
 

Flexible Auto-Refresh: Enabling Scalable and Energy-Efficient DRAM Refresh Reductions 
 

Ishwar Bhati
*
, Zeshan Chishti

§, Shih-Lien Lu
§
, and Bruce Jacob

¶
 

*
Oracle Corporation 

§
Intel Corporation 

¶
University of Maryland

*
ishwar.singh.bhati@oracle.com, 

§
{zeshan.a.chishti, shih-lien.l.lu}@intel.com, 

¶
blj@umd.edu

Abstract 
Capacitive DRAM cells require periodic refreshing to 

preserve data integrity. In JEDEC DDRx devices, a refresh 

operation is carried out via an auto-refresh command, 

which refreshes multiple rows from multiple banks 

simultaneously. The internal implementation of auto-refresh 

is completely opaque outside the DRAM—all the memory 

controller can do is to instruct the DRAM to refresh itself—

the DRAM handles all else, in particular determining which 

rows in which banks are to be refreshed. 

This is in conflict with a large body of research on 

reducing the refresh overhead, in which the memory 

controller needs fine-grained control over which regions of 

the memory are refreshed. For example, prior works exploit 

the fact that a subset of DRAM rows can be refreshed at a 

slower rate than other rows due to access rate or retention 

period variations. However, such row-granularity 

approaches cannot use the standard auto-refresh command, 

which refreshes an entire batch of rows at once and does 

not permit skipping of rows. Consequently, prior schemes 

are forced to use explicit sequences of activate (ACT) and 

precharge (PRE) operations to mimic row-level refreshing. 

The drawback is that, compared to using JEDEC’s auto-

refresh mechanism, using explicit ACT and PRE commands 

is inefficient, both in terms of performance and power.       

In this paper, we show that even when skipping a high 

percentage of refresh operations, existing row-granurality 

refresh techniques are mostly ineffective due to the inherent 

efficiency disparity between ACT/PRE and the JEDEC auto-

refresh mechanism. We propose a modification to the 

DRAM that extends its existing control-register access 

protocol to include the DRAM’s internal refresh counter. 

We also introduce a new “dummy refresh” command that 

skips refresh operations and simply increments the internal 

counter. We show that these modifications allow a memory 

controller to reduce as many refreshes as in prior work, 

while achieving significant energy and performance 

advantages by using auto-refresh most of the time.  
 

*This work was done while Ishwar Bhati was a graduate student at 

University of Maryland. 

Permission to make digital or hard copies of all or part of this work 

for personal or classroom use is granted without fee provided that 

copies are not made or distributed for profit or commercial 

advantage, and that copies bear this notice and the full citation on 

the first page. To copy otherwise, to republish, to post on servers or 

to redistribute to lists, requires prior specific permission and/or a 

fee.  

ISCA’15, June 13-17, 2015, Portland, OR USA  

1. Introduction 
To retain the data stored in their leaky capacitive cells, 

DRAMs require periodic refresh operations, which incur 

both performance and energy overheads. As DRAM devices 

get denser, three primary refresh penalties increase 

significantly: The time spent occupying the command bus 

with refresh commands increases with the number of rows 

to be refreshed; the time during which rows are unavailable 

because their storage capacitors are being recharged 

increases with the number of simultaneous rows being 

refreshed (among many other factors); and the power 

needed to keep the DRAM system refreshed scales with the 

number of capacitors in the system.  

These overheads are already significant and are on the 

rise. Refresh is projected to account for up to 50% of the 

DRAM power while simultaneously degrading memory 

throughput by 50% in future 64Gb devices [1]. Therefore, 

practical and scalable mechanisms to mitigate refresh 

penalties will be crucial in future systems with large main 

memories. 

As is well known, a large number of refreshes are 

unnecessary and therefore can be skipped by utilizing either 

access or retention period awareness. Access awareness 

exploits knowledge of recent read/write activity, as refresh 

operations to a row can be skipped if the row has been 

accessed recently, or if the data stored in it are no longer 

required [2], [3]. Retention awareness exploits knowledge of 

the characteristics of individual cells. The retention period 

of a DRAM cell indicates how frequently it should be 

refreshed to preserve its stored charge. Importantly, among 

all cells, most have high retention (on the order of few 

seconds), while a very few “weak” cells have low retention 

that requires frequent refreshes [4], [5]. For simplicity, in 

commodity DRAM, the refresh rate for the entire device is 

specified by a single retention period (tRET), representing 

the worst-case time of the weakest cells. Consequently, prior 

retention-aware schemes characterize and store retention 

period per-row and then selectively schedule frequent 

refreshes to only the rows with weak cells, thereby reducing 

as many as 75% of the refreshes [1], [6].  

The problem facing these prior schemes is that JEDEC’s 

refresh mechanism in DDRx DRAMs takes away fine-

grained control of refresh operations, thereby rendering row-

level refresh-reduction techniques relatively inefficient, or 

worse, unusable.  

Prior refresh reduction schemes, both retention and access 

aware, rely on a fine-granularity row-level refresh option to 

selectively refresh only the required rows. However, such a 

row-level refresh command is no longer supported in 

mailto:*ishwar.singh.bhati@oracle.com
mailto:shih-lien.l.lu%7d@intel.com


 

 

JEDEC DDRs. To get around this limitation, prior 

implementations explicitly send an activate (ACT) 

command followed by a precharge (PRE) command to the 

desired DRAM row [7, 8]. 

In comparison, JEDEC’s Auto-Refresh (AR) command, 

which refreshes several rows simultaneously, is typically 

used for refresh operations in DDRx devices. To simplify 

refresh management, the memory controller is given limited 

responsibility in the refresh process: it only decides when an 

AR should be scheduled based on a pre-specified refresh 

interval (tREFI). The DRAM device controls what rows to 

be refreshed in an AR operation and how refresh is 

implemented internally. A refresh counter is maintained by 

the device itself to track the rows to be refreshed in next 

AR. More importantly, device designers have optimized AR 

by exploiting knowledge of how the DRAM bank is 

internally organized in multiple sub-arrays. Each sub-array 

carries out refresh operations independently; therefore the 

DRAM can schedule several refreshes in parallel to multiple 

rows of a single bank, thereby reducing both the 

performance and energy penalties of refresh. 

Our key observation is that neither mechanism — neither 

AR by itself nor prior schemes that are forced to use ACT 

and PRE to realize row-level refresh — are optimal in 

minimizing the performance and power impact of refresh. 

Since the memory controller does not have enough control 

over refresh with AR, it cannot skip unnecessary refreshes at 

all, and using ACT/PRE to refresh individual rows is simply 

not scalable to future DRAM devices.  

For perspective: to accomplish row-level refresh, a 16Gb 

DDR4 x4 device [7], will require four million ACT and 

PRE commands (8M total commands)
1
 in each tRET 

(64ms). If directed to an individual bank, this would require 

13ms to complete; if directed to all banks at once, this would 

require 25ms to complete
2
. In contrast, in each tRET (64ms) 

period, auto-refresh requires only 8K AR commands, three 

orders of magnitude fewer commands on the command bus 

compared to the per-row scheme, with each operation 

completing in tRFC (480ɳs) time [9]. Hence, AR satisfies 

all bank refresh in 3.93ms (8K*480ɳs), which is 3.3X and 

6.4X less than the time required by the row-level option for 

single and all banks, respectively. Furthermore, the energy 

consumption of row-level refresh (details in Section 2.5) is 

also substantially higher than the optimized AR option. 

Thus, even if most of the refreshes are skipped, the inherent 

inefficiencies of row-level ACT/PRE refresh prevent one 

from obtaining the desired refresh reduction benefits.  

