
IE
EE

Pr
oo

f

DRAM Refresh Mechanisms,
Penalties, and Trade-Offs

Ishwar Bhati, Mu-Tien Chang, Zeshan Chishti,Member, IEEE,

Shih-Lien Lu, Senior Member, IEEE, and Bruce Jacob,Member, IEEE

Abstract—Ever-growing application data footprints demand faster main memory with larger capacity. DRAM has been the technology

choice for main memory due to its low latency and high density. However, DRAM cells must be refreshed periodically to preserve their

content. Refresh operations negatively affect performance and power. Traditionally, the performance and power overhead of refresh

have been insignificant. But as the size and speed of DRAM chips continue to increase, refresh becomes a dominating factor of DRAM

performance and power dissipation. In this paper, we conduct a comprehensive study of the issues related to refresh operations in

modern DRAMs. Specifically, we describe the difference in refresh operations between modern synchronous DRAM and traditional

asynchronous DRAM; the refresh modes and timings; and variations in data retention time. Moreover, we quantify refresh penalties

versus device speed, size, and total memory capacity. We also categorize refresh mechanisms based on command granularity, and

summarize refresh techniques proposed in research papers. Finally, based on our experiments and observations, we propose

guidelines for mitigating DRAM refresh penalties.

Index Terms—Multicore processor, DRAM Refresh, power, performance

Ç

1 INTRODUCTION

GROWING memory footprints, data intensive applica-
tions, the increasing number of cores on a single chip,

and higher speed I/O capabilities have all led to higher
bandwidth and capacity requirements for main memories.
Most computing systems use DRAM (dynamic random
access memory) as the technology of choice to implement
main memory due to DRAM’s higher density compared to
SRAM (static random access memory), and due to its lower
latency and higher bandwidth compared to nonvolatile
memory technologies such as PCM (phase change memory),
Flash, and magnetic disks.

A DRAM cell is composed of an access transistor and a
capacitor. Data is stored in the capacitor as electrical charge,
but electrical charge leaks over time. Therefore, DRAM
must be refreshed periodically to preserve the stored data.
Refresh negatively impacts DRAM performance and power
dissipation. First, the memory controller stalls normal
read and write requests to the part of the memory that is
being refreshed. Second, refresh operations consume energy
because refreshing a DRAM row involves operations such as
reading and restoring data. As the speed and size of DRAM
devices continue to increase with each new technology

generation (Fig. 1), the performance and power overheads of
refresh are increasing in significance (Fig. 2). For instance,
our study shows that when using high-density 32Gb devices,
refresh contributes to more than 20 percent of the DRAM
energy consumption (Fig. 2a), and degrades the system per-
formance bymore than 30 percent (Fig. 2b).

In this paper, we evaluate and summarize the refresh
mechanisms, trade-offs, and penalties in modern DRAMs,
making the following main contributions:

1) We clarify the refresh command sequence formodern
synchronous DRAM (SDRAM). In particular, since
the traditional asynchronous interface is completely
replaced, earlier refresh categorization specified in
[1] such as RAS-only, CAS-before-RAS, and hidden
refresh are no longer available in SDRAMs.

2) We summarize currently available refresh modes
and refresh timings. We also review the characteris-
tics of DRAM data retention time.

3) Based on full-system simulations, we demonstrate
the refresh penalties versus device speed, device
size, and total memory size. We also show that as the
total memory capacity increases, background energy
becomes more significant.

4) We categorize refresh scheduling mechanisms based
on command granularity (i.e., rank, bank, and row).
We also survey previously proposed refresh techni-
ques and summarize their applicability to current
and future memory systems.

Based on our experiments and observations, we provide
general guidelines for designing techniques to mitigate
refresh penalties.

2 DRAM REFRESH: STATUS QUO

In the mid-1990s, DRAM architecture evolved rapidly from
conventional asynchronous DRAM to Fast Page Mode

� I. Bhati is with Oracle, Santa Clara, CA, USA.
E-mail: ishwar.bhati02@gmail.com.

� M.-T. Chang is with Samsung, San Jose, CA, USA.
E-mail: mutien27@gmail.com.

� B. Jacob is with Department of Electrical and Computer Engineering, Uni-
versity Of Maryland, College Park, MD 20742, USA.
E-mail: blj@umd.edu.

� Z. Chishti and S.-L. Lu are with Intel Labs, Hillsboro, OR, USA.
E-mail: {zeshan.a.chishti, shih-lien.l.lu}@intel.com.

Manuscript received 2 May 2013; revised 13 Feb. 2015; accepted 3 Mar. 2015.
Date of publication 0 . 0000; date of current version 0 . 0000.
Recommended for acceptance by E. L. Miller.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2015.2417540

IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. X, XXXXX 2015 1

0018-9340� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



IE
EE

Pr
oo

f(FPM), then Burst Extended Data Out (BEDO), and finally
SDRAM. SDRAM requires commands asserted on edges of
the system clock. Significant structural modifications to the
DRAM device have been explored to increase throughput,
and memory vendors adopted different paths to reduce
memory latency [2]. Subsequently, JEDEC formed a com-
mittee involving major players in the memory ecosystem to
unify DRAM architecture and standardize its interface.
Consequently, JEDEC specified the Double Data Rate
(DDR) SDRAM architecture, which became highly success-
ful and was widely adopted in the last decade. Currently, in
addition to specifying newer generations of commodity
DRAM devices (DDRx), JEDEC frequently publishes ver-
sions of low power (LPDDRx) and high bandwidth graphics
(GDDRx) DRAM standards, all based on the original DDR
architecture. The basic structure of the DRAM cell remains
the same since its invention, which consists of a capacitor-
transistor pair, as illustrated in Fig. 3.

A JEDEC-style SDRAM is organized into banks, rows,
and columns, as shown in Fig. 3. Each bank has dedicated

sense amps and peripheral circuitry, so multiple banks can
process memory requests in parallel with some timing
restrictions to avoid contentions on common internal and
external buses. Multiple banks are essential to achieve sus-
tained high bandwidth. According to the latest DDR4 stan-
dard [3], the banks in a device are further partitioned into
bank groups. The banks in a group share some resources,
therefore consecutive accesses to the banks in the same
group require longer time. Internal accesses to DRAM
arrays, such as refresh and activation, function at the row
granularity. After an activation command, the entire row is
read and buffered into the sense amplifiers. Subsequent col-
umn commands on the row can therefore use faster buffered
data, rather than going to the DRAM array. Table 1 shows
the organization parameters of DDRx and LPDDR3 devices.

Furthermore, multiple DRAM chips are wired together
to build a memory rank, with a wider data bus. All the
devices in a rank share address, command, and control sig-
nals. They all receive and serve the same requests, but each
DRAM device owns its own portion of data on the bus.
Typically, commodity DRAM chips are arranged on a

TABLE 1
Specified DDR Device Organization Parameters

Parameter DDR2 DDR3 DDR4 LPDDR3

Bank groups 1 1 2/4 1
Banks 4/8 8 8/16 8
Rows per bank 4K–64K 4K–64K 16K–256K 16K–32K
Columns per row 512–2K 1K–4K 1K 1K–4K
I/O (bits) 4/8/16 4/8/16 4/8/16 16/32

Fig. 1. DRAM device trends. Both speed and size increase with each DDR generation.

