (e.g., even from sources within the computer 
chassis), clock jitter, or substrate interactions with 
high-energy particles. Which of these is the most 
common is obviously very dependent on the operat-
ing environment.

Figure Ov.17 illustrates the last of these examples. It 
pictures the interactions between high-energy alpha 
particles and neutrons with the silicon lattice. The fi g-
ure shows that when high-energy alpha particles pass 
through silicon, the alpha particle leaves an ionized 
trail, and the length of that ionized trail depends on 
the energy of the alpha particle. The fi gure also illus-
trates that when high-energy neutrons pass through 
silicon, some neutrons pass through without affect-
ing operations of the semiconductor device, but some 
neutrons collide with nuclei in the silicon lattice. The 
atomic collision can result in the creation of multiple 
ionized trails as the secondary particles generated 
in the collision scatter in the silicon lattice. In the 
presence of an electric fi eld, the ionized trails of 

VDD(1V) VDD(0.3V)

LowVolt LowVolt

VVDD

FIGURE Ov.16: A drowsy SRAM cell containing the transistors 
that gate the desired power supply.
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Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 33

electron-hole pairs behave as temporary surges in 
current or as charges that can change the data values 
in storage cells. In addition, charge from the ionized 
trails of electron-hole pairs can impact the volt-
age level of bit lines as the value of the stored data 
is resolved by the sense amplifi ers. The result is that 
the soft error rate (SER) of a memory-storage device 
depends on a combination of factors including the 
type, number, and energy distribution of the incident 
particles as well as the process technology design 
of the storage cells, design of the bit lines and sense 

amplifi ers, voltage level of the device, as well as the 
design of the logic circuits that control the movement 
of data in the DRAM device. 

Table Ov.4 compares the failure rates for SRAM, 
DRAM, and disk. SRAM device error rates have his-
torically tracked DRAM devices and did so up until 
the 180-nm process generation. The combination 
of reduced supply voltage and reduced critical cell 
charge means that SRAM SERs have climbed dra-
matically for the 180-nm and 130-nm process gen-
erations. In a recent publication, Monolithic System 

nucleus

(α, p, e, etc.)

neutronneutron

recoil
nucleusSi

α

p

data storage node (capacitor)

FIGURE Ov.17: Generation of electron-hole pairs in silicon by alpha particles and high-energy neutrons.

TABLE OV.4 Cross-comparison of failure rates for SRAM, DRAM, and disk

Technology

Failure Ratea

(SRAM & DRAM: 
at 0.13 µm)

Frequency of Multi-bit
Errors 
(Relative to Single-bit Errors) Expected Service Life

SRAM 100 per million device-hours Several years

DRAM 1 per million device-hours 10–20% Several years

Disk 1 per million device-hours Several years

aNote that failure rate, i.e., a variation of mean-time-between-failures, says nothing about the expected performance of a 
single device. However, taken with the expected service life of a device, it can give a designer or administrator an idea of 
expected performance. If the service life of a device is 5 years, then the part will last about 5 years. A very large installation 
of those devices (e.g., in the case of disks or DRAMs, hundreds or more) will collectively see the expected failure rate: i.e., 
several hundred disks will collectively see several million device hours of operation before a single disk fails.
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Technology, Inc. (MoSys) claimed that for the 250-nm 
process generation, SRAM SERs were reported to be 
in the range of 100 failures per million device-hours 
per megabit, while SERs were reported to be in the 
range of 100,000 failures per megabit for the 130-nm 
process generation. The generalized trend is expected 
to continue to increase as the demand for low power 
dissipation forces a continued reduction in supply 
voltage and reduced critical charge per cell.

Solid-state memory devices (SRAMs and DRAMs) 
are typically protected by error detection codes 
and/or ECC. These are mechanisms wherein data 
redundancy is used to detect and/or recover from 
single- and even multi-bit errors. For instance, par-
ity is a simple scheme that adds a bit to a protected 
word, indicating the number of even or odd bits in 
the word. If the read value of the word does not match 
the parity value, then the processor knows that the 
read value does not equal the value that was initially 
written, and an error has occurred. Error correction 
is achieved by encoding a word such that a bit error 
moves the resulting word some distance away from 
the original word (in the Hamming-distance sense) 
into an invalid encoding. The encoding space is cho-
sen such that the new, invalid word is closest in the 
space to the original, valid word. Thus, the original 
word can always be derived from an invalid code-
word, assuming a maximum number of bit errors. 

Due to SRAM’s extreme sensitivity to soft errors, 
modern processors now ship with parity and single-
bit error correction for the SRAM caches. Typically, 
the tag arrays are protected by parity, whereas the 
data arrays are protected by single-bit error cor-
rection. More sophisticated multi-bit ECC algo-
rithms are typically not deployed for on-chip SRAM 
caches in modern processors since the addition 
of sophisticated computation circuitry can add to 
the die size and cause signifi cant delay relative to 
the timing demands of the on-chip caches. More-
over, caches store frequently accessed data, and in 
case an uncorrectable error is detected, a proces-
sor simply has to re-fetch the data from memory. 
In this sense, it can be considered unnecessary to 
detect and correct multi-bit errors, but suffi cient to 
simply detect multi-bit errors. However, in the 

physical design of modern SRAMs, often designers 
will intentionally place capacitors above the SRAM 
cell to improve SER. 

Disk reliability is a more-researched area than data 
reliability in disks, because data stored in magnetic 
disks tends to be more resistant to transient errors 
than data stored in solid-state memories. In other 
words, whereas reliability in solid-state memories is 
largely concerned with correcting soft errors, reliabil-
ity in hard disks is concerned with the fact that disks 
occasionally die, taking most or all of their data with 
them. Given that the disk drive performs the function 
of permanent store, its reliability is paramount, and, 
as Table Ov.4 shows, disks tend to last several years. 
This data is corroborated by a recent study from 
researchers at Google [Pinheiro et al. 2007]. The study 
tracks the behavior and environmental parameters of 
a fl eet of over 100,000 disks for fi ve years. 

Reliability in the disk system is improved in much 
the same manner as ECC: data stored in the disk sys-
tem is done so in a redundant fashion. RAID (redun-
dant array of inexpensive disks) is a technique wherein 
encoded data is striped across multiple disks, so that 
even in the case of a disk’s total failure the data will 
always be available. 

Ov.3.4 Virtual Memory
Virtual memory is the mechanism by which the 

operating system provides executing software access 
to the memory system. In this regard, it is the primary 
consumer of the memory system: its procedures, data 
structures, and protocols dictate how the compo-
nents of the memory system are used by all software 
that runs on the computer. It therefore behooves 
the reader to know what the virtual memory system 
does and how it does it. This section provides a brief 
overview of the mechanics of virtual memory. More 
detailed treatments of the topic can also be found 
on-line in articles by the author [Jacob & Mudge 
1998a–c].

In general, programs today are written to run on 
no particular hardware confi guration. They have 
no knowledge of the underlying memory system. 
Processes execute in imaginary address spaces that 
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Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 35

are mapped onto the memory system (including 
the DRAM system and disk system) by the operat-
ing system. Processes generate instruction fetches 
and loads and stores using imaginary or “virtual” 
names for their instructions and data. The ulti-
mate home for the process’s address space is non-
volatile permanent store, usually a disk drive; this 
is where the process’s instructions and data come 
from and where all of its permanent changes go 
to. Every hardware memory structure between 
the CPU and the permanent store is a cache for 
the instructions and data in the process’s address 
space. This includes main memory—main memory 
is really nothing more than a cache for a process’s 
virtual address space. A cache operates on the prin-

ciple that a small, fast storage device can hold the 
most important data found on a larger, slower stor-
age device, effectively making the slower device 
look fast. The large storage area in this case is the 
process address space, which can range from kilo-
bytes to gigabytes or more in size. Everything in the 
address space initially comes from the program fi le 
stored on disk or is created on demand and defi ned 
to be zero. This is illustrated in Figure Ov.18.