The purpose of this work, therefore, is to make the 

already optimized AR mechanism flexible enough so that a 

memory controller can skip unwanted refreshes while 

serving the rest of refreshes efficiently. We therefore 

 
1 Each bank of 16Gb device (4 bit wide) has 256K rows, and a total of 

4M rows in all of its 16 banks. 
2 ACT on same and different banks must wait for tRC (50ɳs) and tRRD 

(6ɳs) respectively. Thus, row-level refresh consumes 13.1ms (256K*50ns) 
to refresh a single bank, and 25.1ms (4M*6ɳs) to refresh all banks. 

propose a simple DRAM modification to provide external 

access to the refresh counter register, by extending the 

register-access interface already available in the latest 

commodity DDR4 and LPDDR3 devices. This interface 

allows the memory controller to write or read pre-defined 

mode registers through Mode Register Set (MRS) or Mode 

register Read (MRR or MPR) commands [7], [10]. For 

instance, in DDR4, the on-die temperature sensor value can 

be read by accessing a specific register with an MPR 

command. We propose that the refresh counter value be 

accessed using the same MRS/MPR mechanism.  

In addition, we introduce a “dummy-refresh” command, 

which increments the internal refresh counter but does not 

schedule any refreshes — hence it consumes one command 

bus cycle without interrupting any memory requests on any 

of the internal banks.  

The main contributions of this paper are as follows: 

 We quantify and analyze the inefficiencies caused by 

JEDEC’s Auto-refresh scheme when row-granularity 

refresh techniques are used, and further show that the 

prior refresh reduction techniques do not scale in high 

density DDRs.  

 We propose simple changes in DRAM to access the 

refresh counter, which enable the JEDEC AR mechanism 

to be utilized in refresh reduction techniques. 

 We quantify the effects of our proposal, Flexible Auto-

Refresh (REFLEX), serving most of the required refresh 

operations through AR, while skipping refreshes through 

dummy-refresh.      

 We show that, in 32Gb devices, REFLEX techniques save 

an average of 25% more memory energy than row-level 

refresh when 75% of the refreshes are skipped. 

2. Background and Motivation 
DRAM devices require periodic refresh operations to 

preserve data integrity. The frequency of refresh operations 

is decided by the DRAM retention time characteristics. Prior 

work has shown that retention time is not evenly distributed 

among DRAM cells; most of the cells have high retention 

period while very few cells (referred to as weak cells) have 

low retention period. Because the number of weak cells can 

be significant (e.g., tens of thousands per DRAM device 

[11]), the device manufacturers specify a single retention 

time (tRET) that corresponds to the weakest cells. Typically, 

tRET is 64ms at normal temperature and 32ms at high 

temperature [7].  

Earlier “asynchronous” DRAM devices supported two 

refresh commands: CAS-before-RAS (CBR) and RAS-Only 

[12]. Under CBR operation, the DRAM device itself 

controls the refreshing row number using an internal refresh 

counter. Under RAS-Only, the memory controller manages 

refresh operations for each row. Today, however, modern 

synchronous DDR DRAMs, which have completely 

replaced asynchronous devices, support only one refresh 

mechanism: Auto-Refresh (AR). 



 

 

2.1. Refresh in Commodity DRAMs 

The DRAM refresh process can be logically broken up into 

three distinct decisions: (i) Scheduling: when (and how 

often) are refresh operations carried out, (ii) Granularity: 

what portion (rows) of memory is refreshed in each refresh 

operation, and (iii) Implementation: how is a refresh 

operation implemented inside the DRAM.  

In commodity DRAMs, the AR command is designed to 

provide greater control of the refresh process to the DRAM 

device itself. The memory controller is only in charge of 

scheduling the refresh commands; for instance, issuing an 

AR command once every refresh interval (tREFI). The 

DRAM device is free to decide what rows are to be 

refreshed and how the refresh operations are accomplished 

internally, during the refresh completion interval (tRFC). A 

refresh counter, internal to the device, tracks the set of rows 

to be refreshed in the next command.    

Table 1 shows a trend; as device density increases, the 

number of rows grows at the same pace, and all rows must 

be refreshed in a tRET (64ms) period. If refreshing a single 

row at a time, 16Gb and 32Gb devices would require 4M 

and 8M refresh commands per tRET, respectively; which 

means a refresh command should be issued every few 

nanoseconds (15.2ɳs in 16Gb and 7.6ɳs in 32Gb device). 

Fortunately, JEDEC realized this scalability problem early 

on and kept the tREFI period long (7.8µs for DDR3), by 

allowing a single AR to refresh several rows at once. But, as 

shown in Table 1, the tRFC period increases as more rows 

are refreshed in an AR (512 rows in 16Gb, and 1024 in 

32Gb). To address increasing tRFC values, DDR4 devices 

have three refresh rate options. The default refresh rate is to 

issue 8K AR commands in tRET, as in DDR3. The other 

two options increase refresh rate by 2x or 4x by refreshing 

half or one-fourth rows respectively, to reduce tRFC. 

Lastly, an AR command can be issued at a per-bank or an 

all-bank level. In commodity DDR devices, only all-bank 

AR is supported, while LPDDR devices have a per-bank AR 

option in addition. In the all-bank AR operation, all the 

banks are simultaneously refreshed and are unavailable for 

the tRFC period. In contrast, LPDDR’s per-bank AR 

refreshes rows only in the addressed bank. While this 

requires many more refresh commands to be issued during 

the tRET period (the number increases by a factor equal to 

the degree of banking), a refreshing bank is idle for a shorter 

tRFCpb period (approximately half of an all-bank’s tRFC 

period), and other banks can service memory requests 

during the refresh operation. The advantage of all-bank AR 

is that, with single command, several rows of all the banks 

are refreshed, consuming less time overall than equivalent 

per-bank ARs. However, since the per-bank AR option 

allows non-refreshing banks to service memory requests, the 

programs with high memory bank parallelism may perform 

better with per-bank AR than with all-bank AR. 

2.2. Self-Refresh (SR) Mode 

To save background energy, DRAM devices employ low 

power modes during idle periods. The lowest power mode, 

known as Self-refresh (SR), turns off the entire DRAM 

clocked circuitry and the DLL and triggers refresh 

operations internally by a built-in analog timer without 

requiring any command from the memory controller.  

When in self-refresh mode, the scheduling of refresh 

commands is exclusively under the control of the DRAM 

device. The device automatically increments the internal 

refresh counter after each refresh operation. The number of 

refresh operations serviced during the SR mode would vary 

depending on the time the DRAM spends in the SR mode 

and how refresh operations are scheduled by the DRAM 

device during that time. Consequently, when the memory 

controller switches the DRAM back from the SR mode to 

the active mode, the exact value of the refresh counter 

cannot be correctly predicted.      

2.3. Row-granularity Refreshing 

Multiple prior works have attempted to exploit the fact that 

a large subset of DRAM rows need to be refreshed at a 

Table 1:  Number of rows and refresh completion 
time in DDR4 devices (x4) [7], [9]. Both increase with 
device density. Note: K = 1024, M= 1024*1024 
Device 
density 

Num. 
Banks 

Per-bank 
Rows 

Total  
Rows 

Rows 
in AR 

tRFC (ɳs) 

8Gb 16 128K 2M 256 350 

16Gb 16 256K 4M 512 480 

32Gb 16 512K 8M 1024 640 

 

tRRD

tFAW(30ɳs) tRC(50ɳs)
tRRD 

(6ɳs)

tRRD

tFAW(30ɳs)

tRRD

tFAW(30ɳs)

tRFC(110ɳs)

tRRD 

(6ɳs)
tRRD 

(6ɳs)

For DDR3 1Gb x8 device, timing comparison of explicit row-level refreshes (top) equivalent to an Auto-Refresh (AR) 

command (bottom). Single AR refreshes 2 rows in each of the eight banks. 

 
Figure 1: An illustration (in 1Gb DDR3 devices) of Row-level refresh timing constraints compared with an auto-refresh (AR) 

command. An AR, in this case, refreshes two rows in each of the 8 banks. 