Fig. 2. Impact of refresh on energy and performance. (a) Energy breakdown (refresh, read/write, activate/pre-charge, and background). As device
size increases, refresh and background energy become higher. (b) IPC (instruction per cycle) and average memory access latency degradation. The
performance penalty due to refresh increases with increasing device size.

Fig. 3. DRAM memory system organization.

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. X, XXXXX 2015



IE
EE

Pr
oo

f

Dual Inline Memory Module (DIMM), which could have
one or more ranks. Finally, a memory channel is formed
using one or more DIMMs, therefore potentially having
several ranks. The ranks in a channel share all signals
except the chip select signal, which is used to distinguish
between multiple ranks.

2.1 Asynchronous vs. Synchronous DRAMs

As DRAM architecture evolved from “asynchronous”
DRAM to SDRAM, refresh parameters and options were
also modified accordingly. The following changed from ear-
lier asynchronous devices [1] to current SDRAM.

� Refresh Rate. In traditional “asynchronous” DRAM,
there are two types of devices, one with standard
refresh rate (15.6 us), and the other with extended
refresh rate (125 us). In current SDRAM devices,
the required refresh rate only changes with temper-
ature, regardless of device organization. For exam-
ple, all DDR3 devices require refresh rate of 7.8 us
at normal temperature range (0–85�C), and 3.9 us at
extended temperature range (up to 95�C).

� Distributed and Burst Refresh. In traditional “asynchr-
onous” DRAM, the memory controller can decide to
complete all required refreshes in a burst or to dis-
tribute evenly the refreshes over the retention time.
In modern DDRx devices, only the distributed
refresh option is supported, to keep refresh manage-
ment simple. LPDDRx devices, on the other hand,
also support burst refresh which can be used to meet
the deadlines of real-time applications.

� RAS-Only Refresh. In traditional “asynchronous”
DRAM, RAS-only refresh is performed by asserting
RAS with a row address to be refreshed, and CAS
remains de-asserted. The controller is responsible for
managing the rows to be refreshed. There is no
equivalent command in modern SDRAM. To accom-
plish something similar to RAS-only refresh, one
could issue an explicit activate command followed
by a precharge to the bank. As we show in later sec-
tions, this has higher energy and performance costs.
It would also require higher management burden on
the memory controller.

� CAS-Before-RAS (CBR) Refresh. In traditional “asyn-
chronous” DRAM, CBR refresh starts by first assert-
ing CAS and then asserting only RAS. There is no
requirement of sending a row address, because a
device has an internal counter that increments with
each CBR command. Inmodern SDRAMs, a variation
of CBR is adopted with two important changes. First,
both RAS and CAS are asserted simultaneously on
the clock edge, rather than one before the other. Sec-
ond, instead of internally refreshing only one row,
SDRAM devices can refresh more rows depending
upon the total number of rows in a device. This com-
mand is referred to as auto-refresh in JEDEC-based
SDRAMdevices.

� Hidden Refresh. Hidden refresh is referred to as an
immediate CBR command after a read or write oper-
ation by keeping CAS asserted, while RAS is de-
asserted once and then asserted again. This means

that the data on the DQ lines is valid while perform-
ing refresh. There is no timing advantage when com-
pared to a read/write followed by an explicit CBR
command. Hidden refresh is implemented in
“asynchronous” DRAMs but not in SDRAMs.

2.2 SDRAM Refresh Modes

SDRAM devices use auto-refresh (AR) and self-refresh (SR)
to perform refresh. In general, SR is used when idle for
power saving, while AR is used when busy.

2.2.1 Auto-Refresh (AR)

The shift from asynchronous to synchronous DRAM devi-
ces changed the refresh command interface and protocols.
In SDRAM devices, the command and address signals are
sampled on the edges of a clock. Fig. 4 illustrates a typical
AR scenario where the device is brought to the idle state by
precharging all the opened rows, and then AR is issued.
When signaling an AR command in DDRx, the memory
controller asserts both row access strobe (RAS) and column
access strobe (CAS), along with selecting the device by chip
select (CS) [4].

To simplify refresh management, each DRAM device has
an internal refresh counter that tracks the rows to be
refreshed during the next refresh operation. The controller
is responsible for issuing AR commands at a specified rate
to refresh a certain number of rows in all the banks (referred
to as all-bank auto-refresh). Normal memory operations
resume only after the completion of an AR.

LPDDRx devices use double data rate even on the com-
mand/address (CA) bus to reduce pin count. An AR is ini-
tiated when the CA0 and CA1 pins are driven LOW while
keeping CA2 HIGH on the rising edge of the clock [5].
Unlike DDRx devices, LPDDRs have the flexibility to
schedule AR at the bank granularity (referred to as per-
bank auto-refresh), which only requires the bank to be
refreshed to be idle, while other banks could service mem-
ory requests. Note that per-bank AR cannot specify the
bank address to be refreshed, i.e., the DRAM maintains
the target bank number internally, and with each com-
mand the target bank number is incremented sequentially
starting from bank 0. Therefore, the memory controller
must ensure that its notion of target bank number is in
sync with the LPDDR device’s notion of the target bank
number by using all-bank refresh. It is also worth noting
that whether an AR is per-bank or all-bank can be dynami-
cally decided based on the CA3 signal (LOW for per-bank
and HIGH for all-bank).

Fig. 4. Auto-refresh in SDRAM devices. The opened rows are pre-
charged before issuing an AR command. Subsequent operations need
to wait until tRFC for refresh to complete.

BHATI ET AL.: DRAM REFRESH MECHANISMS, PENALTIES, AND TRADE-OFFS 3



IE
EE

Pr
oo

f

2.2.2 Self-Refresh (SR)

Auto-refresh dissipates substantial power since all the
clocked circuitry in an SDRAM remains active during the
entire refresh period. As a result, in addition to the power
required for refresh, background power is consumed due to
the delay locked loop (DLL) and peripheral logic. To save
background power, a DRAM device has an option to enter
SR mode, where the device internally generates refresh
pulses using a built-in analog timer. In other words, when a
device is in SR mode, all external I/O pins and clocks are
disabled, the DLL is turned off, and the device preserves
data without any intervention from the memory controller.
SR is the lowest power mode for a DRAM device without
losing data.

Fig. 5 shows the entry and exit timing of SR for DDR4
devices [3]. First, same as in AR, all the banks should be pre-
charged before entering SR. The device enters SR mode
when the clock enable (CKE) signal is sampled low
while the command is decoded as refresh (RAS = LOW,
CAS = LOW, WE = HIGH, and CS = LOW). Additionally,
commands on the previous and the next clock cycle should
be deselected (CS=HIGH). Furthermore, the DRAM device
should remain in SR mode for at least a time period speci-
fied by tCKESR. The device should also internally schedule
a refresh command within tCKE period upon entering SR
mode. Once the device is in SR mode for tCKSRE, external
clocks can be disabled.

When exiting SR, a specified time is required to ensure
that the ongoing refresh command is finished and the DLL
is locked properly. The specified time is the maximum of
the following two timing parameters: (i) tRFC, the time
required to service a refresh command, and (ii) tXSDLLK,
the DLL lock period. It is worth noting that DDR4 devices
support an option to abort an ongoing refresh command,
making exiting SR faster (tXS_FAST and tXS_ABORT).
Nonetheless, subsequent commands that require locked
DLL still need to wait until tDLLK is complete. Since
LPDDRx devices do not have a DLL, the time to exit SR
only depends on tRFC. Finally, before re-entering SR mode,
at least one AR must be issued.