Address Translation
Translating addresses from virtual space to physi-

cal space is depicted in Figure Ov.19. Addresses are 
mapped at the granularity of pages. Virtual memory is 

Stack

Heap

Code/BSS

Stack

Heap

Code/BSS

(a) PROCESS VIEW (b) IDEAL PHYSICAL MODEL

(c) REALITY

STORES

LOADS
and

INSTRUCTION
FETCHES

CPU: CPU:

CPU:

Process Address Space Process Address Space

Cache
Hierarchy

Cache
Hierarchy

Main
Memory

HARDWARE-MEDIATED OS-MEDIATED

Dynamically 
Allocated Data 
Space

Permanent Store

FIGURE Ov.18: Caching the process address space. In the fi rst view, a process is shown referencing locations in its address 
space. Note that all loads, stores, and fetches use virtual names for objects. The second view illustrates that a process references 
locations in its address space indirectly through a hierarchy of caches. The third view shows that the address space is not a linear 
object stored on some device, but is instead scattered across hard drives and dynamically allocated when necessary.
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36 Memory Systems: Cache, DRAM, Disk

 essentially a mapping of virtual page numbers (VPNs) 
to page frame numbers (PFNs). The mapping is a func-
tion, and any virtual page can have only one location. 
However, the inverse map is not necessarily a function. 
It is possible and sometimes advantageous to have sev-
eral virtual pages mapped to the same page frame (to 
share memory between processes or threads or to allow 
different views of data with different protections, for 
example). This is depicted in Figure Ov.19 by mapping 
two virtual pages (0x00002 and 0xFFFFC) to PFN 12. 

If DRAM is a cache, what is its organization? For 
example, an idealized fully associative cache (one in 
which any datum can reside at any location within 
the cache’s data array) is pictured in Figure Ov.20. 
A data tag is fed into the cache. The fi rst stage com-
pares the input tag to the tag of every piece of data 
in the cache. The matching tag points to the data’s 

location in the cache. However, DRAM is not physi-
cally built like a cache. For example, it has no inher-
ent concept of a tags array: one merely tells memory 
what data location one wishes to read or write, and 
the datum at that location is read out or overwritten. 
There is no attempt to match the address against a 
tag to verify the contents of the data location. How-
ever, if main memory is to be an effective cache for 
the virtual address space, the tags mechanism must 
be implemented somewhere. There is clearly a myr-
iad of possibilities, from special DRAM designs that 
include a hardware tag feature to software algorithms 
that make several memory references to look up one 
datum. Traditional virtual memory has the tags array 
implemented in software, and this software structure 
often holds more entries than there are entries in the 
data array (i.e., pages in main memory). The software 

. . .
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FIGURE Ov.19: Mapping virtual pages into physical page frames.

chOv_P379751.indd   Sec2:36chOv_P379751.indd   Sec2:36 8/8/07   4:33:43 PM8/8/07   4:33:43 PM

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2008 Elsevier Inc. All rights reserved. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2008 Elsevier Inc. All rights reserved. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2008 Elsevier Inc. All rights reserved. 

Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 37

structure is called a page table; it is a database of 
 mapping information. 

The page table performs the function of the tags 
array depicted in Figure Ov.20. For any given memory 
reference, it indicates where in main memory (corre-
sponding to “data array” in the fi gure) that page can 
be found. There are many different possible organi-
zations for page tables, most of which require only a 
few memory references to fi nd the appropriate tag 
entry. However, requiring more than one memory 
reference for a page table lookup can be very costly, 
and so access to the page table is sped up by cach-
ing its entries in a special cache called the transla-

tion lookaside buffer (TLB) [Lee 1960], a  hardware 
 structure that typically has far fewer entries than 
there are pages in main memory. The TLB is a hard-
ware cache which is usually implemented as a con-
tent addressable memory (CAM), also called a fully 
associative cache. 

The TLB takes as input a VPN, possibly extended 
by an address-space identifi er, and returns the cor-
responding PFN and protection information. This is 
illustrated in Figure Ov.21. The address-space identi-
fi er, if used, extends the virtual address to distinguish it 
from similar virtual addresses produced by other pro-
cesses. For a load or store to complete successfully, the 

Tags Array  Data Array

tag ---: invalid

tag WER: slot 3

tag ASD: slot 7

tag ---: invalid

tag KJH: slot 2

tag POI: slot 5

tag ZXC: slot 1

tag QWE: slot 4

data slot 7

data slot 6

data slot 5

data slot 4

data slot 3

data slot 2

data slot 1

data slot 0 

Input Key: ZXC

Entry in 
Data Array

Data
Available

Tags Array  Data Array

Input Key Entry in 
Data Array

Data
Available

FIGURE Ov.20: An idealized cache lookup. A cache is comprised of two parts: the tag’s array and the data array. In the example 
organization, the tags act as a database. They accept as input a key (an address) and output either the location of the item in the 
data array or an indication that the item is not in the data array.

Virtual Page Number (VPN) Page Offset

 Page Frame Number (PFN)Physical Address: Page Offset

Virtual Address:

TLB

Address Space Identifier (ASID)

FIGURE Ov.21: Virtual-to-physical address translation using a TLB.
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TLB must contain the mapping information for that 
virtual location. If it does not, a TLB miss occurs, and 
the system9 must search the page table for the appro-
priate entry and place it into the TLB. If the system fails 
to fi nd the mapping information in the page table, or 
if it fi nds the mapping but it indicates that the desired 
page is on disk, a page fault occurs. A page fault inter-
rupts the OS, which must then retrieve the page from 
disk and place it into memory, create a new page if the 
page does not yet exist (as when a process allocates a 
new stack frame in virgin territory), or send the pro-
cess an error signal if the access is to illegal space. 

Shared Memory
Shared memory is a feature supported by vir-

tual memory that causes many problems and gives 
rise to cache-management issues. It is a mecha-
nism whereby two address spaces that are normally 

 protected from each other are allowed to intersect at 
points, still retaining protection over the non-inter-
secting regions. Several processes sharing portions 
of their address spaces are pictured in Figure Ov.22.
The shared memory mechanism only opens up a 
pre-defi ned portion of a process’s address space; the 
rest of the address space is still protected, and even 
the shared portion is only unprotected for those pro-
cesses sharing the memory. For instance, in Figure 
Ov.22, the region of A’s address space that is shared 
with process B is unprotected from whatever actions 
B might want to take, but it is safe from the actions 
of any other processes. It is therefore useful as a sim-
ple, secure means for inter-process communication. 
Shared memory also reduces requirements for physi-
cal memory, as when the text regions of processes are 
shared whenever multiple instances of a single pro-
gram are run or when multiple instances of a com-
mon library are used in different programs.

9In the discussions, we will use the generic term “system” when the acting agent is implementation-dependent and can 
refer to either a hardware state machine or the operating system. For example, in some implementations, the page table 
search immediately following a TLB miss is performed by the operating system (MIPS, Alpha); in other implementations, it 
is performed by the hardware (PowerPC, x86).

Process D

Process A
Process C

Process B

Shared by A & B Shared by B & 
C

Shared by C & 
D

Shared by B & 
D

Shared by B & 
C & D

FIGURE Ov.22: Shared memory. Shared memory allows processes to overlap portions of their address space while retaining 
protection for the nonintersecting regions. This is a simple and effective method for inter-process communication. Pictured are 
four process address spaces that have overlapped. The darker regions are shared by more than one process, while the lightest 
regions are still protected from other processes.

chOv_P379751.indd   Sec2:38chOv_P379751.indd   Sec2:38 8/8/07   4:33:44 PM8/8/07   4:33:44 PM

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2008 Elsevier Inc. All rights reserved. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2008 Elsevier Inc. All rights reserved. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2008 Elsevier Inc. All rights reserved. 

Chapter Overview ON MEMORY SYSTEMS AND THEIR DESIGN 39

The mechanism works by ensuring that shared 
pages map to the same physical page. This can be 
done by simply placing the same PFN in the page 
tables of two processes sharing a page. An example is 
shown in Figure Ov.23. Here, two very small address 
spaces are shown overlapping at several places, and 
one address space overlaps with itself; two of its vir-
tual pages map to the same physical page. This is 
not just a contrived example. Many operating sys-
tems allow this, and it is useful, for example, in the 
 implementation of user-level threads.

Some Commercial Examples
A few examples of what has been done in industry 

can help to illustrate some of the issues involved. 

MIPS Page Table Design MIPS [Heinrich 1995, 
Kane & Heinrich 1992] eliminated the page table-
walking hardware found in traditional memory man-
agement units and, in doing so, demonstrated that 
software can table-walk with reasonable effi ciency. It 
also presented a simple hierarchical page table design, 
shown in Figure Ov.24. On a TLB miss, the VPN of the 

Process A’s Address Space Process B’s Address Space

 A’s Page Table:  B’s Page Table:

Physical Memory

FIGURE Ov.23: An example of shared memory. Two process address spaces—one comprised of six virtual pages and the other 
of seven virtual pages—are shown sharing several pages. Their page tables maintain information on where virtual pages are 
located in physical memory. The darkened pages are mapped to several locations; note that the darkest page is mapped at two 
locations in the same address space.