 

 



 

 

slower than nominal rate. Since most DRAM cells have high 

retention periods, prior retention aware techniques exploit 

row-granularity refreshing to reduce a large number of 

unnecessary refreshes [1], [6]. For instance, the previously 

proposed RAIDR scheme skips 75% of refresh operations 

by storing the measured retention time profile at a row 

granularity and issuing or skipping refresh to a row based on 

its retention period. A second set of refresh reduction 

techniques, such as Smart refresh [2] and ESKIMO [3], skip 

refresh to a row if the row has been recently accessed or 

data stored in it are no longer needed for future accesses. 

Both these sets of techniques rely on row-level refresh 

granularity to reduce the required number of refreshes. 

Current DDR devices do not support row-level refresh 

commands like RAS-Only in the earlier asynchronous 

devices. As described in Section 2.1, managing refresh at 

the row granularity is problematic, especially with millions 

of rows in DDR devices. Therefore JEDEC has deprecated 

row-granularity refresh command. The only way row-

granularity refresh can be implemented in current devices is 

by explicitly issuing a sequence of ACTIVATE followed by 

a PECHARGE command for each row. In the next two 

subsections, we present performance and energy overheads 

of  Auto-Refresh and explicit row-level refresh. 

An alternative to the explicit ACTIVATE-PRECHARGE 

sequence is for the DRAM device to internally keep track of 

rows which require less frequent refreshing and to skip 

refreshes to such rows in response to AR commands from 

the memory controller. However, such an implementation 

has two important drawbacks: First, it would require 

additional storage and logic inside the DRAM to maintain a 

record (such as a bit vector or a table) of the weak vs. strong 

rows. For commodity devices, such logic and storage may 

be prohibitive in terms of cost. Second, for techniques 

which rely on access awareness, such as Smart refresh [2] 

and ESKIMO [3], the DRAM device will need to keep track 

of when a row was last accessed. These limitations constrain 

DRAM-exclusive solutions for row-granularity refreshing 

without any involvement from the memory controller.   

2.4. Performance Overheads of Refresh 

The time required for refresh is growing exponentially with 

each generation, as the time required scales with the number 

of bits to refresh. The advantage of JEDEC’s optimized 

auto-refresh mechanism is that, as rows are added to each 

generation, the device is also banked to a finer degree, and 

the internal refresh mechanism refreshes more rows in 

parallel. Explicit row-level refresh cannot exploit this 

parallelism, because the sub-array organization is not visible 

outside the DRAM [13]. Figure 2 quantifies the difference; 

the figure shows refresh time in milliseconds as DRAM 

density increases for all-bank AR; this is compared to the 

individual row-level option, given different degrees of 

refresh reductions (labeled % skip). The skip percentage 

represents a refresh reduction scheme’s ability to eliminate 

that percentage of refresh operations. Note that, for the row-

level results, refresh time is shown per-bank, assuming an 

ideal case for row-level refresh in which all banks can 

schedule refreshes in parallel. Specifically, the graph shows 

that, for a 16Gb device, even if 70% of the refreshes are 

eliminated, the time to complete the remaining 30% is equal 

to using AR on all the rows.  

Another timing detail to note is that the DRAM device in 

all-bank AR is permitted to activate rows faster than the 

tRRD and the tFAW constraints, as the power dissipation of 

an AR is known and optimized. By contrast, when using 

ACT to perform row-level refresh, one must observe both 

tRRD and tFAW to meet the DRAM power constraints, as 

illustrated in Figure 1. Lastly, since row-level refresh blocks 

 
Figure 2: Time required in explicit row-level vs auto-refresh as DRAM density increases. The % skip correspond to unnecessary 

refreshes. In16Gb devices, row-level refresh with 70% rows skipped only evens out with auto-refresh. 

 

 

auto-refresh (AR) 

0% skip 

30% skip 

50% skip 

70% skip 

90% skip 0

10

20

30

512Mb 1Gb 2Gb 4Gb 8Gb 16Gb 32Gb

Ti
m

e 
(m

ill
is

e
co

n
d

s)
 

Minimum time refresh operations occupy 
 (in milliseconds) in a refresh window (tREFW),  

with increasing device density 

 
Figure 3: Percentage of command bandwidth consumed by 

row-level refreshes in multi-rank channels. 
 

 

1_rank 

2_rank 

4_rank 

0

100

% Command bandwidth occupied  
by row-level refreshes 

 



 

 

only the refreshing bank, while allowing other banks to 

service memory requests concurrently, workloads with high 

bank-level parallelism can get better performance compared 

with all-bank AR. However, we observe that a more 

efficient way of utilizing this bank-level parallelism is to 

implement per-bank AR instead of relying on row-level 

refreshes. For example in 16Gb DDR4 x4 devices, if per-

bank AR is used, then refreshing a single bank requires only 

1.97ms (assuming LPDDR3 trends of tRFCpb half of tRFC), 

which is 15% of the row-level option. 

Finally, issuing ACT/PRE commands can consume 

substantial command bandwidth, and the situation worsens 

as the number of ranks sharing the command bus increases. 

For instance, a rank using 32Gb devices requires 16M (8M 

ACT and 8M PRE) commands to satisfy row-level refresh, 

and in a four-ranked channel all 64M commands for refresh 

are scheduled on a common bus. As shown in Figure 3, the 

required bandwidth for row-level refreshes approaches 

100% of the total available command bandwidth (assuming 

64ms refresh window and 1600Mbps devices). Thus, row-

level refresh commands leave little command bandwidth for 

normal memory requests (reads and writes). 

2.5. Energy Overheads of Refresh 

To compare the energy consumed by an AR command 

and one ACT/PRE sequence for row-level refresh, we use 

the equations below [14]. 

 
 Ear = (IDD5-IDD3N)*tRFC*Vdd 

Eact/pre = (IDD0*tRC – IDD3N*tRAS – IDD2N (tRC-tRAS))*Vdd  

 

We use timing and IDD current values based on the 16Gb 

JEDEC DDR4 datasheet and Table 4 in [9] respectively. 

The values are as follows: IDD0=20mA, IDD3N=15.5mA, 

IDD2N=10.1mA, and IDD5=102mA; tRC=50ns, 

tRAS=35ns, and tRFC=480ns. IDD0 and IDD3N values for 

x8 devices are scaled down to the smaller row size in x4 

devices. Using these parameters, the energy consumed by 

one AR command is as follows: Ear = (102–15.5)*480 = 

41.5nJ.
3
 The energy consumed by one set of ACT/PRE 

commands is Eact/pre = 20*50 – 15.5*35 – 10.1*15 = .306nJ. 

Since an AR schedules 32 row-refreshes in each of the 16 

banks, we have Erow-level = Eact/pre*32*16 = 157nJ. Hence, the 

energy consumed by row-level refreshes (Erow-level) is almost 

four times Ear, the energy consumed by an AR command. 

Furthermore, on average in the 16Gb device, an ACT 

should be scheduled in each 15.2ns (64ms/4M) interval for 

row-level refresh. This means that the DRAM device does 

not have the opportunity to switch to low power modes and 

needs to stay in the “active” mode most of the time, where it 

consumes high background power. Lastly, as described in 

Section 2.2, when a DRAM device is in the self-refresh (SR) 

mode, the scheduling of refreshes has to be carried out by 

the device itself. This implies that upon switching back to 

 
3 In calculations, Vdd of 1V is assumed. For energy unit conversion 

from ɳs*mA*V to ɳJ, former value is divided by 1000 to get ɳJ.  

active mode, the row-level refresh scheme needs to know 

which rows were refreshed during the SR mode, so that the 

refresh operations can be resumed from the correct point. 

However, lack of access to the internal device refresh 

counter makes it difficult for a row-level refresh scheme to 

resume refresh correctly. This difficulty makes row-level 

refreshes incompatible with the SR mode, further worsening 

the energy consumption, when the device is idle.  