LPDDRx devices dedicate more resources to reduce the
background power during SR. Specifically, two important
techniques are used in LPDDRs: (i) temperature compen-
sated refresh rate guided by on-chip temperature sensors,

and (ii) the partial array self-refresh (PASR) option, where
the controller can program the device to refresh only a cer-
tain portion of the memory. These techniques could sub-
stantially reduce the energy consumption while in the SR
mode. For example, Fig. 6 shows how the current drawn
during SR changes with temperature and with PASR [6].

2.3 Refresh Timings

ModernDRAMdevices contain built-in refresh counters; thus
the only requirement of the memory controller is to issue
refresh commands at appropriate times. The fundamental
requirement is that each DRAM cell should be refreshed or
accessed at least once within its retention period. Most of the
commodity DRAM devices have either 32 or 64 ms retention
time, also called the refresh window (tREFW). The retention
time usually decreases with increasing temperature. Addi-
tionally, on average one AR command should be issued
within a refresh interval time (tREFI). Therefore, the memory
controller should issue at least tREFW

tREFI number of AR com-
mands within a refresh window to ensure that every DRAM
cell is refreshed before the retention time expires.

Each AR command refreshes a number of rows in each
bank depending on the total number of rows in the DRAM
device. For instance, a DDR3 device has a tREFI of 7.8 us
and a tREFW of 64 ms. Therefore, 8,192 refresh commands

Fig. 5. Self-refresh entry/exit timings for DDR4 [3].

Fig. 6. Refresh power reduction in LPDDRx when employing tempera-
ture compensation and partial array self-refresh (PASR) [6]. As the tem-
perature increases, the refresh current (IDD62) becomes higher, and
PASR shows more benefits.

4 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. X, XXXXX 2015



IE
EE

Pr
oo

f

are issued in a tREFW period. For a 512 Mb � 8 device, there
are 8,192 rows per bank, and hence each AR needs to refresh
only one row in each bank, and the internal refresh counter
is only incremented by one. However, for a 4 Gb � 8 device,
there are 65,536 rows per bank; therefore one AR command
should refresh 8 rows in each bank and increment the inter-
nal counter by eight. As the number of rows to be refreshed
by a single AR increases, the refresh completion time also
increases. The time for a refresh command is the refresh
cycle (tRFC).

In DDRx devices, the refresh flexibility allows up to eight
AR commands to be postponed or issued in advance, as
shown in Fig. 7a. The JEDEC standard allows for a debit
scheme, in which up to eight refreshes are postponed dur-
ing the high memory activity phase, and later on in the idle
period these extra AR commands are be issued. Alterna-
tively, a credit scheme can be devised by first issuing extra
refreshes and then later on skipping them. However, the
rate of refresh should meet two constraints: (i) at least one
AR must be issued in 9*tREFI time period, and (ii) no more
than 16 AR commands are issued in a 2*tREFI interval.

LPDDRx devices provide more flexibility in scheduling
AR, as shown in Fig. 7b. These devices support both distrib-
uted and burst refresh mode and anything in between. The
requirement is that, in a sliding window of tREFW, 8,192
all-bank-AR operations should be issued. Moreover, a maxi-
mum of 8 refreshes may be issued in a burst window called
tREFBW, of duration 32*tRFC.

DDR2 and DDR3 devices are specified to keep tREFI con-
stant (7.8 us), but with different tRFC period according to the
device density. Due to this, tRFC becomes prohibitively long

for high-density devices. In response to growing tRFC, DDR4
has introduced a fine-granularity refresh mode that allows
tREFI to be programmed [3]. This allows users to enable 2x or
4x mode, where tREFI is divided by 2 or 4, respectively. Con-
sequently, the number of rows refreshed for a single refresh
command is decreased by 2x or 4x, which in turn shortens
tRFC.With an on-the-fly setting, one could change the refresh
rate dynamically to suit thememory demand.

Table 2 shows the tREFI and tRFC timing values for sev-
eral DRAM generations and several device sizes. Note that
for a given DRAM architecture (e.g., DDR3), tRFC is not
constant and can vary significantly.

2.4 DRAM Retention Time

Due to junction leakage, gate-induced drain leakage, off-
leakage, field transistor leakage, and capacitor dielectric
leakage, a DRAM cell loses charge over time [7]. Therefore,
those cells storing useful data need to be refreshed periodi-
cally to preserve data integrity. The primary timing parame-
ter for refresh is retention time, the time between storing
data and the first erroneous readout. Note that in a DRAM
device, cells do not have the same retention time because of
process variations. This phenomenon is referred to as
“inter-cell” distributed retention time. The cells could be
broadly divided into two categories: leaky and normal cells.
The leaky cells draw order of magnitude higher leakage cur-
rents than the normal cells. As shown in Fig. 8a, most of the
cells are normal cells, which have retention time more than
1 second [8], [9]. However, to accommodate the worst-case
scenario, the retention time of a DRAM device is deter-
mined by the retention time of the leakiest cell.

Fig. 7. Available refresh scheduling flexibility in (a) DDRx and (b) LPDDRx devices. (a) In DDRx, up to eight AR commands can be postponed and
later compensated for, by issuing extra AR. Similarly, up to eight AR can be launched in advance and later may be skipped. (b) In LPDDRx, the
scheduling ranges from distributed refresh where only one AR is scheduled every tREFI, to a burst mode in which all required AR are completed in a
burst in the beginning of a refresh window.

TABLE 2
Refresh Timing Different Values for different DDR Device Generations

Device Timing Parameter 1 Gb 2 Gb 4 Gb 8 Gb 16 Gb 32 Gb

DDR2 (tREFI = 7.8us) tRFC (ns) 127.5 197.5 327.5 — — —
DDR3 (tREFI = 7.8us) tRFC (ns) 110 160 300 350 — —
DDR4 1x (tREFI = 7.8us) tRFC (ns) — 160 260 350 TBD —
DDR4 2x (tREFI = 3.9us) tRFC (ns) — 110 160 260 TBD —
DDR4 4x (tREFI = 1.95us) tRFC (ns) — 90 110 160 TBD —
LPDDR3 (tREFI = 3.9us, tREFW = 32ms) tRFCab (ns) — — 130 210 TBD TBD

tRFCpb (ns) — — 60 90 TBD TBD

DDR4 has an optional feature to shorten tREFI, by either 2x or 4x. LPDDR3 has per-bank (pb) and all-bank (ab) auto-refresh commands, while DDRx has only
all-bank.

BHATI ET AL.: DRAM REFRESH MECHANISMS, PENALTIES, AND TRADE-OFFS 5



IE
EE

Pr
oo

f
Another phenomenon is “intra-cell” variable retention

time. Variable retention time corresponds to two or multiple
meta-states in which a DRAM cell can stay [10]. Since each of
the states have different leakage characteristics, the retention
time of a DRAM cell varies from state to state. Additionally,
the switching frequency between different states increases at
higher temperature. For instance, a DRAM retention time
state can switch as frequently as 15 times in an hour at 85�C.
Fig. 8b shows an example of variable retention time [10].

Finally, retention time has high sensitivity to tempera-
ture. As the temperature increases, leakage also increases
and therefore shortens the retention time. As a result, at
extended temperatures (i.e., 85–95�C), DDRx devices must
increase the refresh rate. LPDDRx devices also have on-
device temperature sensors that adjust the refresh rate
according to the temperature.