A 4-byte PTE,
which maps 4KB

A 4KB PTE Page: 1024 
PTEs, maps 4MB

4 B

4 KB

A 4MB virtual 
region

4 MB

Maps

Maps

Unmapped Physical Memory

Mapped Virtual Memory

...

...

...
User address space: 2GB

User page table: 2MB

Root page table: 2KB

A 4-byte PTE, which maps the darkened
4KB virtual page in the user address space

4KB page

Structure typically wired down in physical 
memory while process is running

Structure generally kept in virtual space so that 
it is contiguous and can be paged; usually kept 
in kernel’s mapped area

FIGURE Ov.24: The MIPS 32-bit hierarchical page table. MIPS hardware provides support for a 2-MB linear virtual page table that 
maps the 2-GB user address space by constructing a virtual address from a faulting virtual address that indexes the mapping PTE 
(page-table entry) in the user page table. This 2-MB page table can easily be mapped by a 2-KB user root page table.
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address that missed the TLB is used as an index into 
the user page table, which is accessed using a virtual 
address. The architecture provides hardware support 
for this activity, storing the virtual address of the base 
of the user-level page table in a hardware register 
and forming the concatenation of the base address 
with the VPN. This is illustrated in Figure Ov.25. On 
a TLB miss, the hardware creates a virtual address 
for the mapping PTE in the user page table, which 
must be aligned on a 2-MB virtual boundary for the 
hardware’s lookup address to work. The base pointer, 
called PTEBase, is stored in a hardware register and is 
usually changed on context switch.

PowerPC Segmented Translation The IBM 801 
introduced a segmented design that persisted through 
the POWER and PowerPC architectures [Chang 
&  Mergen 1988, IBM & Motorola 1993, May et al. 1994, 
Weiss & Smith 1994]. It is illustrated in Figure Ov.26. 
Applications generate 32-bit “effective” addresses that 
are mapped onto a larger “virtual” address space at the 
granularity of segments, 256-MB virtual regions. Sixteen 
segments comprise an application’s address space. The 
top four bits of the effective address select a segment 
identifi er from a set of 16 registers. This segment ID 
is concatenated with the bottom 28 bits of the effec-
tive address to form an extended virtual address. This 
extended address is used in the TLB and page table. 
The operating system performs data movement and 
relocation at the granularity of pages, not segments.

The architecture does not use explicit address-
space identifi ers; the segment registers ensure 
address space protection. If two processes duplicate 
an identifi er in their segment registers, they share 
that virtual segment by defi nition. Similarly, protec-
tion is guaranteed if identifi ers are not duplicated. If 
memory is shared through global addresses, the TLB 
and cache need not be fl ushed on context switch10 
because the system behaves like a single address 
space operating system. For more details, see Chapter 
31, Section  31.1.7, Perspective: Segmented Addressing 
Solves the Synonym Problem.

10Flushing is avoided until the system runs out of identifi ers and must reuse them. For example, the address-space identi-
fi ers on the MIPS R3000 and Alpha 21064 are six bits wide, with a maximum of 64 active processes [Digital 1994, Kane & 
Heinrich 1992]. If more processes are desired, identifi ers must be constantly reassigned, requiring TLB and virtual-cache 
fl ushes.

Page OffsetFaulting Virtual Address Virtual Page Number

0Virtual Page NumberPTEBase

Virtual address for PTE

LOAD

 Page Frame Number

Page Table Entry

Status Bits

TLB Context:

Inserted into TLB, along with Virtual Page Number

FIGURE Ov.25: The use of the MIPS TLB context register. The 
VPN of the faulting virtual address is placed into the context 
register, creating the virtual address of the mapping PTE. This 
PTE goes directly into the TLB.

Segment Offset

32-bit Effective Address

Page Offset

DATA

Segno

Segment Registers

Segment Offset Page OffsetSegment ID

52-bit
Virtual 
Address

TLB and
Page Table

TAG COMPARE

Virtual Page Number

Cache

FIGURE Ov.26: PowerPC segmented address translation. Pro-
cesses generate 32-bit effective addresses that are mapped 
onto a 52-bit address space via 16 segment registers, using the 
top 4 bits of the effective address as an index. It is this extended 
virtual address that is mapped by the TLB and page table. The 
segments provide address space protection and can be used for 
shared memory.
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Ov.4 An Example Holistic Analysis
Disk I/O accounts for a substantial fraction of an 
application’s execution time and power dissipation. 
A new DRAM technology called Fully Buffered DIMM 
(FB-DIMM) has been in development in the  industry 
[Vogt 2004a, b, Haas & Vogt 2005], and, though it  provides 
storage scalability signifi cantly beyond the current 
DDRx architecture, FB-DIMM has met with some resis-
tance due to its high power dissipation. Our modeling 
results show that the energy consumed in a moderate-
size FB-DIMM system is indeed quite large, and it can 
easily approach the energy consumed by a disk.

This analysis looks at a trade-off between storage in 
the DRAM system and in the disk system, focusing on 
the disk-side write buffer; if confi gured and  managed 
correctly, the write buffer enables a system to approach 
the performance of a large DRAM installation at half 
the energy. Disk-side caches and write buffers have 
been proposed and studied, but their effect upon total 
system behavior has not been studied. We  present 
the impact on total system execution time, CPI, and 
memory-system power, including the effects of the 
operating system. Using a full-system, execution-
based simulator that combines Bochs, Wattch, CACTI, 
DRAMsim, and DiskSim and boots the RedHat Linux 
6.0 kernel, we have investigated the memory-system 
behavior of the SPEC CPU2000 applications. We study 
the disk-side cache in both single-disk and RAID-5 
organizations. Cache parameters include size, orga-
nization, whether the cache supports write caching 
or not, and whether it prefetches read blocks or not. 
Our results are given in terms of L1/L2 cache accesses, 
power dissipation, and energy consumption; DRAM-
system accesses, power dissipation, and energy con-
sumption; disk-system accesses, power dissipation, 
and energy consumption; and execution time of the 
application plus operating system, in seconds. The 
results are not from sampling, but rather from a simu-
lator that calculates these values on a cycle-by-cycle 
basis over the entire execution of the application.

Ov.4.1 Fully-Buffered DIMM vs. the Disk Cache
It is common knowledge that disk I/O is expen-

sive in both power dissipated and time spent wait-
ing on it. What is less well known is the system-wide 

breakdown of disk power versus cache power versus 
DRAM power, especially in light of the newest DRAM 
architecture adopted by industry, the FB-DIMM. This 
new DRAM standard replaces the conventional mem-
ory bus with a narrow, high-speed interface between 
the memory controller and the DIMMs. It has been 
shown to provide performance similar to that of 
DDRx systems, and thus, it represents a relatively low-
overhead mechanism (in terms of execution time) for 
scaling DRAM-system capacity. FB-DIMM’s latency 
degradation is not severe. It provides a noticeable 
bandwidth improvement, and it is relatively insensi-
tive to scheduling policies [Ganesh et al. 2007].

FB-DIMM was designed to solve the problem of 
storage scalability in the DRAM system, and it pro-
vides scalability well beyond the current JEDEC-style 
DDRx architecture, which supports at most two to 
four DIMMs in a fully populated dual-channel sys-
tem (DDR2 supports up to two DIMMs per channel; 
proposals for DDR3 include limiting a channel to a 
single DIMM). The daisy-chained architecture of 
FB-DIMM supports up to eight DIMMs per channel, 
and its narrow bus requires roughly one-third the 
pins of a DDRx SDRAM system. Thus, an FB-DIMM 
system supports an order of magnitude more DIMMs 
than DDRx. This scalability comes at a cost, however. 
The DIMM itself dissipates almost an order of mag-
nitude more power than a traditional DDRx DIMM. 
Couple this with an order-of-magnitude increase in 
DIMMs per system, and one faces a serious problem. 