3. Flexible Auto-Refresh 
As we have shown, the JEDEC auto-refresh mechanism is 

incompatible with the refresh reduction techniques that 

exploit row-level awareness. We propose a modification of 

the DRAM access protocol that would return control to the 

memory controller’s heuristics without sacrificing the 

optimizations in JEDEC auto-refresh. We note that the 

DRAM refresh counter value is not accessible externally, 

yet control-register-access mechanisms exist in the JEDEC 

DDR specs. If, somehow, the memory controller could 

access and change the refresh counter, then as we will show, 

our proposed techniques could reduce as many refreshes as 

the individual row-level heuristics, while issuing most of the 

remaining refreshes through the optimized AR mechanism. 

3.1. Refresh Counter Access Architecture 

We observe that current DRAM devices already have an 

interface available to read and write internal DRAM 

registers [7], [10]. We propose to extend the existing 

interface to include the refresh counter, thereby making the 

refresh counter both readable and writeable by the memory 

controller.  

Figure 4 shows the details of our proposed DRAM 

architecture. Reading the refresh counter register (REFC-

READ) can be implemented similar to MPR (multi-purpose 

register) reads in DDR4 or MRR (mode register read) in 

LPDDR3 devices [7], [10]. In response to a “REFC-READ” 

command (Figure 4(c)), the DRAM returns the refresh 

counter value on its data bus like a normal control register 

read. Since the refresh counter is accessed infrequently, only 

at initialization and on exit from self-refresh (SR) mode, 

timing overheads are not critical. Using the refresh counter 

access feature, the memory controller knows the rows to be 

refreshed in the next AR command and can also find exactly 

how many refreshes happened during the previous self-

refresh (SR) mode.  

To skip refresh operations, the memory controller should 

be able to increment the refresh counter without actually 

performing refresh operations. We propose to add such a 

command, referred to as “dummy-refresh”. As shown in 

Figure 4(b), “dummy-refresh” can be implemented to share 

the command-code (RAS and CAS asserted) with normal 

auto-refresh (AR), with one address bit used as a flag to 

differentiate it from AR. Since “dummy-refresh” causes no 

real refresh activity and merely increments the internal 

refresh counter, it does not have the performance or energy 

overheads of regular refresh operations. For instance, the 

memory controller can issue normal memory requests while 



 

 

a “dummy-refresh” operation is being serviced. 

Furthermore, “dummy-refresh” is easily extendible to have 

all the existing AR variations, like per-bank (LPDDR3) and 

DDR4 fine-grained (x2, x4) options by incrementing the 

appropriate number of rows in the refresh counter.  

Finally, a “REFC-WRITE” command, as shown in Figure 

4(d), can overwrite the value of the refresh counter register, 

implemented as another Mode Register Set (MRS) 

command [7]. The REFC-WRITE command can be used to 

synchronize all the devices in a rank after exiting from SR 

mode.  In SR mode, the DRAMs issue refreshes based on 

timing events generated from their local ring oscillators. The 

timings of oscillators in each device are not synchronized, 

and therefore some devices in a rank may issue more 

refreshes than others while in SR mode. In this scenario, the 

refresh counter values read from devices at SR exit may not 

match exactly. Subsequently, a REFC-WRITE can be used 

to synchronize the rank by explicitly writing a common 

minimum value to the refresh counters of all devices.  

3.2. Flexible Auto-Refresh (REFLEX) Techniques 

Through the proposed architecture, the memory controller 

can access and synchronize the refresh counter values of all 

devices in a rank or system. The memory controller can use 

“dummy-refresh” commands to skip refreshes when needed. 

We propose a set of three refresh reduction mechanisms, 

collectively referred to as Flexible Auto-Refresh (REFLEX).  

In DDR devices, the default refresh option is to issue 8K 

all-bank AR (1x granularity mode) commands in a tRET 

period. Two other options added in DDR4 are to increase 

the refresh issue rate to 16K and 32K AR in the retention 

period (2x and 4x granularity modes respectively). These 

finer granularity options decrease the number of rows 

refreshed in a single AR command. Our first proposed 

technique called REFLEX-1x, issues auto-refresh (AR) and 

“dummy-refresh” using only the default 1x refresh 

granularity option. When using REFLEX-1x, the memory 

controller tracks refresh requirements at the granularity of 

all rows refreshed in a single AR command (we refer to 

them as AR bins). 

Figure 5 illustrates the workings of REFLEX techniques. 

For simplicity, only 32 rows of a device are shown and two 

of them (row 7 and row 20) have weak cells. Rows with 

weak cells need to be refreshed in each tRET round whereas 

other rows need to be refreshed infrequently (for example, 

once in every 4 tRET rounds). In the example, each 1x AR 

command refreshes 8 rows in all banks. Therefore the 

baseline scheme needs to send four AR commands so that 

all 32 rows are refreshed (Figure 5(a)). In the REFLEX-1x 

scheme, the memory controller schedules refresh commands 

only if there are weak rows among the rows refreshed in an 

AR, otherwise a “dummy-refresh” is issued to increment the 

refresh counter. Therefore, as shown in Figure 5(b), 

REFLEX-1x issues only two AR commands corresponding 

to the AR bins including the two weak rows, whereas two 

“dummy-refresh” commands are issued, reducing the overall 

refresh activity by a factor of two. 

The previously proposed RAIDR work [1] characterized 

the DRAM retention time behavior and showed that only up 

to 1K rows in a 32GB DRAM system require refresh times 

of less than 256ms. RAIDR refreshes these 1K weak rows 

once every 64ms, while refreshing the remaining strong 

rows once every 256ms (or one-fourth of the worst-case 

rate). Therefore, by employing row-granularity refreshes 

and skipping unnecessary refreshes to strong rows, RAIDR 

is able to achieve a 74.6% reduction in refresh activity. In 

comparison, REFLEX-1x employs the standard AR 

command, which, when directed to a weak row, also 

unnecessarily refreshes the strong rows in the AR bin. 

However, even in the worst case, when all the 1K rows are 

in separate AR bins, REFLEX-1x can reduce 65% of refresh 

operations, because in a 256ms period, the baseline AR 

scheme issues 32K (8K per 64ms) AR commands, while 

REFLEX-1x would issue only 11K (1K + 1K + 1K + 8K)  

AR commands.  

REFC-READ

CLK

CMD

ADDR

DATA

tCL

REFC
Reg. Addr

Refresh Counter value

REFC-
WRITE

CLK

CMD

ADDR

DATA

tMRD/tMOD

REFC
Reg. Addr

REFC 
Value

VALID**

DUMMY-REF

CLK

CMD

ADDR

DATA

REFC-FLAG

VALID**

Command/Address
Decode

Refresh 
Counter Reg.

BANKS

Command Bus

Data Bus

RE
FC

-R
EA

D

RE
FC

-W
RI

TE

D
U

M
M

Y/
A

R

REFRESH TIMINGS 
& MANAGEMENT

Update/read

M
U

X

.

.

.
REFC-READ command 

puts ref. counter value on 
Data Bus

REFC-WRITE, DUMMY and Auto 
Refresh update ref. counter 

Refresh Commands
1) AUTO-REFRESH (AR)
2) DUMMY REFRESH
3) REFC-READ
4) REFC-WRITE

Address Bus

(a) Proposed Refresh Architecture (b) DUMMY-REFRESH command

(c) REFC-READ command (d) REFC-WRITE command  
Figure 4: Our proposed changes in DRAM for flexible auto-refresh. Three new commands are added to access, write and increment 

the refresh counter register. **VALID in (b) and (d) refers to any allowed command. 