3 REFRESH PENALTIES

In this section, we quantify the impact of refresh operations
on energy and performance by simulating various DRAM
device and memory system configurations.

3.1 Experimental Setup

We use DRAMSim2 [11], a cycle-accurate memory-system
simulator. It is integrated with MARSSx86 [12], a full-system

x86 simulator based on QEMU [13] and an out-of-order
superscalar multicore processor model [14]. Table 3 shows
the baseline system configuration. We also model accurate
timings for low power mode switching overheads and
refresh constraints, compliant with the DDR3 standard. The
DRAM parameters used in our simulations are taken from
vendor datasheets [15]. For the device sizes and speed grades
not currently available, we extrapolate from existing DDR3
devices based on recent scaling trends. We calculate DRAM
energy from the device’s IDD numbers, using the methodol-
ogy described in [16]. In all our experiments, the memory
controller closes an open row if the queue for that rank is
empty or after four accesses to that row, as suggested in [17].
The address mapping configuration used by the memory
controller ensures that each channel and rank receives uni-
form memory traffic. A rank switches to slow exit power
down mode immediately after the request queue for that
rank becomes empty, as proposed in [18].

We use the SPEC CPU2006 benchmark suite [19]. For each
benchmark, we determine the region of interest using Sim-
Point 3.0 [20] and simulate a total of 1 billion instructions,
starting from the region of interest. The workloads are catego-
rized into LOW, MEDIUM and HIGH, depending on their
memory bandwidth requirements. We pick some workloads
in each category, as shown in Table 4, to simulate and analyze

Fig. 8. DRAM retention time characteristics. (a) Inter-cell retention time distribution (source: [9]). Most of the cells have higher retention time, while
very few cells are leaky and therefore exhibit low retention time. (b) Intra-cell variable retention time (source: [10]). The retention time of a single cell
vary with temperature as well as time.

TABLE 3
Processor and Memory Configurations

Processor 4 cores, 2GHz, out-of-order, 4-issue per core

L1 Cache Private, 128 KB, 8-way associative, 64 B block size, 2 cycle latency
L2 Cache Shared, 8 MB, 8-way associativity, 64 B block size, 8 cycle latency
Memory controller Open page, first ready first come first serve, ”RW:BK:RK:CH:CL”

address mapping, 64-entry queue, 1 channel
Total memory size 8 GB–64 GB (default: 8 GB)
DRAM device Size 1 Gb–32 Gb (default: 8 Gb); speed 1066 Mbps–3200 Mbps (default: 1333 Mbps)

TABLE 4
Workload Composition

Memory Bandwidth Workloads (4 copies of same program or mixed instances)

LOW hmmer; namd; mix1 (games, namd, hmmer, povray)
MEDIUM milc; gromacs; GemsFDTD
HIGH libquantum; mcf; mix2 (mcf, libquantum, milc, GemsFDTD)

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. X, XXXXX 2015



IE
EE

Pr
oo

fdifferent aspects of the memory system. These workloads
show representative results for the purpose of our study.

We note that our power model follows the trends
observed on real memory systems. For instance, in our sim-
ulations, LOW workloads consume 0.5–1W/GB, MEDIUM
consume 0.8-1.2W/GB, and HIGH consume 1–2.8W/GB.
These power numbers are within the range of DRAM
power consumed in recent HP [21] and Intel [22] servers.

3.2 Refresh Penalty vs. Device Speed

Fig. 9 shows the impact of refresh on memory energy con-
sumption and performance with various device speed con-
figurations. Note that for all the energy bar graphs in
Section 3, we show both the normalized energy breakdown
and the absolute energy values, in milli-Joules. The energy
consumption of eachworkload is normalized to the first con-
figuration. In the performance bar graphs, we show the nega-
tive impact of refresh on the system’s instructions per cycle
(IPC) and average memory latency. We obtain the percent-
age degradation results by comparing memory systems
with refresh against ones with no refresh, using the same
configuration.

In the LOW bandwidth workloads of Fig. 9, background
and refresh energy increase with device speed, due to fast
switching of I/O circuits in the DRAM device. However, in
the HIGH bandwidth workloads, higher speeds result in
better performance and therefore less overall energy con-
sumption. The performance penalty of refresh in the HIGH
bandwidth workloads is substantial and results in up to
11.4 percent IPC loss. With varying device speed, there is
not much change in the IPC loss; however, the penalty on
the average DRAM latency increases with device speed.
This indicates that memory requests are either not in the
critical path of the program, expected in compute-bound
applications; or in the case of memory-bound applications,

there is enough Memory Level Parallelism (MLP) to hide
the increase in memory latency. Moreover, latency degrada-
tion in LOW bandwidth programs varies the most with
speed (e.g., from 13 to 23.5 percent). These programs have
few memory requests, which magnifies the refresh penalty.

3.3 Refresh Penalty vs. Device Density

Fig. 10 shows the effect of refresh when DRAM device den-
sity increases. Both the refresh and background energy
increase substantially with device density. For instance,
refresh represents 25-30 percent of DRAM energy for 32 Gb
device in LOW bandwidth programs. In HIGH bandwidth
workloads, most of the energy is due to memory accesses.
Furthermore, the performance penalty is severe in high den-
sity devices for HIGH bandwidth programs—e.g., when
using 32 Gb devices, the IPC degradation is more than
30 percent for libquantum and mcf.

As device density increases, LOW and MEDIUM band-
width workloads show substantial increase in energy con-
sumption as well as noticeable performance drop. To reduce
energy and performance penalties, these workloads require
intelligent refresh-scheduling schemes to effectively utilize
idle periods when memory can either switch to low power
SR mode or issue more refresh operations in advance. As
detailed in Section 4.2, several recently proposed refresh
schemes use techniques to track access patterns to predict
idleness and then use the prediction to schedule energy- or
performance-efficient operations [23], [24], [25], [26], [27].

3.4 Refresh Penalty vs. System Memory Size

We increase the total memory size from 8 GB to 64 GB,
keeping the device size and speed constant at 8 Gb and
1333 Mbps. Note that the number of ranks in a channel
increases with increasing memory capacity, i.e., 1, 2, 4 and 8
ranks for 8 GB, 16 GB, 32 GB and 64 GB memory.

Fig. 9. Refresh penalty vs. device speed. The device speed increases from 1.87ns (1066Mbps) to 0.625ns (3200Mbps). The background energy
increases due to faster switching peripherals. The performance penalty due to refresh operations in HIGH bandwidth workloads is substantial, but
does not change much with speed.

BHATI ET AL.: DRAM REFRESH MECHANISMS, PENALTIES, AND TRADE-OFFS 7



IE
EE

Pr
oo

fFig. 11 shows the energy breakdown and performance
penalty as the system memory size increases. Systems with
larger total memory capacity dissipate more background
power because more 8 Gb devices are utilized. For a system
with 64 GB memory, refresh and background power are the
major sources of DRAM energy consumption, even when
running HIGH bandwidth programs. Finally, we observe
that refresh has greater IPC impact on HIGH bandwidth
programs, while affecting average latency more on LOW
bandwidth workloads.

As system memory increases, some workloads (mix2 and
hmmer) show less IPC drop, while others (libquantum and
mcf) show more. This behavior depends on the program’s
memory-access pattern, e.g., whether memory requests are
evenly distributed on each rank, or some ranks are accessed
more often than others. If memory accesses are distributed
evenly, and as the number of ranks increases with system
memory, then when one rank is refreshing, the remaining
ranks can serve requests in parallel. Therefore, in this sce-
nario, the refresh penalty decreases with higher memory

Fig. 11. Refresh penalty vs. system memory size. Memory increases from 8 GB to 64 GB, keeping single channel configuration and increasing ranks
from 1 to 8. Both refresh and background energy increase with larger total memory capacity.