To give an idea of the problem, Figure Ov.27 shows 
the simulation results of an entire execution of the 
gzip benchmark from SPEC CPU2000 on a complete-
system simulator. The memory system is only mod-
erate in size: one channel and four DIMMs, totalling 
a half-gigabyte. The graphs demonstrate numerous 
important issues, but in this book we are concerned 
with two items in particular:

Program initialization is lengthy and repre-
sents a signifi cant portion of an application’s 
run time. As the CPI graph shows, the fi rst 
two-thirds of execution time are spent deal-
ing with the disk, and the corresponding CPI 
(both average and instantaneous) ranges 
from the 100s to the 1000s. After this initial-
ization phase, the application settles into a 

•
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FIGURE Ov.27: Full execution of Gzip. The fi gure shows the entire run of gzip. System confi guration is a 2-GHz Pentium proces-
sor with 512 MB of DDR2-533 FB-DIMM main memory and a 12k-RPM disk drive with built-in disk cache. The fi gure shows the 
interaction between all components of the memory system, including the L1 instruction and data caches, the unifi ed L2 cache, the 
DRAM system, and the disk drive. All graphs use the same x-axis, which represents execution time in seconds. The x-axis does not 
start at zero; the measurements exclude system boot time, invocation of the shell, etc. Each data point represents aggregated (not 
sampled) activity within a 10-ms epoch. The CPI graph shows two system CPI values: one is the average CPI for each 10-ms epoch, 
and the other is the cumulative average CPI. A duration with no CPI data point indicates that no instructions were executed due to 
I/O latency. During such a window the CPI is essentially infi nite, and thus, it is possible for the cumulative average to range higher 
than the displayed instantaneous CPI. Note that the CPI, the DRAM accesses, and the disk accesses are plotted on log scales.
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more compute-intensive phase in which the 
CPI asymptotes down to the theoretical sus-
tainable performance, the single-digit values 
that architecture research typically reports.
By the end of execution, the total energy 
consumed in the FB-DIMM DRAM  system 
(a half a kilojoule) almost equals that of 
the energy consumed by the disk, and 
it is twice that of the L1 data cache, L1 
 instruction cache, and unifi ed L2 cache 
combined.

Currently, there is substantial work happening 
in both industry and academia to address the lat-
ter issue, with much of the work focusing on access 
scheduling, architecture improvements, and data 
migration. To complement this work, we look at 
a wide range of organizational approaches, i.e., 
attacking the problem from a parameter point of 
view rather than a system-redesign, component-
redesign, or new-proposed-mechanism point of 
view, and fi nd signifi cant synergy between the disk 
cache and the memory system. Choices in the disk-
side cache affect both system-level performance and 
system-level (in particular, DRAM-subsystem-level) 
energy consumption. Though disk-side caches have 
been proposed and studied, their effect upon the total 
system behavior, namely execution time or CPI or 
total memory-system power including the effects of 
the operating system, is as yet unreported. For exam-
ple, Zhu and Hu [2002] evaluate disk built-in cache 
using both real and synthetic workloads and report 
the results in terms of average response time. Smith 
[1985a and b] evaluates a disk cache mechanism 
with real traces collected in real IBM mainframes 
on a disk cache simulator and reports the results in 
terms of miss rate. Huh and Chang [2003] evaluate 
their RAID controller cache organization with a syn-
thetic trace. Varma and Jacobson [1998] and Solworth 
and Orji [1990] evaluate destaging algorithms and 
write caches, respectively, with synthetic workloads. 
This study represents the fi rst time that the effects of 
the disk-side cache can be viewed at a system level 
(considering both application and operating-system 
effects) and compared directly to all the other com-
ponents of the memory system.

•

We use a full-system, execution-based simulator 
combining Bochs [Bochs 2006], Wattch [Brooks et al. 
2000], CACTI [Wilton & Jouppi 1994], DRAMsim [Wang 
et al. 2005, September], and DiskSim [Ganger et al. 
2006]. It boots the RedHat Linux 6.0 kernel and there-
fore can capture all application behavior, and all operat-
ing-system behavior, including I/O activity, disk-block 
buffering, system-call overhead, and virtual memory 
overhead such as translation, table walking, and page 
swapping. We investigate the disk-side cache in both 
single-disk and RAID-5 organizations. Cache parame-
ters include size, organization, whether the cache sup-
ports write caching or not, and whether it prefetches 
read blocks or not. Additional parameters include disk 
rotational speed and DRAM-system capacity.

We fi nd a complex trade-off between the disk 
cache, the DRAM system, and disk parameters like 
rotational speed. The disk cache, particularly its 
write-buffering feature, represents a very powerful 
tool enabling signifi cant savings in both energy and 
execution time. This is important because, though the 
cache’s support for write buffering is often enabled in 
desktop operating systems (e.g., Windows and some 
but not all fl avors of Unix/Linux [Ng 2006]), it is typi-
cally disabled in enterprise computing applications 
[Ng 2006], and these are the applications most likely 
to use FB-DIMMs [Haas & Vogt 2005]. We fi nd sub-
stantial improvement between existing implemen-
tations and an ideal write buffer (i.e., this is a limit 
study). In particular, the disk cache’s write-buffering 
ability can offset the total energy consumption of 
the memory system (including caches, DRAMs, and 
disks) by nearly a factor of two, while sacrifi cing a 
small amount of performance. 

Ov.4.2 Fully Buffered DIMM: Basics
The relation between a traditional organiza-

tion and a FB-DIMM organization is shown in Fig-
ure Ov.28, which motivates the design in terms of a 
graphics-card organization. The fi rst two drawings 
show a multi-drop DRAM bus next to a DRAM bus 
organization typical of graphics cards, which use 
point-to-point soldered connections between the 
DRAM and memory controller to achieve higher 
speeds. This arrangement is used in FB-DIMM. 
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A slave memory controller has been added onto each 
DIMM, and all connections in the system are point 
to point. A narrow, high-speed channel connects the 
master memory controller to the DIMM-level mem-
ory controllers (called Advanced Memory Buffers or 
AMBs). Since each DIMM-to-DIMM connection is 
a point-to-point connection, a channel becomes a 
de facto multi-hop store and forward network. The 
FB-DIMM architecture limits the channel length to 
eight DIMMs, and the narrower inter-module bus 
requires roughly one-third as many pins as a tradi-
tional organization. As a result, an FB-DIMM orga-
nization can handle roughly 24 times the storage 
capacity of a single-DIMM DDR3-based system, 
without sacrifi cing any bandwidth and even leaving 
headroom for increased intra-module bandwidth.

The AMB acts like a pass-through switch, directly 
forwarding the requests it receives from the  controller 

to successive DIMMs and forwarding frames from 
southerly DIMMs to northerly DIMMs or the mem-
ory controller. All frames are processed to determine 
whether the data and commands are for the local 
DIMM. The FB-DIMM system uses a serial packet-
based protocol to communicate between the memory 
controller and the DIMMs. Frames may contain data 
and/or commands. Commands include DRAM com-
mands such as row activate (RAS), column read (CAS), 
refresh (REF) and so on, as well as channel commands 
such as write to confi guration registers, synchroniza-
tion commands, etc. Frame scheduling is performed 
exclusively by the memory controller. The AMB only 
converts the serial protocol to DDRx-based commands 
without implementing any scheduling functionality.

The AMB is connected to the memory control-
ler and/or adjacent DIMMs via unidirectional links: 
the southbound channel which transmits both data 

Controller

DIMMs

DRAMsPackage Pins

Edge Connectors

Memory

Controller

DIMM 0 DIMM 1 

Memory

Controller

Controller DRAM

Package Pins

Traditional (JEDEC) Organization Graphics-Card Organization Fully Buffered DIMM

DIMM 0 

DIMM 1 

DIMM 2

Organization

Memory Controller

AMB

AMB

AMB

Northbound Channel Southbound Channel

14 10

. . . up to 8 ModulesDDRx SDRAM device

FIGURE Ov.28: FB-DIMM and its motivation. The fi rst two pictures compare the memory organizations of a JEDEC SDRAM system 
and a graphics card. Above each design is its side-profi le, indicating potential impedance mismatches (sources of refl ections). The 
organization on the far right shows how the FB-DIMM takes the graphics-card organization as its de facto DIMM. In the FB-DIMM 
organization, there are no multi-drop busses; DIMM-to-DIMM connections are point to point. The memory controller is connected 
to the nearest AMB via two unidirectional links. The AMB is, in turn, connected to its southern neighbor via the same two links.
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and commands and the northbound channel which 
transmits data and status information. The south-
bound and northbound datapaths are 10 bits and 
14 bits wide, respectively. The FB-DIMM channel 
clock operates at six times the speed of the DIMM 
clock; i.e., the link speed is 4 Gbps for a 667-Mbps 
DDRx system. Frames on the north- and southbound 
channel require 12 transfers (6 FB-DIMM channel 
clock cycles) for transmission. This 6:1 ratio ensures 
that the FB-DIMM frame rate matches the DRAM 
command clock rate. 