 
        

 



 

 

Our second technique, referred to as REFLEX-4x, utilizes 

the finer granularity 4x AR option introduced in DDR4. In 

REFLEX-4x, retention or access awareness is stored at the 

granularity of rows refreshed in one 4x AR command. In 

16Gb devices, 1x and 4x AR options refresh 512 and 128 

rows respectively. Therefore, the amount of storage required 

in the controller increases for REFLEX-4x compared with 

REFLEX-1x. However, REFLEX-4x has the ability to issue 

finer-grained refreshes to reduce more unnecessary refresh 

operations. For further optimization, the memory controller 

may intermingle REFLEX-1x and REFLEX-4x operations as 

needed. As shown in Figure 5(c), REFLEX-4x refreshes only 

4 rows, reducing 75% of refresh operations compared with 

the baseline. Furthermore, REFLEX-4x when used in the 

RAIDR characterization settings reduces 72.5% of refresh 

operations, almost equal to what row-level refreshes in 

RAIDR could achieve (74.6%).  

The tradeoff by using 1x AR and finer-granularity AR is 

between refresh bin storage and the number of eliminated 

refresh operations. In REFLEX-1x, since 8K AR are 

scheduled in a tRET, only 8K bins are required in a rank. 

Assuming 2 bit storage for each bin (for example, indicating 

retention time of 64, 128, 192 or 256 ms), REFLEX-1x 

requires 2KB of storage per rank. However, because of the 

larger refresh granularity in the REFLEX-1x technique, the 

potential of refresh reduction is less compared with the 

finer-grained REFLEX-4x scheme. 

Finally, in our third technique referred to as REFLEX-

Row, the memory controller manages the DRAM on a per 

row basis, as done in RAIDR. In the REFLEX-Row scheme, 

the memory controller issues ACT-PRE (same as row-level 

refresh) commands to only weak rows in the next AR bin. 

After that, a “dummy-refresh” operation is issued to 

increment the refresh counter. An example of REFLEX-Row 

is shown in Figure 5(d). To reduce the amount of storage 

required in the controller, an intelligent scheme using bloom 

filters as proposed in RAIDR can be employed [1]. 

REFLEX-Row achieves as much refresh reduction as 

previous row-level based retention aware techniques, while 

satisfying most refresh requirements through the standard 

AR mechanism and issuing row-level refreshes only for the 

handful of weak rows.  

3.3. REFLEX using per-bank AR 

The auto-refresh command has two types, as described in 

Section 2.1: all-bank and per-bank AR. The advantage of 

per-bank AR is that, when one bank is refreshing, other 

banks can service memory requests concurrently, whereas 

all-bank AR makes all banks unavailable during refresh. As 

suggested in a recent study[15], adding a support similar to 

LPDDR type per-bank AR in general purpose DDR devices 

should not be difficult, requiring only simple changes: an 

extra flag on the DDR interface to differentiate per-bank 

from all-bank AR, a corresponding change in the command 

decoder to identify this flag, a new counter storing the bank 

number, and a logic component that increments the refresh 

counter when the bank counter rolls over to 0. Per-bank AR 

(tRFCpb) requires around 40% to 50% of the time required 

by all-bank AR (tRFC). For instance, in an 8Gb LPDDR3 

device, tRFC is 210ɳs while tRFCpb is 90ɳs [10].  

REFLEX-1x techniques can work in per-bank AR in a 

similar manner as in all-bank AR. Since per-bank AR is 

issued at a finer granularity, the REFLEX-1x technique with 

per-bank AR can eliminate more refreshes. For example, 

REFLEX-1x with per-bank AR will reduce 74.2% of refresh 

00
1
2
3
04
5
6

7 (WEAK)
08
9

10
11
012

13
14
15
016

17
18
19
020 (WEAK)

21
22
23
024

25
26
27
028

29
30
31

BANKS
Refresh Counter: 0

Refresh Counter: 8

Refresh Counter:8

Refresh Counter: 16

Refresh Counter: 16

Refresh Counter: 24

Refresh Counter:24

Refresh Counter: 32

Auto-Refresh #1

Auto-Refresh #2

Auto-Refresh #3

Auto-Refresh #4

Refresh Counter: 0

Refresh Counter: 8

Refresh Counter:8

Refresh Counter: 16

Refresh Counter: 16

Refresh Counter: 24

Refresh Counter:24

Refresh Counter: 32

Auto-Refresh #1

Dummy-Refresh #1

Auto-Refresh #2

Dummy-Refresh #2

00
1
2
3
04
5
6

7 (WEAK)
8
9

10
11
12
13
14
15
016

17
18
19
020 (WEAK)

21
22
23
024

25
26
27
028

29
30
31

Refresh Counter: 0

Refresh Counter: 8

Refresh Counter:8

Refresh Counter: 16

Refresh Counter:24

Refresh Counter: 32

Dummy-refresh(4x) #1

Dummy-Refresh (1x) #1

Dummy-Refresh (1x) #2

00
1
2
3
04
5
6

7 (WEAK)
8
9

10
11
12
13
14
15
016

17
18
19
020 (WEAK)

21
22
23
024

25
26
27
028

29
30
31

Refresh Counter: 2

Refresh Counter: 4

Refresh Counter: 6

Dummy-refresh(4x) #2

Dummy-refresh(4x) #3

Auto-refresh(4x) #1

Refresh Counter: 16

Refresh Counter: 24

Dummy-refresh(4x) #4
Refresh Counter: 18

Refresh Counter: 20

Refresh Counter: 22

Dummy-refresh(4x) #5

Auto-refresh(4x) #2

Dummy-refresh(4x) #6

Refresh Counter: 0

Refresh Counter: 8

Refresh Counter:8

Refresh Counter: 16

Refresh Counter: 16

Refresh Counter: 24

Refresh Counter:24

Refresh Counter: 32

Dummy-Refresh #1

Dummy-Refresh #2

Dummy-Refresh #3

Dummy-Refresh #4

00
1
2
3
04
5
6

7 (WEAK)
8
9

10
11
12
13
14
15
016

17
18
19
020 (WEAK)

21
22
23
024

25
26
27
028

29
30
31

Row- Level Refresh #1
 ( row 7, bank 0)

Row- Level Refresh #2
 ( row 20, bank 0)

(a) AUTO-REFRESH (b) REFLEX-1x (Using 1x auto-refresh mode) 

(d) REFLEX-Row (Mixing row-level and AR) (c) REFLEX-4x (Mixing 4x and 1x  AR) 
 

Figure 5: An illustration of how REFLEX techniques reduce refresh operations. This example shows a device with 32 rows 
containing two weak rows (row #7 and #20). (a) A baseline scheme with AR requires to refresh all rows (b) Dummy-Refresh only at 1x 
granularity (c) Dummy-Refresh at 4x granularity. (d) Mixing row-level refresh and AR options. 
 

 

 

 

 

 

 

 

 

 

 



 

 

operations in a device with 16 banks. We propose that given 

the small changes required to implement per-bank AR, 

DDRs should also adopt a per-bank AR feature similar to 

LPDDRs.  

3.4. REFLEX with Non-Sequential Row Mappings 

So far, workings of REFLEX techniques assume that the 

mapping of refresh counter to row addresses is sequential 

and can be easily inferred by the memory controller. But 

there could be exceptions, as JEDEC gives full flexibility of 

refresh implementation to the DRAM vendors. One solution 

to this problem is that JEDEC can specify allowed mapping 

configurations and the vendor can include the chosen 

configuration into a configuration register. The memory 

controller will read this register and reconstruct mappings 

accordingly. Given the mapping, REFLEX techniques can 

appropriately decide between AR and “dummy-refresh”. 