Fig. 10. Refresh penalty vs. device density. The memory subsystem is one channel, one rank. Device size increases from 1 Gb to 32 Gb. Refresh
energy increases with size, more substantial in LOW bandwidth workloads. Background energy also increases for two reasons: (i) more peripherals
as size increases; (ii) longer active mode refresh commands.

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. X, XXXXX 2015



IE
EE

Pr
oo

f

size. On the other hand, if the program does not access the
ranks evenly, and since ranks on the same channel share
command and data buses, the increased number of
refreshes will have an adverse effect on memory bandwidth
as the system memory increases.

4 REFRESH OPTIONS AND TECHNIQUES

In this section, we first categorize refresh options based on
the command granularity: rank, bank, and row level. Fur-
thermore, we survey various refresh techniques and discuss
their applicability in modern DRAM systems.

4.1 Refresh Granularity

Refresh commands can be processed at the rank, bank, or
row level.

Rank-Level: All-Rank (Simultaneous) and Per-Rank (Indepen-
dent) Refresh. At the system level, the memory controller can
either schedule AR to all ranks simultaneously (simulta-
neous refresh), or it can schedule AR commands to each
rank independently (independent refresh). In simultaneous
refresh, the entire system is unavailable during the refresh
completion period, while in the independent refresh case,
some ranks in a multi-rank memory system are still avail-
able to service requests. Depending upon the number of
processes and their address mappings, either simultaneous
or independent refresh could result in better performance.

In Fig. 12, we compare the effects of choosing either
simultaneous or independent refresh options when chang-
ing the number of ranks from 1 to 8 with 8 Gb DRAM devi-
ces. In most of the cases, there is not much difference
between simultaneous or independent refresh options.
However, some HIGH memory programs show slightly bet-
ter performance in the case of simultaneous refresh option
due to the overall reduced refresh down time.

Bank-Level: All-Bank and Per-Bank Refresh. General pur-
pose DDRx devices only have the AR commands at the
granularity of the entire device (i.e., all the banks in the
device are unavailable when an AR command is issued).
Therefore, an AR is given to all the devices in a rank, and
none of the banks is allowed to service any requests until
refresh is complete. This command is referred to as all-bank
refresh. On the other hand, in addition to all-bank AR com-
mands, LPDDRx devices have the option of per-bank AR,
where only one bank is down when an AR is issued, while
other banks could still serve normal memory requests [5].
Eight sequential per-bank refreshes are equivalent to one
all-bank refresh, assuming eight banks.

Row-Level. A row-level refresh can be accomplished by
either adding a new command to refresh a certain row in a
given bank, or by explicitly activating a row and then pre-
charging it. The former requires changes to SDRAM devi-
ces; the latter does not require device changes but requires
more command bandwidth.

The advantage of row-level refresh is that the memory
controller can skip redundant refresh operations based on
the status of each row. For example, if a row has a longer
retention time than tREFW (e.g., 128 ms), then using the
normal refresh rate (e.g., assuming 64 ms retention time)
results in redundant refreshes. Alternatively, if a row is
read or written more frequently than the refresh rate, then
refreshes to that row become redundant and can be
skipped. However, as shown in Fig. 13a, for higher density
devices, the time required for refresh operations using row-
level refreshes gets longer as compared to AR. For instance,
even if the controller can skip 70 percent of the rows to be
refreshed in a refresh window, the time is still comparable
to AR. The main reason for this performance difference is
that DRAM vendors have optimized AR to refresh rows in
the same bank in parallel. Furthermore, AR internally uti-
lizes aggressive bank-level parallelism by activating rows
faster than the tRRD (row-to-row activation delay) and
tFAW (four-bank activation window) constraints, since
device organizations and power surge are exactly known
and optimized for AR. However, external activate com-
mands required for row-level refresh need to follow tRRD
and tFAW to meet DRAM power constraints, as shown in
Fig. 14.

Moreover, issuing explicit activate/precharge commands
to refresh each row consumes substantial command band-
width in high density devices. As shown in Fig. 13b, the
overall command bandwidth for refresh commands in a
4-rank system approaches 100 percent of the total band-
width (assuming 64 ms refresh window). This not only
degrades performance, it also eliminates many opportuni-
ties to switch to power-down modes. Finally, using SR
mode for row-level refresh poses a difficulty, since the
device’s internal refresh counters need to be synchronized
to the appropriate rows before entering SR.

4.2 Refresh Schemes

4.2.1 Based on Row-Level Refresh

Ohsawa et al. [28] analyzed the increasing impact of refresh
operations on system energy and performance in merged
DRAM/logic chips. The study proposed two DRAM refresh
architectures that eliminate unnecessary refreshes. One

Fig. 12. All-rank (simultaneous) refresh vs. per-rank (independent) refresh. The X-axis shows the total system memory capacity varying from 8 GB to
64 GB, and increasing the number of ranks on a channel.

BHATI ET AL.: DRAM REFRESH MECHANISMS, PENALTIES, AND TRADE-OFFS 9



IE
EE

Pr
oo

f

technique, Selective Refresh Architecture (SRA), performs
refresh operations at fine granularity and can either select
or skip refresh to a row. In particular, SRA can reduce
refreshes if the controller has knowledge of whether the
data stored in the rows are going to be used in the future.
To implement SRA, one option is to add per-row flags in
DRAM to indicate whether a row should be refreshed or
not. These flags can be programmed by the memory control-
ler using customized commands. Another option is to
implement row-level refresh, which the memory controller
can selectively issue. The former option requires extra flags
for each row in a DRAM device, while the latter option
introduces refresh scheduling complexity and storage over-
head to the memory controller. As the number of rows
increases, both options create substantial overheads.

Smart Refresh [29] also adopts the selective row-refresh
mechanism: refreshes are skipped for rows accessed in the
last refresh period, and the memory controller sends row-
level refresh commands to the remaining rows. The mem-
ory controller requires a large SRAM array for the state
information of each row in the entire memory system.
Although the authors proposed schemes based on CBR and
RAS-only, modern DDRx SDRAM devices do not support
per-row refresh commands. The option for RAS-only is to
send an explicit activate command followed by a precharge
command for each row, as opposed to using the AR com-
mand. Since AR is usually optimized for performance as
well as energy by DRAM vendors, some of the benefits of
Smart Refresh will be nullified in high density devices.

ESKIMO [30] uses semantic refresh and the concept from
the row-selective approach to avoid refreshing the rows

storing data that have been freed. The authors proposed to
use SRA so that fine-grained row-level flags are used to skip
some of the unwanted refreshes.

4.2.2 Using Retention Time Awareness

Also proposed in Ref. [28] is Variable Refresh Period Archi-
tecture (VRA), wherein the refresh interval for each row is
chosen from a set of periods. Since most DRAM cells exhibit
higher retention times, few rows require the worst-case
rate. Therefore, VRA reduces a significant number of
refreshes by setting an appropriate refresh period for each
row. However, the hardware overhead for maintaining
refresh interval tables in DRAM devices or in the controller
becomes significant, as the number of rows has increased
rapidly in recent devices.