Southbound frames comprise both data and 
commands and are 120 bits long; northbound 
frames are data only and are 168 bits long. In addi-
tion to the data and command information, the 
frames also carry header information and a frame 
CRC (cyclic redundancy check) checksum that is 
used to check for transmission errors. A north-
bound read-data frame transports 18 bytes of data 
in 6 FB-DIMM clocks or 1 DIMM clock. A DDRx sys-
tem can burst back the same amount of data to the 
memory controller in two successive beats lasting 
an entire DRAM clock cycle. Thus, the read band-

width of an FB-DIMM system is the same as that of 
a single channel of a DDRx system. Due to the nar-
rower southbound channel, the write bandwidth 
in FB-DIMM systems is one-half that available in a 
DDRx system. However, this makes the total band-
width available in an FB-DIMM system 1.5 times 
that of a DDRx system.

Figure Ov.29 shows the processing of a read trans-
action in an FB-DIMM system. Initially, a command 
frame is used to transmit a command that will per-
form row activation. The AMB translates the request 
and relays it to the DIMM. The memory controller 
schedules the CAS command in a following frame. 
The AMB relays the CAS command to the DRAM 
devices which burst the data back to the AMB. The 
AMB bundles two consecutive bursts of data into 
a single northbound frame and transmits it to the 
memory controller. In this example, we assume a 
burst length of four corresponding to two FB-DIMM 
data frames. Note that although the fi gures do not 
identify parameters like t_CAS, t_RCD, and t_CWD, 
the memory controller must ensure that these con-
straints are met.

RAS CAS

D0 D1 D2 D3

Southbound

Bus

FB-DIMM

clock

DIMM

clock

DIMM

Command

DIMM

Data Bus

Bus

Northbound

Bus

D0-D1 D2-D3

CASRAS

FIGURE Ov.29: Read transaction in an FB-DIMM system. The fi gure shows how a read transaction is performed in an FB-DIMM 
system. The FB-DIMM serial busses are clocked at six times the DIMM busses. Each FB-DIMM frame on the southbound bus takes 
six FB-DIMM clock periods to transmit. On the northbound bus a frame comprises two DDRx data bursts.
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The primary dissipater of power in an FB-DIMM 
channel is the AMB, and its power depends on its 
position within the channel. The AMB nearest to 
the memory controller must handle its own traffi c 
and repeat all packets to and from all downstream 
AMBs, and this dissipates the most power. The AMB 
in DDR2-533 FB-DIMM dissipates 6 W, and it is cur-
rently 10 W for 800 Mbps DDR2 [Staktek 2006]. Even 
if one averages out the activity on the AMB in a long 
channel, the eight AMBs in a single 800-Mbps chan-
nel can easily dissipate 50 W. Note that this number 
is for the AMBs only; it does not include power dis-
sipated by the DRAM devices. 

Ov.4.3 Disk Caches: Basics
Today’s disk drives all come with a built-in cache 

as part of the drive controller electronics, ranging in 
size from 512 KB for the micro-drive to 16 MB for the 
largest server drives. Figure Ov.30 shows the cache 
and its place within a system. The earliest drives 
had no cache memory, as they had little control 
electronics. As the control of data transfer migrated 

from the host-side control logic to the drive’s own 
controller, a small amount of memory was needed 
to act as a speed-matching buffer, because the disk’s 
media data rate is different from that of the inter-
face. Buffering is also needed because when the 
head is at a position ready to do data transfer, the 
host or the interface may be busy and not ready to 
receive read data. DRAM is usually used as this buf-
fer memory.

In a system, the host typically has some memory 
dedicated for caching disk data, and if a drive is 
attached to the host via some external controller, that 
controller also typically has a cache. Both the system 
cache and the external cache are much larger than 
the disk drive’s internal cache. Hence, for most work-
loads, the drive’s cache is not likely to see too many 
reuse cache hits. However, the disk-side cache is very 
effective in opportunistically prefetching data, as 
only the controller inside the drive knows the state 
the drive is in and when and how it can prefetch 
without adding any cost in time. Finally, the drive 
needs cache memory if it is to support write cach-
ing/buffering.

Web 

Server

Disk

etc. 
Applications

Buffer cache

Module
Operating system Kernel 

Hardware

DRAM

Cached data

Cached

data

(a)

(b)

Buffer cache

Disk cache

FIGURE Ov.30: Buffer caches and disk caches. Disk blocks are cached in several places, including (a) the operating system’s 
buffer cache in main memory and (b), on the disk, in another DRAM buffer, called a disk cache.
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With write caching, the drive controller services a 
write request by transferring the write data from the 
host to the drive’s cache memory and then reports 
back to the host that the write is “done,” even 
though the data has not yet been written to the disk 
media (data not yet written out to disk is referred to 
as dirty). Thus, the service time for a cached write is 
about the same as that for a read cache hit, involving 
only some drive controller overhead and electronic 
data transfer time but no mechanical time. Clearly, 
write caching does not need to depend on having 
the right content in the cache memory for it to work, 
unlike read caching. Write caching will always work, 
i.e., a write command will always be a cache hit, as 
long as there is available space in the cache mem-
ory. When the cache becomes full, some or all of the 
dirty data are written out to the disk media to free 
up space. This process is commonly referred to as 
destage.

Ideally, destage should be done while the drive 
is idle so that it does not affect the servicing of read 
requests. However, this may not be always possible. 
The drive may be operating in a high-usage system 
with little idle time ever, or the writes often arrive in 
bursts which quickly fi ll up the limited memory space 
of the cache. When destage must take place while the 
drive is busy, such activity adds to the load of drive 
at that time, and a user will notice a longer response 
time for his requests. Instead of providing the full 
benefi t of cache hits, write caching in this case merely 
delays the disk writes. 

Zhu and Hu [2002] have suggested that large 
disk built-in caches will not signifi cantly benefi t 
the overall system performance because all mod-
ern operating systems already use large fi le system 
caches to cache reads and writes. As suggested by 
Przybylski [1990], the reference stream missing a 
fi rst-level cache and being handled by a second-
level cache tends to exhibit relatively low locality. In 
a real system, the reference stream to the disk sys-
tem has missed the operating system’s buffer cache, 
and the locality in the stream tends to be low. Thus, 
our simulation captures all of this activity. In our 
experiments, we investigate the disk cache, includ-
ing the full effects of the operating system’s fi le-sys-
tem caching. 

Ov.4.4 Experimental Results
Figure Ov.27 showed the execution of the GZIP 

benchmark with a moderate-sized FB-DIMM DRAM 
system: half a gigabyte of storage. At 512 MB, there is no 
page swapping for this application. When the storage 
size is cut in half to 256 MB, page swapping begins but 
does not affect the execution time signifi catly. When 
the storage size is cut to one-quarter of its original size 
(128 MB), the page swapping is signifi cant enough 
to slow the application down by an order of magni-
tude. This represents the hard type of decision that a 
memory-systems designer would have to face: if one 
can reduce power dissipation by cutting the amount 
of storage and feel negligible impact on performance, 
then one has too much storage to begin with. 

Figure Ov.31 shows the behavior of the system 
when storage is cut to 128 MB. Note that all aspects 
of system behavior have degraded; execution time 
is longer, and the system consumes more energy. 
Though the DRAM system’s energy has decreased 
from 440 J to just under 410 J, the execution time has 
increased from 67 to 170 seconds, the total cache 
energy has increased from 275 to 450 J, the disk energy 
has increased from 540 to 1635 J, and the total energy 
has doubled from 1260 to 2515 J. This is the result of 
swapping activity—not enough to bring the system to 
its knees, but enough to be relatively painful.