Another scenario in which row addresses are not directly 

mapped is in the presence of repair rows. To increase yield, 

typically defective rows are mapped to spare regions called 

repair rows. Subsequently, accesses to repair rows happen 

only via indirection through a mapping table, which keeps 

track of the mapping between defective rows and their 

replacements from the spare region. All DRAM accesses 

(including activates and refreshes) consult this table before 

accessing the DRAM array. Since the characterization of 

rows into strong/weak categories is carried out via standard 

DRAM write/read operations, any attempt to characterize a 

defective row will actually result in the repair row being 

classified instead. After the characterization, any subsequent 

AR operations, which map to the defective row, will also be 

internally routed to the repair row. Therefore, our techniques 

should work naturally with repair rows. 

Finally, in our characterization we assume that the weak 

rows are randomly distributed. This assumption is based on 

prior work [27] showing that retention failures do not 

exhibit significant spatial correlation. Our assumption is 

conservative: if the weak rows are more clustered, REFLEX 

techniques will be even more effective since more low cost 

“dummy-refresh” operations can be scheduled. 

3.5. Variable Retention Time (VRT) and Temperature 

Profiling and characterizing row retention is a relevant but 

not-fully-settled problem. One complication is that the 

retention period of a row can change with time and 

temperature. A number of studies focus on this problem 

[27], [29]. For example, a recent study [29] shows that 

augmenting the profiling mechanisms with SECDEC-ECC 

and some guardbanding can mitigate almost all VRT-related 

failures.   

In contrast to the prior work on profiling, our paper deals 

with a related but different problem: given that one could 

characterize strong vs. weak rows, how would one design a 

practical and energy-efficient mechanism that enables fine-

grained refresh control without intrusive device changes. 

Proposed REFLEX mechanisms are general enough to work 

in conjunction with any profiling mechanisms. 

At higher temperatures, the retention period shortens, and 

therefore the distribution of rows in strong and weak bins 

also changes. A separate profile at higher temperature is 

used to decide refresh rate for rows [1]. Once the correct 

profile is enabled, our techniques would work as-is.  

3.6. Refresh Reduction in SR Mode 

With the proposed refresh architecture, a memory controller 

can synchronize the refresh counter on an as-needed basis. 

Therefore, REFLEX techniques are capable of switching the 

DRAM to the lowest power self-refresh (SR) mode when 

the DRAM is idle for sufficiently long periods. To further 

save energy in SR mode, the refresh rate can be reduced 

when switching to SR mode based on, for example, the 

retention period of the upcoming rows to be refreshed. Even 

if some rows have weak cells, those rows can be refreshed 

through explicit row-level refresh commands before 

switching to SR mode. This scheme is similar to the partial 

array self-refresh (PASR) option in LPDDR devices where 

unused memory locations are programmed to skip refreshes 

in SR mode [10].     

4. Evaluation Methodology 
We use a full-system x86 simulator called MARSSx86 [17] 

to evaluate our proposed work. MARSSx86 is configured, 

as shown in Table 2, to model four out-of-order superscalar 

cores. For main memory, we integrate the cycle-accurate 

DRAMSim2 simulator [18] with MARSSx86. We modify 

DRAMSim2 to incorporate DDR4 bank-group constraints, 

various refresh options and low power modes. The memory 

Table 3: DRAM timing (in 1.25ɳs clock cycles) and 
current (in mA) parameters used in the simulations 

Parameter DDR4 16Gb (x4) DDR4 32Gb (x4) 

tRRD 4 4 

tRRD_L 5 5 

tRAS 28 28 

tRC 40 40 

tFAW 16 16 

tRFC 384 512 

tRFCpb 200 260 

tRFC_4x 208 280 

IDD0 20 23 

IDD1 25 30 

IDD2P 6.4 7 

IDD2N 10.1 12.1 

IDD3P 7.2 8 

IDD3N 15.5 17 

IDD4R 57 60 

IDD4W 55 58 

IDD5 102 120 

IDD6 6.7 8 

IDD7 95 105 

 
 
 
 
 
 

Table 2: CPU and memory configurations used in the 
simulations 

Processor 4 cores, 2GHz, out-of-order, 4-issue per core 

L1 Cache Private, 128KB, 8-way associativity, 64B Block Size, 2 cycle 
latency 

L2 Cache Shared, 8MB, 8-way associativity, 64B Block Size, 8 cycle 
latency 

Memory  1 Channel, 2 Ranks per channel, 64bit wide  

Memory 
controller 

Open page, FR-FCFS [28], 64-entry queues (per-rank), 
address mapping: page interleaving  

DRAM DDR4, x4, 1600Mbps, 16 banks, 4 bank groups 

 
 
 
 
 
 



 

 

controller and DRAM configurations are shown in Table 2. 

Table 3 lists the relevant DRAM timing and current (IDD) 

values used in our simulations. The IDD values are used to 

calculate the DRAM energy following the methodology 

described in [14].  

To evaluate and compare our proposed flexible auto-

refresh techniques, we implement the following refresh 

options: (i) all-bank AR, (ii) per-bank AR, and (iii) explicit 

row-level refresh through ACT and PRE commands. Strong 

and weak rows are assigned randomly for a range of 

possible “skip” percentages. Our baseline refresh scheme 

employs an all-bank AR option with 0% skipping. In 

simulating the row-level refresh mechanism, to evenly 

distribute refresh amongst banks, a given row is refreshed in 

all banks before the next row gets refreshed, a policy similar 

to the one employed in RAIDR [1]. Finally, in per-bank AR, 

refresh commands are sequentially issued to each bank. 

When a per-bank or row-level refresh is happening on a 

particular bank, other banks are allowed to operate on 

memory requests with appropriate timing constraints.  

We conduct our evaluations by using multi-programmed 

and multi-threaded workloads from the SPEC CPU2006 

suite [19] and the NAS parallel benchmark suite [20]. All 

the multi-programmed workloads, except mix, consist of 

four copies of the same program. The mix workload uses 

four different programs (milc, gromacs, wrf, sjeng). We use 

input sets ref in SPEC and CLASS C in NPB benchmarks. 

Programs are executed for 4 billion instructions, starting 

from the program’s region of interest (RoI) determined by 

SimPoint 3.0 [21]. The workloads have a good mix of low 

(ua, gamess, namd), medium (cactusADM, leslie3d, mix) 

and high (bt, ft, sp, lbm, mcf, milc) memory requirements to 

represent energy and performance tradeoffs in refresh 

schemes.  

5. Results 
In this section, we first compare energy and performance of 

different refresh schemes. Our results show that row-level 

refresh is not scalable as the density of DRAM devices 

increases from 16Gb to 32Gb, even when a large number of 

refreshes can be skipped. Next, we show that all-bank and 

per-bank AR options further save DRAM energy by using 

low power modes. Lastly, our proposed REFLEX techniques 

are compared with two recently proposed refresh 

techniques: RAIDR [1] and Adaptive Refresh [9]. The 

results indicate that REFLEX mitigates refresh overheads 

more effectively than the state-of-the-art solutions, and the 

benefits of REFLEX approach the ideal case of no-refresh.    

5.1. Benefits of Auto-Refresh Flexibility  

Figure 6 and Figure 7 show DRAM energy and overall 

system execution time of the three refresh options 

normalized to the baseline scheme in 16Gb and 32Gb 

devices, respectively. The three refresh options compared 

are all-bank AR, per-bank AR and row-level refresh, labeled 

in the figures as “all-bank”, “per-bank” and “row-level” 

respectively. Each refresh option is simulated with two 

levels of refresh reductions: 0% of refreshes skipped (no 

reduction) and 75% of refreshes skipped. The baseline 

scheme is all-bank AR, 0%—it neither skips refreshes nor 

employs low power modes. This baseline scheme is used to 

normalize all the results in Section 5. 

For 16Gb devices, even when 75% of refresh operations 

can be eliminated, using an explicit row-level mechanism 

consumes 2% more energy than the baseline (which skips 

nothing). The energy consumption of row-level refresh 

worsens when the density of DRAM increases to 32Gb, as 

shown in Figure 7(top). The average energy overhead is 

12% for 75% skip scenarios. In comparison, all-bank and 

per-bank AR options save 20% of DRAM energy when 75% 

of the refreshes are skipped.  