Flikker [31] and RAPID [32] use the distribution of
DRAM cell retention periods to reduce the number of
refresh operations. Flikker requires the application to parti-
tion data into critical and non-critical sections, then it uses
the sections with regular refresh rate for critical data and the
sections with slow refresh rate for non-critical data. This
means that the non-critical regions can tolerate some degree
of data loss. In RAPID, the operating system (OS) uses the
retention time of the pages to prefer pages with longer reten-
tion time. This allows RAPID to choose the shortest-reten-
tion period among only the populated pages, rather than all
memory pages. This mechanism involves only software but
requires the OS to determine each page’s retention period.

Liu et al. proposed RAIDR [33], which optimizes the
refresh rate based on the retention time distribution of
DRAM cells. DRAM rows are first binned based on the

Fig. 13. Row-level refresh vs. auto-refresh. (a) The minimum time to satisfy refresh requirement in a bank vs. device density. The percentage skip
corresponds to the number of rows which need not be refreshed in tREFW (i.e., refreshes to a row can be bypassed if its explicitly accessed). The
advantage of row-level refresh decreases with each DRAM generation. (b) Command bandwidth consumed by refresh operations based on activate/
precharge commands. The command bandwidth increases with increasing device density and the number of ranks.

Fig. 14. Timing constraints and row-level refreshes (sets of activate/precharge commands) required to accomplish refresh operation equivalent to an
AR. In this example, an AR command refreshes two rows in each of the 8 banks (corresponds to 1 Gb device). Timing parameters are taken from
DDR3 specs [4] (tRC = 50 ns, tRRD = 6 ns, tFAW = 30 ns, and tRFC = 110 ns).

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. X, XXXXX 2015



IE
EE

Pr
oo

f

retention time of the row’s leakiest DRAM cell. Since leaky
cells occur infrequently, most of the rows require lower
refresh rates. Furthermore, RAIDR uses bloom filters to
encode the required refresh rate for each bin. RAIDR does
not use auto-refresh but sends explicit activate and pre-
charge sequences to each row.

Recently, experimental refresh studies [34], [35] charac-
terize retention periods, and their results confirm the nor-
mal distribution of retention time in modern DRAMs.
However, profiling and accounting for retention period var-
iability still remains an unsettled topic. In addition to reten-
tion period characterization, Baek et al. [35] propose two
software based schemes to account for weak cells, either dis-
carding them through OS based memory management, or
skipping unused refresh regions under the control of sys-
tem software. Both schemes need RAS-only refresh com-
mand support from DRAM devices.

4.2.3 Using Refresh Scheduling Flexibility

Many previous papers proposed mechanisms to mitigate
the impact of long refresh periods on performance.
Stuecheli et al. [23] proposed Elastic Refresh which relies on
re-scheduling the refresh commands so that they overlap
with periods of DRAM inactivity. Elastic Refresh postpones
up to eight refresh commands in high-memory request
phases of programs, and then issues the pending refreshes
during idle memory phases at a faster rate, to maintain the
average refresh rate. Based on the number of pending
refreshes and the memory request patterns, the thresholds
for refresh scheduling in a rank are dynamically changed.
However, all the refresh commands are issued in the active
power mode, which consumes more background power.
The increase in energy consumption due to long refresh
period in high density DRAM devices was not evaluated.

Another recent technique, Adaptive Refresh [25], uses
finer-granularity refresh modes introduced in Ref. [3] to
reduce the refresh performance penalty. Adaptive Refresh
decides the appropriate refresh granularity (between nor-
mal 1x and finer-grained 4x) by a heuristic based on dynam-
ically monitoring the serviced memory bandwidth. This
technique shows benefits only when the command queues
in the memory controller are limited in size and are shared
between all the ranks of a channel.

Lastly, Coordinated Refresh [26] focuses on both per-
formance and energy consumption of refresh operations.
This mechanism relies on the ability to re-schedule refresh
commands to overlap with periods of DRAM inactivity
while utilizing full-flexibility of refresh commands as in
Elastic Refresh. Coordinated Refresh co-schedules the
refresh commands and the low power mode switching
such that most of the refreshes are issued energy effi-
ciently, in SR mode.

4.2.4 For DRAM-Based Caches

DRAM is also used as a cache for main memory; for
example the IBM Power7 uses eDRAM as its last-level
cache [36], and hybrid memory systems use small
DRAMs to cache the non-volatile main memory [37]. It is
worth noting that the data retention time for eDRAMs is
much shorter than commodity DRAMs. Also, DRAM

caches are usually not required to follow the protocols for
DRAM main memory; therefore there is more flexibility
in designing refresh-reduction mechanisms.

For on-chip DRAM-based caches, an effective refresh-
reduction technique is the use of error correcting codes [38],
[39], [40]. This approach reduces the refresh rate by disasso-
ciating failure rate from single effects of the leakiest cells.
Another promising approach exploits memory access
behaviors; for instance, if a cache line is intensively read or
written, refresh operations to that cache line are postponed
[41], [42], [43]. On the other hand, if a cache line holds use-
less data (i.e., dead cache blocks), refresh operations can be
bypassed [44].

For off-chip DRAM caches, the OS can be effective
in assisting refresh reduction. For instance, Moshnyaga
et al. [45] proposed to reduce the refresh energy based on
the OS’s knowledge in DRAM/Flash memory systems.
They divide the active and non-refreshed banks based on
the access patterns of data present in these banks. Refresh
operations to a bank are disabled if the bank is not refer-
enced in a given time-window and contains only unmodi-
fied pages. Since the OS knows which pages are being
referenced, it can decide which banks to disable. Dirty
pages in non-referenced banks are put into the swap cache,
which are then written back to Flash.

4.3 Applicability Matrix

Table 5 summarizes the refresh techniques discussed in this
section. The table shows the following: first, we characterize
the power and performance improvements achieved using
these schemes. Second, we categorize the schemes according
to their refresh command granularity, to understand their
feasibility in general-purpose DRAM devices. Third, the
modifications required to implement the schemes are con-
sidered. This is important because the cost of changing at
the device level is higher than modifying the memory con-
troller, and software-level changes are relatively easier to
accept than hardware modifications. Furthermore, we eval-
uate the difficulty of schemes to co-exist with the SR mode,
since SR is very important for energy efficiency. We also
consider how well these schemes will scale in future large
memory systems built with high-density devices. Finally,
since some techniques allow data in portions of the memory
to get corrupted, we evaluate memory-system reliability.

4.4 Potential Refresh Improvements

We compared various data retention times against ideal
memory without refresh. Fig. 15 shows the energy and
performance impact when changing the refresh timing
parameters. Our results illustrate the potential refresh
improvement achieved when utilizing retention awareness.
We expect refresh awareness to be even more effective when
applied to future high density devices, but, to fully utilize
its potential, trade-offs such as command bandwidth should
be considered.

Fig. 15 shows the effects of decreasing the normal AR
interval by 2x and 4x finer granularities, i.e, tREFI is
decreased from 7.8 us to 3.9 us and 1.95 us, respectively.
The corresponding tRFC values are chosen from the DDR4
specification, as shown in Table 2. For most of the

BHATI ET AL.: DRAM REFRESH MECHANISMS, PENALTIES, AND TRADE-OFFS 11



IE
EE

Pr
oo

f

workloads, the finer grained options increase energy and
degrade performance. However, for the milc benchmark,
using 4x granularity improves performance. This indicates
that finer granularities can potentially mitigate refresh pen-
alties, but rather than constantly employing these options,
one should use them intelligently.