We noticed that there exists in the disk subsystem 
the same sort of activity observed in a microproces-
sor’s load/store queue: reads are often stalled waiting 
for writes to fi nish, despite the fact that the disk has 
a 4-MB read/write cache on board. The disk’s cache 
is typically organized to prioritize prefetch activity 
over write activity because this tends to give the best 
performance results and because the write buffering 
is often disabled by the operating system. The solu-
tion to the write-stall problem in microprocessors 
has been to use write buffers; we therefore modifi ed 
DiskSim to implement an ideal write buffer on the 
disk side that would not interfere with the disk cache. 
Figure Ov.32 indicates that the size of the cache seems 
to make little difference to the behavior of the system. 
The important thing is that a cache is present. Thus, 
we should not expect read performance to suddenly 
increase as a result of moving writes into a separate 
write buffer.
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FIGURE Ov.31: Full execution of GZIP, 128 MB DRAM. The fi gure shows the entire run of GZIP. System confi guration is a 2 GHz 
Pentium processor with 128 MB of FB-DIMM main memory and a 12 K-RPM disk drive with built-in disk cache. The fi gure shows 
the interaction between all components of the memory system, including the L1 instruction cache, the L1 data cache, the unifi ed 
L2 cache, the DRAM system, and the disk drive. All graphs use the same x-axis, which represents the execution time in seconds. 
The x-axis does not start at zero; the measurements exclude system boot time, invocation of the shell, etc. Each data point repre-
sents aggregated (not sampled) activity within a 10-ms epoch. The CPI graph shows 2 system CPI values: one is the average CPI 
for each 10-ms epoch, the other is the cumulative average CPI. A duration with no CPI data point indicates that no instructions 
were executed due to I/O latency. The application is run in single-user mode, as is common for SPEC measurements; therefore, 
disk delay shows up as stall time. Note that the CPI, the DRAM accesses, and the Disk accesses are plotted on log scales.
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FIGURE Ov.32: The effects of disk cache size by varying the number of segments. The fi gure shows the effects of a different 
number of segments with the same segment size in the disk cache. The system confi guration is 128 MB of DDR SDRAM with a 
12k-RPM disk. There are fi ve bars for each benchmark, which are (1) no cache, (2) 1 segment of 512 sectors each, (3) 2 segments 
of 512 sectors each, (4) 16 segment of 512 sectors each, and (5) 24 segment of 512 sectors each. Note that the CPI values are for 
the disk-intensive portion of application execution, not the CPU-intensive portion of application execution (which could otherwise 
blur distinctions).

Figure Ov.33 shows the behavior of the system with 
128 MB and an ideal write buffer. As mentioned, the 
performance increase and energy decrease is due to 
the writes being buffered, allowing read requests to 
progress. Execution time is 75 seconds (compared 
to 67 seconds for a 512 MB system); and total energy 
is 1100 J (compared to 1260 J for a 512-MB system). 
For comparison, to show the effect of faster read and 
write throughput, Figure Ov.34 shows the behavior of 
the system with 128 MB and an 8-disk RAID-5 system. 
Execution time is 115 seconds, and energy consump-
tion is 8.5 KJ. This achieves part of the performance 
effect as write buffering by improving write time, 
thereby freeing up read bandwidth sooner. However, 
the benefi t comes at a signifi cant cost in energy. 

Table Ov.5 gives breakdowns for gzip in tabu-
lar form, and the graphs beneath the table give the 
breakdowns for gzip, bzip2, and ammp in graphical 
form and for a wider range of parameters (different 
disk RPMs). The applications all demonstrate the 
same trends: to cut down the energy of a 512-MB 
system by reducing the memory to 128 MB which 

causes both the performance and the energy to get 
worse. Performance degrades by a factor of 5–10; 
energy increases by 1.5� to 10�. Ideal write buffer-
ing can give the best of both worlds (performance of 
a large memory system and energy consumption of 
a small memory system), and its benefi t is indepen-
dent of the disk’s RPM. Using a RAID system does 
not gain signifi cant performance improvement, but 
it consumes energy proportionally to the number 
of disks. Note, however, that this is a uniprocessor 
model running in single-user mode, so RAID is not 
expected to shine.

Figure Ov.35 shows the effects of disk caching 
and prefetching on both single-disk and RAID sys-
tems. In RAID systems, disk caching has only mar-
ginal effects to both the CPI and the disk average 
response time. However, disk caching with prefetch-
ing has signifi cant benefi ts. In a slow disk system (i.e., 
5400 RPM), RAID has more tangible benefi ts over a 
non-RAID system. Nevertheless, the combination of 
using RAID, disk cache, and fast disks can improve 
the overall performance up to a factor of 10. For the 
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FIGURE Ov.33: Full execution of GZIP, 128 MB DRAM and ideal write buffer. The fi gure shows the entire run of GZIP. System 
confi guration is a 2 GHz Pentium processor with 128 MB of FB-DIMM main memory and a 12 K-RPM disk drive with built-in disk 
cache. The fi gure shows the interaction between all components of the memory system, including the L1 instruction cache, the 
L1 data cache, the unifi ed L2 cache, the DRAM system, and the disk drive. All graphs use the same x-axis, which represents 
the execution time in seconds. The x-axis does not start at zero; the measurements exclude system boot time, invocation of 
the shell, etc. Each data point represents aggregated (not sampled) activity within a 10-ms epoch. The CPI graph shows two 
system CPI values: one is the average CPI for each 10-ms epoch, the other is the cumulative average CPI. A duration with no 
CPI data point indicates that no instructions were executed due to I/O latency. The application is run in single-user mode, as is 
common for SPEC measurements; therefore, disk delay shows up as stall time. Note that the CPI, the DRAM accesses, and the 
Disk accesses are plotted on log scales.
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FIGURE Ov.34: Full execution of GZIP, 128 MB DRAM and RAID-5 disk system. The fi gure shows the entire run of GZIP. System 
confi guration is a 2 GHz Pentium processor with 128 MB of FB-DIMM main memory and a RAID-5 system of eight 12-K-RPM disk 
drives with built-in disk cache. The fi gure shows the interaction between all components of the memory system, including the L1 
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which represents the execution time in seconds. The x-axis does not start at zero; the measurements exclude system boot time, 
invocation of the shell, etc. Each data point represents aggregated (not sampled) activity within a 10-ms epoch. The CPI graph 
shows two system CPI values: one is the average CPI for each 10-ms epoch, the other is the cumulative average CPI. A duration 
with no CPI data point indicates that no instructions were executed due to I/O latency. The application is run in single-user mode, 
as is common for SPEC measurements; therefore, disk delay shows up as stall time. Note that the CPI, the DRAM accesses, and 
the Disk accesses are plotted on log scales.
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average response time, even though the write 
response time in a RAID system is much higher than 
the write response time in a single-disk system, this 
trend does not translate directly into the overall per-
formance. The write response time in a RAID system 
is higher due to parity calculations, especially the 
benchmarks with small writes. Despite the improve-
ment in performance, care must be taken in applying 
RAID because RAID increases the energy proportion-
ally to the number of the disks.

Perhaps the most interesting result in Figure Ov.35 is 
that the CPI values (top graph) track the disk’s average 
read response time (bottom graph) and not the disk’s 
average response time (which includes both reads and 
writes, also bottom graph). This observation holds true 
for both read-dominated applications and applications 
with signifi cant write activity (as are gzip and bzip2). 
The reason this is interesting is that the disk commu-
nity tends to report performance numbers in terms of 
average response time and not average read response 

time, presumably believing the former to be a better 
indicator of system-level performance than the latter. 
Our results suggest that the disk community would 
be better served by continuing to model the effects of 
write traffi c (as it affects read latency) by reporting per-
formance as the average read response time.

Ov.4.5 Conclusions
We fi nd that the disk cache can be an effective tool 

for improving performance at the system level. There 
is a signifi cant interplay between the DRAM system 
and the disk’s ability to buffer writes and prefetch 
reads. An ideal write buffer homed within the disk has 
the potential to move write traffi c out of the way and 
begin working on read requests far sooner, with the 
result that a system can be made to perform nearly 
as well as one with four times the amount of main 
memory, but with roughly half the energy consump-
tion of the confi guration with more main  memory. 

TABLE OV.5 Execution time and energy breakdowns for GZIP and BZIP2

System Confi guration
(DRAM Size - Disk RPM -
Option)

Ex. Time
(sec)

L1-I
Energy (J)

L1-D
Energy (J)

L2
Energy (J)

DRAM
Energy (J)

Disk
Energy (J)

Total
Energy (J)

GZIP

512 MB–12 K 66.8 129.4 122.1 25.4 440.8 544.1 1261.8

128 MB–12 K 169.3 176.5 216.4 67.7 419.6 1635.4 2515.6

128 MB–12 K–WB 75.8 133.4 130.2 28.7 179.9 622.5 1094.7

128 MB–12 K–RAID 113.9 151 165.5 44.8 277.8 7830 8469.1
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FIGURE Ov.35: The effects of disk prefetching. The experiment tries to identify the effects of prefetching and caching in the disk 
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This is extremely important, because FB-DIMM 
systems are likely to have signifi cant power-dissipa-
tion problems, and because of this they will run at 
the cutting edge of the storage-performance trade-
off. Administrators will confi gure these systems to 
use the least amount of storage available to achieve 
the desired performance, and thus a simple reduc-
tion in FB-DIMM storage will result in an unaccept-
able hit to performance. We have shown that an ideal 
write buffer in the disk system will solve this problem, 
transparently to the operating system. 