 

 
Figure 6: DRAM energy (top) and system execution time (bottom) normalized to baseline all-bank AR in 16Gb DDR4 devices, 

with different degree of refresh skip percentage. 

 

 

 

 

0

0.5

1

1.5

2

2.5

bt ft sp ua cactusADM gamess lbm leslie3d mcf milc mix namd avg

N
o

rm
al

iz
ed

 E
n

er
gy

 

all-bank_75% per-bank-0% per-bank-75% row-level-0% row-level-75%

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

bt ft sp ua cactusADM gamess lbm leslie3d mcf milc mix namd avg

N
o

rm
al

iz
ed

  E
xe

c.
 T

im
e

 



 

 

Performance improvement in 16Gb devices without skip 

is similar for all the refresh options. However, as the number 

of rows doubles in 32Gb devices, row-level refresh incurs a 

30% performance degradation compared to the baseline. 

The reason for this performance loss is that, when using 

row-level refreshes, each bank stays mostly busy in 

servicing refresh operations through ACT and PRE 

commands, while leaving inadequate bandwidth for normal 

memory requests. Further, when 75% of the refreshes are 

skipped, all-bank, per-bank and row-level reduce execution 

time by 8.1%, 9.5% and 7.5% respectively. Per-bank refresh 

option shows better results as the number of refreshes 

skipped is increased, especially in memory intensive 

workloads such as lbm and mcf (18% and 12% respectively 

when 75% refreshes are skipped).  

Although row-level refresh sees performance benefits 

from bank parallelism, the extra time required to finish 

refreshes at a row granularity nullifies the bank parallelism 

benefits as the number of rows increases in high density 

devices. Hence, per-bank AR option is the right granularity 

to utilize bank level parallelism rather than the row-level 

option. As shown in our analysis, energy as well as 

performance benefits by using only row-level refresh option 

diminishes at higher DRAM densities, even when a large 

fraction of refresh operations are skipped. In comparison, 

our proposed REFLEX techniques provide scalable benefits 

by serving most of refreshes through optimized all-bank and 

per-bank AR options.  

5.2. REFLEX with Low Power modes 

Figure 8 presents energy and system execution time in 32Gb 

devices when Power Down (PD) and Self-Refresh (SR) 

modes are enabled. In the interest of space, only average 

results of all the workloads are shown. In our 

implementation, a rank switches to PD slow exit after the 

request queue for that rank becomes empty, as proposed in 

[22]. If a rank remains idle for a time period equal to tREFI, 

then the rank switches to SR mode. AR options, both all-

bank and per-bank, are able to save background energy by 

switching to low power modes in low activity periods. In 

comparison, the row-level option reduces the opportunity to 

stay in PD mode and is not compatible with SR mode. 

Therefore, energy benefits of low power modes, quite 

significant in workloads with medium to high idle periods 

[23], are lost when row-level refreshes are employed.  

Energy savings in all-bank and per-bank AR options 

increase on average by 5-7% with low power modes. For 

instance, in namd, all-bank AR exhibits 22% and 38% 

DRAM energy improvement with PD and SR modes 

respectively. Furthermore, since our proposed refresh 

architecture provides the memory controller an ability to 

access and synchronize the refresh counter before and after 

SR mode, REFLEX techniques can be designed to reduce 

unnecessary refreshes in SR mode by programming low 

refresh rate, similar to the CO-FAST technique in [23]. Such 

techniques could further reduce refresh energy in SR mode.     

5.3. REFLEX versus Prior Schemes  

In Figure 9, we compare recent refresh studies with different 

implementations of our proposed REFLEX techniques. 

REFLEX techniques assume a DRAM memory rank with 

1K weak rows requiring refreshes in every 64ms, while rest 

of the rows can be refreshed at 256ms period, an assumption 

similar to the RAIDR study [1]. Our RAIDR 

implementation skips 75% of refreshes, and schedules the 

remaining 25% refreshes through row-level refresh option. 

We also evaluate the recently proposed adaptive refresh 

technique, which uses finer-granularity refresh modes 

introduced in DDR4 [9]. Adaptive refresh decides 

appropriate refresh granularity using a simple heuristic 

 

 
Figure 7: DRAM energy (top) and system execution time (bottom) normalized to baseline all-bank AR in 32Gb DDR4 devices   

 

 

 

0

1

2

3

4

bt ft sp ua cactusADM gamess lbm leslie3d mcf milc mix namd avg

N
o

rm
al

iz
ed

 E
n

er
gy

 

all-bank_75% per-bank-0% per-bank-75% row-level-0% row-level-75%

0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7

bt ft sp ua cactusADM gamess lbm leslie3d mcf milc mix namd avg

N
o

rm
al

iz
ed

  E
xe

c.
 T

im
e

 



 

 

based on dynamically monitoring the serviced memory 

bandwidth. Since adaptive refresh uses only all-bank AR 

and does not reduce unnecessary refresh operations, 

REFLEX techniques can coexist and provide more benefits. 

Finally, we compare with an ideal case when DRAM is 

not required to refresh at all. REFLEX techniques reach, on 

average, within 6% of energy and 1% of performance as 

compared to the ideal refresh case. When 75% of the refresh 

operations are eliminated, the effective loss of bandwidth 

due to refreshes decreases by a factor of 4. At that point, 

refresh ceases to be a performance bottleneck. In 

comparison, both RAIDR and Adaptive Refresh are unable 

to close the gap with ideal, in particular for refresh energy 

overheads, because RAIDR utilizes energy-inefficient row-

level option to reduce refresh whereas adaptive refresh does 

not reduces unnecessary refreshes at all.  

6. Other Related Work 
Flikker [24] and RAPID [25] are software techniques that 

reduce unnecessary refreshes based on the distribution of 

DRAM cell retention times. Flikker requires the program to 

partition data into critical and non-critical sections. The 

scheme issues refreshes at the regular rate for critical data 

sections only, while non-critical sections are refreshed at 

much slower rate. In RAPID, the retention time of a 

physical page is known to the operating system, which 

prioritizes the allocation of pages with longer retention time 

over those with shorter retention time. However, as the 

number of free pages decreases, the scheme does not 

provide substantial benefits.  

Elastic Refresh [26] and Coordinated Refresh [23] rely on 

the ability to re-schedule refresh commands to overlap with 

periods of DRAM inactivity. Elastic refresh postpones up to 

eight refresh commands in high memory request phases of 

programs, and then issues the pending refreshes during idle 

memory phases at a faster rate to maintain the average 

refresh rate. Coordinated Refresh techniques co-schedule 

the refresh commands and the low power mode switching 

such that most of the refreshes are energy efficiently issued 

in SR mode. However, neither of these schemes reduces 

unnecessary refresh operations.  

Liu et al. [27] experimented with commodity DDR 

devices to characterize retention periods. They showed that 

the retention period of a given cell varies significantly with 

time and temperature. Cui et al. [30] proposed a refresh 

reduction mechanism which stores the retention time profile 

in the DRAM itself to reduce storage overhead. They also 

independently proposed the idea of silent refresh, which 

bears some similarity to our dummy refresh command. 

However, they did not provide any implementation details 

or evaluation for silent refresh. 

7. Conclusions 
We observe that since the refresh counter is controlled by 

DRAM itself and is not visible to the memory controller, 

refresh operations cannot be skipped with the default 

JEDEC auto-refresh options in DDR SDRAMs. Further, our 

analysis shows that the row-level refresh option used in 

prior refresh reduction techniques is inefficient both in terms 

of energy and performance. Therefore, the objective of our 

work is to enable the coexistence of refresh reduction 

techniques with the default auto-refresh mechanism so that 

one could skip unneeded refreshes, while ensuring that the 

required refreshes are serviced in an energy-efficient 

manner.  