5 REFRESH TRENDS AND CONCLUSIONS

Based on the recently proposed refresh techniques, DRAM
scaling trends, and our refresh exploration results, we sum-
marize our observations below:

1) Some refresh techniques based on old DRAM devi-
ces and asynchronous interfaces are useful for
DRAM caches, but, for general purpose DDR
SDRAM devices, they are less practical.

2) With increasing device density, JEDEC has provided
multiple refresh scheduling and timing options.
Understanding design trade-offs such as refresh

management complexity, device level changes for
refresh, and available refresh scheduling flexibility,
will be important for designing practical refresh
optimization schemes.

3) Techniques using DDR’s built-in mechanisms to
reduce the refresh penalty are desirable, for example:
techniques exploiting Self Refresh mode, techniques
exploiting refresh flexibility with auto-refresh com-
mands, and techniques using the finer-granularity
options inDDR4 devices.

4) Auto-refresh is optimized by DRAM vendors for
power and performance. Therefore, schemes using
explicit row-level commands to fulfill refresh require-
ments lose out on this efficiency.Moreover, theirman-
agement overhead grows with the increasing number
of rows in high density DRAM devices. Analytically,
we have shown that, unless more than 70 percent
of rows can skip refresh, there is no benefit to using
row-level refresh for high capacity memory systems.

TABLE 5
Applicability Matrix of Refresh Schemes Discussed

Category Scheme
Benefits Refresh granularity Modifications

SR support Scalable Reliable
Energy Performance Row Bank Rank Device Controller Software

Row selective
SRA [28] @ � @ � � @ @ � ? � @

Smart Ref. [29] @ � @ � � @ @ � � � @
ESKIMO [30] @ � @ � � @ @ @ � � @

Retention aware

RAIDR [33] @ @ @ � � � @ � � ? @
VRA [28] @ @ @ � � @ @ � � � @
Flikker [31] @ ? � � @ � @ @ @ @ �
RAPID [32] @ ? � � @ � � @ @ @ ?

Refresh scheduling

Elastic [23] � @ � � @ � @ � @ @ @
Pausing [24] � ? � � @ @ @ � @ @ @
Adaptive [25] � @ � � @ � @ � @ @ @

Coordinated [26] @ @ � � @ � @ � @ @ @

DRAM as cache

Access behavior [38], @ � @ � � N/A @ � N/A @ @
[41], [42], [43], [44]

ECC-based @ � @ � � N/A @ � N/A @ ?

[38], [39], [40]

OS-control [45] @ � � @ � @ @ @ � � @

Symbols: @! Yes; �! No; ?! Difficult to say Yes or No.

Fig. 15. Refresh penalty vs. refresh timings. We investigate the following: (i) tREFIs values decreased by (1x, 2x, 4x); (ii) various retention times
(64 ms, 128 ms, 256 ms, 512 ms).

12 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. X, XXXXX 2015



IE
EE

Pr
oo

f

Additionally, the controller complexity, command
bandwidth, and energy overhead make row-level
refresh even less attractive.

5) The performance and energy penalties of refresh
increase to 35 percent in near future 32Gb devices.
The background energy in high density devices also
increases substantially. Therefore, refresh and back-
ground power management become key design con-
siderations. Future designs can and should use
techniques available in LPDDRs (PASR, Tempera-
ture Compensated Self Refresh, etc.) without sacrific-
ing too much performance.

6) Exploiting retention awareness of DRAM cells to
reduce refresh operations can reduce refresh over-
head. However, these schemes should use auto-
refresh and self-refresh modes effectively, otherwise
the gains obtained by retention awareness will be
lost by issuing row-selective refresh commands,
especially in future high density DRAMs.

ACKNOWLEDGMENTS

The authors would like to thank David Wang and the
reviewers for their valuable inputs. The research was
funded in part by Intel Corporate Research Council’s Uni-
versity Research Office, the United State Department of
Energy, Sandia National Laboratories, and the United States
Department of Defense.

REFERENCES

[1] Micron Technology, “Various methods of DRAM refresh,” Tech.
Note. TN-04-30, 1999.

[2] B. Jacob, S. W. Ng, and D. T. Wang, Memory Systems: Cache,
DRAM, Disk. San Mateo, CA, USA: Morgan Kaufmann, 2007.

[3] JEDEC, “DDR4 standard specifications,” Tech. Rep. JESD79-4,
2012.

[4] JEDEC, “JEDEC DDR3 Standard,” Tech. Rep. JESD79-3E, 2010.
[5] JEDEC, “Low power double data rate 3 (LPDRR3) standard speci-

fications,” Tech. Rep. JESD209-3, 2012.
[6] Micron Technology, “Mobile LPDDR2 SDRAM,” Tech. Rep.

MT42L256M16D1, 2010.
[7] M. Joodaki, Selected Advances in Nanoelectronic Devices: Logic, Mem-

ory and RF. New York, NY, USA: Springer, 2013.
[8] T. Hamamoto, S. Sugiura, and S. Sawada, “On the retention time

distribution of dynamic random access memory (DRAM),” IEEE
Trans. Electron Devices, vol. 45, no. 6, pp. 1300–1309, Jun. 1998.

[9] K. Kim and J. Lee, “A new investigation of data retention time in
truly nanoscaled DRAMs,” IEEE Electron Device Letters, vol. 30,
no. 8, pp. 846–848, Aug. 2009.

[10] D. S. Yaney, C. Y. Lu, R. A. Kohler, M. J. Kelly, and J. T. Nelson,
“A meta-stable leakage phenomenon in DRAM charge storage
variable hold time,” in Proc. IEDM, 1987.

[11] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A cycle
accurate memory system simulator,” IEEE Comput. Archit. Lett.,
vol. 10, no. 1, pp. 16–19, Jan. 2011.

[12] A. Patel, F. Afram, S. Chen, and K. Ghose, “MARSSx86: A full sys-
tem simulator for x86 CPUs,” presented at the Proc. 48th Design
Autom. Conf., DAC 2011, San Diego, CA, USA, 2011.

[13] F. Bellard, “QEMU, a fast and portable dynamic translator,” in
Proc. ATEC, 2005, p. 41.

[14] M. T. Yourst, “PTLsim: A cycle accurate full system x86-64 micro-
architectural simulator,” in Proc. ISPASS, 2007, pp. 23–34.

[15] Micron Technology, “4Gb DDR3 SDRAM Datasheet,” Tech. Rep.
MT41J1G4, 2009.

[16] Micron Technology, “Calculating memory system power for
DDR3,” Tech. Note. TN-41-01, 2007.

[17] D. Kaseridis, J. Stuecheli, and L. K. John, “Minimalist open-page:
A DRAM page-mode scheduling policy for the many-core era,” in
Proc. MICRO, 2011, pp. 24–35.

[18] I. Hur and C. Lin, “A comprehensive approach to DRAM power
management,” in Proc. HPCA, 2008, pp. 305–316.

[19] SPEC CPU 2006. [Online]. Available: http://spec.org/cpu2006/,
2006.

[20] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “SimPoint 3.0:
Faster and more flexible program analysis,” in Proc. MoBS,
2005.

[21] Hewlett-Packard, “DDR3 memory technology,” Technology Brief
TC100202TB, Hewlett-Packard, 2010.