Ov.5 What to Expect
What are the more important architecture-level 

issues in store for these technologies? On what prob-
lems should a designer concentrate?

For caches and SRAMs in particular, power dis-
sipation and reliability are primary issues. A rule of 
thumb is that SRAMs typically account for at least 
one-third of the power dissipated by microproces-
sors, and the reliability for SRAM is the worst of the 
three technologies. 

For DRAMs, power dissipation is becoming an 
issue with the high I/O speeds expected of future sys-
tems. The FB-DIMM, the only proposed architecture 
seriously being considered for adoption that would 
solve the capacity-scaling problem facing DRAM 
systems, dissipates roughly two orders of magnitude 
more power than a traditional organization (due to 
an order of magnitude higher per DIMM power dis-
sipation and the ability to put an order of magnitude 
more DIMMs into a system). 

For disks, miniaturization and development of 
heuristics for control are the primary consider-

ations, but a related issue is the reduction of power 
dissipation in the drive’s electronics and mechanisms. 
Another point is that some time this year, the indus-
try will be seeing the fi rst generation of hybrid disk 
drives: those with fl ash memory to do write caching. 
Initially, hybrid drives will be available only for mobile 
applications. One reason for a hybrid drive is to be 
able to have a disk drive in spin-down mode longer 
(no need to spin up to do a write). This will save more 
power and make the battery of a laptop last longer. 

For memory systems as a whole, a primary issue 
is optimization in the face of subsytems that have 
unanticipated interactions in their design param-
eters. 

From this book, a reader should expect to learn 
the details of operation and tools of analysis that 
are necessary for understanding the intricacies and 
optimizing the behavior of modern memory systems. 
The designer should expect of the future a memory-
system design space that will become increasingly 
diffi cult to analyze simply and in which alternative 
fi gures of merit (e.g., energy consumption, cost, reli-
ability) will become increasingly important. Future 
designers of memory systems will have to perform 
design-space explorations that consider the effects of 
design parameters in all subsystems of the memory 
hierarchy, and they will have to consider multiple 
dimensions of design criteria (e.g., performance, 
energy consumption, cost, reliability, and real-time 
behavior). 

In short, a holistic approach to design that con-
siders the whole hierarchy is warranted, but this 
is very hard to do. Among other things, it requires 
in-depth understanding at all the levels of the hierar-
chy. It is our goal that this book will enable just such 
an approach. 

chOv_P379751.indd   Sec2:54chOv_P379751.indd   Sec2:54 8/8/07   4:33:55 PM8/8/07   4:33:55 PM