We have proposed simple and practical modifications in 

DRAM refresh architecture to enable the memory controller 

to read, write and increment the refresh counter in a DRAM 

device. This new architecture enables the memory controller 

to skip refresh operations by only incrementing the refresh 

counter. We have also proposed flexible auto-refresh 

(REFLEX) techniques that reduce as many refreshes as prior 

row-level only refresh schemes, while serving remaining 

refreshes efficiently through the existing auto-refresh 

option. As the energy and performance overheads of refresh 

operations become significant in high density memory 

systems, the increasing advantages of our proposed 

techniques make a strong case for the small modifications in 

DRAM device to access the refresh counter. 

 

Acknowledgements 
  The authors would like to thank David Wang, Mu-Tien 

Chang, and the anonymous reviewers for their valuable 

inputs. The research was funded in part by Intel Corporate 

Research Council’s University Research Office, the United 

State Department of Energy, Sandia National Laboratories, 

and the United States Department of Defense. 

 
Figure 9: Comparison with other refresh schemes 

 

 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

Normalized Energy Normalized Exec. Time

N
o

rm
al

iz
e 

to
 b

as
el

in
e 

A
R

 

baseline REFLEX_1x REFLEX_4x REFLEX_row
REFLEX_bank RAIDR Adaptive No_Refresh

 
Figure 8: Energy and performance in low power modes 

 

 

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

Energy (PD) Exec. Time(PD) Energy (PD+SR) Exec. Time(PD+SR)

N
o

rm
al

iz
e

d
 t

o
 A

R
 w

it
h

o
u

t 
 

lo
w

 p
o

w
er

 m
o

d
es

 
all-bank-0% all-bank_50% all-bank_75%

per-bank-0% per-bank-50% per-bank-75%

row-level-0% row-level-50% row-level-75%



 

 

References 

[1] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “RAIDR: Retention-

aware intelligent DRAM refresh,” 2012 39th Annual 
International Symposium on Computer Architecture (ISCA), pp. 

1–12, Jun. 2012. 

[2] M. Ghosh and H.-H. S. Lee, “Smart Refresh: An Enhanced 
Memory Controller Design for Reducing Energy in Conventional 

and 3D Die-Stacked DRAMs,” 40th Annual IEEE/ACM 

International Symposium on Microarchitecture MICRO 2007, pp. 
134–145, 2007. 

[3] C. Isen and L. John, “ESKIMO - Energy Savings using Semantic 

Knowledge of Inconsequential Memory Occupancy for DRAM 
subsystem,” in Proceedings of the 42nd Annual IEEE/ACM 

International Symposium on Microarchitecture, 2009, pp. 337–

346. 

[4] T. Hamamoto, S. Sugiura, and S. Sawada, “On the retention time 

distribution of dynamic random access memory (DRAM),” IEEE 

Transactions on Electron Devices, vol. 45, no. 6, pp. 1300–1309, 
Jun. 1998. 

[5] K. Kim and J. Lee, “A New Investigation of Data Retention Time 

in Truly Nanoscaled DRAMs,” IEEE Electron Device Letters, 
vol. 30, no. 8, pp. 846–848, Aug. 2009. 

[6] T. Ohsawa, K. Kai, and K. Murakami, “Optimizing the DRAM 

Refresh Count for Merged DRAM/Logic LSIs,” in ISLPED,1998, 
1998, pp. 82–87. 

[7] JEDEC, “DDR4 STANDARD,” 2012. 

[8] B. Jacob, S. W. Ng, and D. T. Wang, “Memory Systems: Cache, 

DRAM, Disk.”Morgan Kaufmann, ISBN 978-0123797513, 2007. 

[9] J. Mukundan, H. Hunter, K. Kim, and J. Stuecheli, 
“Understanding and Mitigating Refresh Overheads in High-

Density DDR4 DRAM Systems,” in ISCA, 2013. 

[10] JEDEC, “Low Power Double Data Rate 3,” 2012. 

[11] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu, “An 

experimental study of data retention behavior in modern DRAM 

devices,” Proceedings of the 40th Annual International 
Symposium on Computer Architecture - ISCA  ’13, p. 60, 2013. 

[12] Micron Technology, “Various Methods of DRAM Refresh,” 

1999. 

[13] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, “A case for 

exploiting subarray-level parallelism (SALP) in DRAM,” in 

ISCA, 2012, vol. 40, no. 3, p. 368. 

[14] Micron Technology, “Calculating Memory System Power for 

DDR3,” 2007. 

[15] K. K. Chang, D. Lee, Z. Chishti, A. R. Alameldeen, C. 
Wilkerson, Y. Kim, and O. Mutlu, “Improving DRAM 

Performance by Parallelizing Refreshes with Accesses,” in 

HPCA, 2014. 

[16] Micron Technology, “4Gb Mobile LPDDR2 SDRAM,” 2011. 

[17] A. Patel, F. Afram, S. Chen, and K. Ghose, “MARSS: a full 

system simulator for multicore x86 CPUs,” in Proceedings of the 
48th Design Automation Conference, 2011. 

[18] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A 

Cycle Accurate Memory System Simulator,” Computer 
Architecture Letters, 2011. 

[19] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” 

SIGARCH Comput. Archit. News. 

[20] NASA, “NAS Parallel Benchmarks (NPB 3.3.1).” 

[21] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “Simpoint 3.0: 
Faster and more flexible program phase analysis,” Journal Of 

Instruction Level Parallelism, vol. 7, no. 4, pp. 1–28, 2005. 

[22] I. Hur and C. Lin, “A comprehensive approach to DRAM power 
management,” 2008 IEEE 14th International Symposium on High 

Performance Computer Architecture, pp. 305–316, 2008. 

[23] I. Bhati, Z. Chishti, and B. Jacob, “Coordinated Refresh : Energy 
Efficient Techniques for DRAM Refresh Scheduling,” in 

ISLPED, 2013. 

[24] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, 
“Flikker: saving DRAM refresh-power through critical data 

partitioning,” in Proceedings of the sixteenth international 

conference on Architectural support for programming languages 
and operating systems, 2011, pp. 213–224. 

[25] R. K. Venkatesan, S. Herr, and E. Rotenberg, “Retention-Aware 

Placement in DRAM (RAPID): Software Methods for Quasi-

Non-Volatile DRAM,” in The Twelfth International Symposium 

on High Performance Computer Architecture 2006, 2006, pp. 

157–167. 

[26] J. Stuecheli, D. Kaseridis, H. C Hunter, and L. K. John, “Elastic 

Refresh: Techniques to Mitigate Refresh Penalties in High 

Density Memory,” 2010 43rd Annual IEEE/ACM International 
Symposium on Microarchitecture, pp. 375–384, 2010. 

[27] J. Liu, B. Jaiyen, Y. Kim, and C. Wilkerson, “An Experimental 

Study of Data Retention Behavior in Modern DRAM Devices : 
Implications for Retention Time Profiling Mechanisms,” in ISCA, 

2013. 

[28] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, 

“Memory access scheduling,” in Proceedings of the 27th annual 

international symposium on Computer architecture - ISCA  ’00, 
2000, pp. 128–138.  

[29]   Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa Alameldeen, 

Chris Wilkerson, and Onur Mutlu, "The efficacy of error 
mitigation techniques for DRAM retention failures: a comparative 

experimental study," in The 2014 ACM international conference 

on Measurement and modeling of computer systems, 
SIGMETRICS, 2014. 

[30] Zehan Cui, Sally A. McKee, Zhongbin Zha, Yungang Bao, and 

Mingyu Chen, "DTail: a flexible approach to DRAM refresh 
management," In Proceedings of the 28th ACM international 

conference on Supercomputing (ICS '14). ACM, New York, NY, 

USA, 2014. 
 

 