[22] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu,
“Memory power management via dynamic voltage/frequency
scaling,” in Proc. ICAC, 2011.

[23] J. Stuecheli, D. Kaseridis, H. Hunter, and L. K. John, “Elastic
refresh: Techniques to mitigate refresh penalties in high density
memory,” in Proc. MICRO, 2010.

[24] P. Nair, C. C. Chou, and M. K. Qureshi, “A case for refresh paus-
ing in DRAMmemory systems,” in Proc. HPCA, 2013.

[25] J. Mukundan, H. C. Hunter, K. hyoun Kim, J. Stuecheli, and J. F.
Martnez, in ISCA, A. Mendelson, Ed. ACM, pp. 48–59.

[26] I. Bhati, Z. Chishti, and B. Jacob, “Coordinated refresh: Energy
efficient techniques for DRAM refresh scheduling,” in Proc.
ISLPED, 2013.

[27] I. Bhati, “Scalable and energy-efficient DRAM refesh techniques,”
PhD Thesis, Dept. Electr. Comput. Eng., Univ. Maryland, College
Park, MD, USA, 2014.

[28] T. Ohsawa, K. Kai, and K. Murakami, “Optimizing the DRAM
refresh count for merged DRAM/logic LSIs,” in Proc. ISLPED,
1998.

[29] M. Ghosh and H.-H. Lee, “Smart refresh: An enhanced memory
controller design for reducing energy in conventional and 3d die-
stacked DRAMs,” in Proc. MICRO, 2007.

[30] C. Isen and L. K. John, “ESKIMO–energy savings using semantic
knowledge of inconsequential memory occupancy for DRAM sub-
system,” in Proc. MICRO, 2009.

[31] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker:
Saving DRAM refresh-power through critical data partitioning,”
in Proc. ASPLOS, 2011.

[32] R. K. Venkatesan, S. Herr, and E. Rotenberg, “Retention-aware
placement in DRAM (RAPID): Software methods for quasi-non-
volatile DRAM,” in Proc. HPCA, 2006.

[33] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “RAIDR: Retention-aware
intelligent DRAM refresh,” in Proc. ISCA, 2012.

[34] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu, “An experi-
mental study of data retention behavior in modern DRAM devi-
ces: Implications for retention time profiling mechanisms,” in
Proc. ISCA, 2013.

[35] S. Baek, S. Cho, and R. Melhem, “Refresh now and then,” IEEE
Trans. Comput., vol. 30, no. 2, pp. 7–15, Mar./ Apr. 2010.

[36] R. Kalla, B. Sinharoy, W. J. Starke, and M. Floyd, “Power7: IBM’s
next-generation server processor,” IEEE Micro, vol. 63, no. 12,
pp. 3114–3126, Dec. 2014.

[37] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high per-
formance main memory system using phase-change memory
technology,” in Proc. ISCA, 2009.

[38] P. G. Emma,W. R. Reohr, andM.Meterelliyoz, “Rethinking refresh:
Increasing availability and reducing power in DRAM for cache
applications,” IEEEMicro, vol. 28, no. 6, pp. 47–56, Nov./Dec. 2008.

[39] W. Yun, K. Kang, and C. M. Kyung, “Thermal-aware energy mini-
mization of 3D-stacked L3 cache with error rate limitation,” in
Proc. ISCAS, 2011.

[40] C. Wilkerson, A. R. Alameldeen, Z. Chishti, W. W. D. Somasekhar,
and S.-L. Lu, “Reducing cache power with low-cost, multi-bit
error-correcting codes,” in Proc. ISCA, 2010.

[41] W. R. Reohr, “Memories: Exploiting them and developing them,”
in Proc. SOCC, 2006.

[42] X. Liang, R. Canal, G. Y. Wei, and D. Brooks, “Process variation
tolerant 3T1D-based cache architectures,” in Proc. MICRO, 2007.

[43] A. Agrawal, P. Jain, A. Ansari, and J. Torrellas, “Refrint: Intelli-
gent refresh to minimize power in on-chip multiprocessor cache
hierarchies,” in Proc. HPCA, 2013.

[44] M.-T. Chang, P. Rosenfeld, S.-L. Lu, and B. Jacob, “Technology
comparison for large last-level caches (L3Cs): Low-leakage
SRAM, low write-energy STT-RAM, and refresh-optimized
eDRAM,” in Proc. HPCFA, 2013.

[45] V. G. Moshnyaga, H. Vo, G. Reinman, and M. Potkonjak,
“Reducing energy of DRAM/Flash memory system by OS-
controlled data refresh,” in Proc. ISCAS, 2007.

BHATI ET AL.: DRAM REFRESH MECHANISMS, PENALTIES, AND TRADE-OFFS 13



IE
EE

Pr
oo

f

Ishwar Bhati received BTech degree in electron-
ics and communication engineering from Indian
Institute of Technology, Guwahati, India, in 2005,
and the MS and PhD degrees in computer engi-
neering from University of Maryland, College
Park, MD, in 2013 and 2014, respectively. He is
currently working as a Senior Hardware engineer
at Oracle, Santa Clara, CA. His research inter-
ests include energy efficient memory systems
and high performance computing.

Mu-Tien Chang received the BS and the MS
degrees in electronics engineering from National
Chiao Tung University, Hsinchu, Taiwan, in 2006
and 2008, respectively, and the PhD degree in
computer engineering from University of Mary-
land, College Park, MD, in 2013. He is currently a
senior system architecture engineer at Memory
Solutions Lab, Samsung, San Jose, CA. His
research interests include memory circuit and
system architecture design.

Zeshan Chishti received the BSc (Hons) degree
in electrical engineering from the University of
Engineering and Technology, Lahore, Pakistan,
in 2001, and the PhD degree in computer
engineering from Purdue University, West Lafay-
ette, IN, in 2007. He is a research scientist at Intel
Labs, Hillsboro, OR. His current research focuses
on energy-efficient memory and cache design.
He is a member of the IEEE.

Shih-Lien Lu received the BS degree in electri-
cal engineering and computer science from UC
Berkeley, Berkeley, CA, and the MS and PhD
degrees in computer science and engineering
from UCLA, Los Angeles, CA. He is currently a
principal researcher and directs the Memory
Architecture Lab in Intel Labs. Prior to Intel, he
served on the faculty of the Electrical and Com-
puter Engineering Department at Oregon State
University from 1991 to 1999. From 1984 to 1991
he worked for the MOSIS Service as a VLSI

System Manager. He is a senior member of the IEEE.

Bruce Jacob received the AB degree cum laude
in mathematics from Harvard University, Cam-
bridge, MA, in 1988, and the MS and PhD
degrees in computer science and engineering
from the University of Michigan, Ann Arbor, MI, in
1995 and 1997, respectively. At the University of
Michigan, he was part of a design team building
high-performance, high-clock-rate microproces-
sors. He has also worked as a software engineer
for two successful startup companies: Boston
Technology and Priority Call Management. At

Boston Technology, he worked as a distributed systems developer and,
at Priority Call Management, he was the initial system architect and chief
engineer. He is currently on the faculty of the University of Maryland,
College Park, where he is currently an associate professor of electrical
and computer engineering. His present research covers memory-system
design, DRAM architectures, virtual memory systems, and microarchi-
tectural support for real-time embedded systems. He is a recipient of a
US National Science Foundation CAREER award for his work on DRAM
architectures and systems. He is a member of the IEEE and the ACM.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

14 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. X, XXXXX 2015