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2008 Elsevier Inc. All rights reserved. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2008 Elsevier Inc. All rights reserved. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
    /AGaramond-Bold
    /AGaramond-BoldItalic
    /AGaramond-Italic
    /AGaramond-Regular
    /AGaramond-Semibold
    /AGaramond-SemiboldItalic
    /Alba
    /AlbaMatter
    /AlbaSuper
    /Albertus-ExtraBold
    /Albertus-Medium
    /AlbertusMT
    /AlbertusMT-Italic
    /AlbertusMT-Light
    /AllegroBT-Regular
    /AntiqueOlive
    /AntiqueOlive-Bold
    /AntiqueOlive-Compact
    /AntiqueOlive-Italic
    /AntiqueOlive-Roman
    /Apple-Chancery
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /AvantGarde-Book
    /AvantGarde-BookOblique
    /AvantGarde-Demi
    /AvantGarde-DemiOblique
    /AvantGardeITCbyBT-Book
    /AvantGardeITCbyBT-BookOblique
    /AvantGardeITCbyBT-Demi
    /AvantGardeITCbyBT-DemiOblique
    /BabyKruffy
    /BankGothicBT-Medium
    /BenguiatITCbyBT-Bold
    /BernhardFashionBT-Regular
    /BernhardModernBT-Bold
    /BernhardModernBT-BoldItalic
    /Bodoni
    /Bodoni-Bold
    /Bodoni-BoldItalic
    /Bodoni-Italic
    /Bodoni-Poster
    /Bodoni-PosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /Bookman-Demi
    /Bookman-DemiItalic
    /Bookman-Light
    /Bookman-LightItalic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BremenBT-Bold
    /CGOmega
    /CGOmega-Bold
    /CGOmega-BoldItalic
    /CGOmega-Italic
    /CGTimes
    /CGTimes-Bold
    /CGTimes-BoldItalic
    /CGTimes-Italic
    /Candid
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /Chicago
    /Chick
    /Clarendon
    /Clarendon-Bold
    /Clarendon-Condensed-Bold
    /Clarendon-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CooperBlack-Italic
    /Copperplate-ThirtyThreeBC
    /Copperplate-ThirtyTwoBC
    /CopperplateGothicBT-Bold
    /Coronet
    /Coronet-Regular
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Croobie
    /English111VivaceBT-Regular
    /EstrangeloEdessa
    /Euclid
    /Euclid-Bold
    /Euclid-BoldItalic
    /Euclid-Italic
    /EuclidExtra
    /EuclidExtra-Bold
    /EuclidFraktur
    /EuclidFraktur-Bold
    /EuclidMathOne
    /EuclidMathOne-Bold
    /EuclidMathTwo
    /EuclidMathTwo-Bold
    /EuclidSymbol
    /EuclidSymbol-Bold
    /EuclidSymbol-BoldItalic
    /EuclidSymbol-Italic
    /Eurostile
    /Eurostile-Bold
    /Eurostile-BoldExtendedTwo
    /Eurostile-ExtendedTwo
    /Fat
    /Fences
    /FencesPlain
    /FranklinGothic-Book
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Freshbot
    /Frosty
    /FuturaBT-Bold
    /FuturaBT-BoldItalic
    /FuturaBT-ExtraBlack
    /FuturaBT-Light
    /FuturaBT-LightItalic
    /FuturaBlackBT-Regular
    /Garamond
    /Garamond-Antiqua
    /Garamond-Bold
    /Garamond-Book
    /Garamond-BookItalic
    /Garamond-Halbfett
    /Garamond-Italic
    /Garamond-Kursiv
    /Garamond-KursivHalbfett
    /Gautami
    /Geneva
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /GeorgiaRef
    /GillSans
    /GillSans-Bold
    /GillSans-BoldCondensed
    /GillSans-BoldItalic
    /GillSans-Condensed
    /GillSans-ExtraBold
    /GillSans-Italic
    /GillSans-Light
    /GillSans-LightItalic
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /GlooGun
    /Goudy
    /Goudy-Bold
    /Goudy-BoldItalic
    /Goudy-ExtraBold
    /Goudy-Italic
    /GoudyHandtooledBT-Regular
    /GoudyOldStyleBT-Bold
    /GoudyOldStyleBT-BoldItalic
    /GoudyOldStyleBT-Italic
    /GoudyOldStyleBT-Roman
    /Helvetica
    /Helvetica-Black
    /Helvetica-BlackOblique
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Compressed
    /Helvetica-Condensed
    /Helvetica-Condensed-Black
    /Helvetica-Condensed-BlackObl
    /Helvetica-Condensed-Bold
    /Helvetica-Condensed-BoldObl
    /Helvetica-Condensed-Light
    /Helvetica-Condensed-LightObl
    /Helvetica-Condensed-Oblique
    /Helvetica-ExtraCompressed
    /Helvetica-Fraction
    /Helvetica-FractionBold
    /Helvetica-Light
    /Helvetica-LightOblique
    /Helvetica-Narrow
    /Helvetica-Narrow-Bold
    /Helvetica-Narrow-BoldOblique
    /Helvetica-Narrow-Oblique
    /Helvetica-Oblique
    /Helvetica-UltraCompressed
    /HelveticaCyr-Bold
    /HelveticaCyr-BoldInclined
    /HelveticaCyr-Inclined
    /HelveticaCyr-Upright
    /HelveticaInserat-Roman
    /HelveticaInseratCyr-Upright
    /HelveticaNeue-Black
    /HelveticaNeue-BlackCond
    /HelveticaNeue-BlackCondObl
    /HelveticaNeue-BlackExt
    /HelveticaNeue-BlackExtObl
    /HelveticaNeue-BlackItalic
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldCond
    /HelveticaNeue-BoldCondObl
    /HelveticaNeue-BoldExt
    /HelveticaNeue-BoldExtObl
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-BoldOutline
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-ExtBlackCond
    /HelveticaNeue-ExtBlackCondObl
    /HelveticaNeue-Extended
    /HelveticaNeue-ExtendedObl
    /HelveticaNeue-Heavy
    /HelveticaNeue-HeavyCond
    /HelveticaNeue-HeavyCondObl
    /HelveticaNeue-HeavyExt
    /HelveticaNeue-HeavyExtObl
    /HelveticaNeue-HeavyItalic
    /HelveticaNeue-Italic
    /HelveticaNeue-Light
    /HelveticaNeue-LightCond
    /HelveticaNeue-LightCondObl
    /HelveticaNeue-LightExt
    /HelveticaNeue-LightExtObl
    /HelveticaNeue-LightItalic
    /HelveticaNeue-Medium
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-MediumExt
    /HelveticaNeue-MediumExtObl
    /HelveticaNeue-MediumItalic
    /HelveticaNeue-Roman
    /HelveticaNeue-Thin
    /HelveticaNeue-ThinCond
    /HelveticaNeue-ThinCondObl
    /HelveticaNeue-ThinExt
    /HelveticaNeue-ThinExtObl
    /HelveticaNeue-ThinItalic
    /HelveticaNeue-UltraLigCond
    /HelveticaNeue-UltraLigCondObl
    /HelveticaNeue-UltraLigExt
    /HelveticaNeue-UltraLigExtObl
    /HelveticaNeue-UltraLight
    /HelveticaNeue-UltraLightItal
    /HoeflerText-Black
    /HoeflerText-BlackItalic
    /HoeflerText-Italic
    /HoeflerText-Ornaments
    /HoeflerText-Regular
    /Humanist521BT-Bold
    /Humanist521BT-BoldItalic
    /Humanist521BT-Italic
    /Humanist521BT-Roman
    /Impact
    /Jenkinsv20
    /Jenkinsv20Thik
    /JoannaMT
    /JoannaMT-Bold
    /JoannaMT-BoldItalic
    /JoannaMT-Italic
    /Jokewood
    /KabelITCbyBT-Book
    /KabelITCbyBT-Ultra
    /Kartika
    /Latha
    /LetterGothic
    /LetterGothic-Bold
    /LetterGothic-BoldSlanted
    /LetterGothic-Italic
    /LetterGothic-Slanted
    /LubalinGraph-Book
    /LubalinGraph-BookOblique
    /LubalinGraph-Demi
    /LubalinGraph-DemiOblique
    /LucidaConsole
    /LucidaSansUnicode
    /MSReference1
    /MSReference2
    /MSReferenceSansSerif
    /MSReferenceSansSerif-Bold
    /MSReferenceSansSerif-BoldItalic
    /MSReferenceSansSerif-Italic
    /MSReferenceSerif
    /MSReferenceSerif-Bold
    /MSReferenceSerif-BoldItalic
    /MSReferenceSerif-Italic
    /MSReferenceSpecialty
    /MT-Extra
    /MT-Symbol
    /MT-Symbol-Italic
    /MVBoli
    /Mangal-Regular
    /Marigold
    /MathExt
    /MathPiFiveBold
    /MathPiFiveBoldItalic
    /MathPiFiveItalic
    /MathePiEig
    /MathePiSev
    /MathematicalPi-Five
    /MathematicalPi-Four
    /MathematicalPi-One
    /MathematicalPi-Six
    /MathematicalPi-Three
    /MathematicalPi-Two
    /MathematicalPi-TwoBold
    /MathematicalPiLTStd-1
    /MathematicalPiLTStd-2
    /MathematicalPiLTStd-3
    /MathematicalPiLTStd-4
    /MathematicalPiLTStd-5
    /MathematicalPiLTStd-6
    /Meridien-Bold
    /Meridien-BoldItalic
    /Meridien-Italic
    /Meridien-Medium
    /Meridien-MediumItalic
    /Meridien-Roman
    /MicrosoftSansSerif
    /Minion-Black
    /Minion-Bold
    /Minion-BoldItalic
    /Minion-DisplayItalic
    /Minion-DisplayRegular
    /Minion-Italic
    /Minion-Regular
    /Minion-Semibold
    /Minion-SemiboldItalic
    /MonaLisa-Recut
    /Monaco
    /MonotypeCorsiva
    /Myriad-BdWeb
    /Myriad-CnItWeb
    /Myriad-CnWeb
    /Myriad-ItWeb
    /Myriad-Web
    /NewCenturySchlbk-Bold
    /NewCenturySchlbk-BoldItalic
    /NewCenturySchlbk-Italic
    /NewCenturySchlbk-Roman
    /NewYork
    /Optima
    /Optima-Bold
    /Optima-BoldItalic
    /Optima-Italic
    /Oxford
    /OzHandicraftBT-Roman
    /Palatino-Bold
    /Palatino-BoldItalic
    /Palatino-Italic
    /Palatino-Roman
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Poornut
    /Porkys
    /PorkysHeavy
    /PosterBodoniBT-Roman
    /PussycatSassy
    /PussycatSnickers
    /Raavi
    /RefSpecialty
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Italic
    /Rockwell-Light
    /Rockwell-LightItalic
    /SerifaBT-Bold
    /SerifaBT-Italic
    /SerifaBT-Roman
    /SerifaBT-Thin
    /Shruti
    /SouvenirITCbyBT-DemiItalic
    /SouvenirITCbyBT-Light
    /SouvenirITCbyBT-LightItalic
    /Staccato222BT-Regular
    /StempelGaramond-Bold
    /StempelGaramond-BoldItalic
    /StempelGaramond-Italic
    /StempelGaramond-Roman
    /StoneSans
    /StoneSans-Bold
    /StoneSans-BoldItalic
    /StoneSans-Italic
    /StoneSans-Semibold
    /StoneSans-SemiboldItalic
    /StoneSerif
    /StoneSerif-Bold
    /StoneSerif-BoldItalic
    /StoneSerif-Italic
    /StoneSerif-Semibold
    /StoneSerif-SemiboldItalic
    /Swiss911BT-ExtraCompressed
    /Sylfaen
    /Symbol
    /SymbolMT
    /Taffy
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /TypoUprightBT-Regular
    /Univers
    /Univers-Black
    /Univers-BlackOblique
    /Univers-Bold
    /Univers-BoldExt
    /Univers-BoldExtObl
    /Univers-BoldItalic
    /Univers-BoldOblique
    /Univers-Condensed
    /Univers-Condensed-Bold
    /Univers-Condensed-BoldItalic
    /Univers-Condensed-Medium
    /Univers-Condensed-MediumItalic
    /Univers-CondensedBold
    /Univers-CondensedBoldOblique
    /Univers-CondensedOblique
    /Univers-Extended
    /Univers-ExtendedObl
    /Univers-Light
    /Univers-LightOblique
    /Univers-Medium
    /Univers-MediumItalic
    /Univers-Oblique
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VerdanaRef
    /Vrinda
    /WP-ArabicScriptSihafa
    /WP-ArabicSihafa
    /WP-BoxDrawing
    /WP-CyrillicA
    /WP-CyrillicB
    /WP-GreekCentury
    /WP-GreekCourier
    /WP-GreekHelve
    /WP-HebrewDavid
    /WP-IconicSymbolsA
    /WP-IconicSymbolsB
    /WP-Japanese
    /WP-MathA
    /WP-MathB
    /WP-MathExtendedA
    /WP-MathExtendedB
    /WP-MultinationalAHelve
    /WP-MultinationalARoman
    /WP-MultinationalBCourier
    /WP-MultinationalBHelve
    /WP-MultinationalBRoman
    /WP-MultinationalCourier
    /WP-Phonetic
    /WPTypographicSymbols
    /Webdings
    /WeltronUrban
    /Wingdings-Regular
    /Wingdings2
    /Wingdings3
    /ZWAdobeF
    /ZapfChancery-MediumItalic
    /ZapfDingbats
    /ZapfElliptical711BT-Bold
    /ZapfElliptical711BT-BoldItalic
    /ZapfElliptical711BT-Italic
    /ZapfElliptical711BT-Roman
    /ZurichBT-RomanExtended
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <FEFF>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [504.000 720.000]
>> setpagedevice


