
Coordinated Refresh: Energy Efficient Techniques for DRAM Refresh Scheduling

 Ishwar Bhati Zeshan Chishti Bruce Jacob
 University of Maryland Intel Corporation University of Maryland

 ibhati@umd.edu zeshan.a.chishti@intel.com blj@umd.edu

Abstract—As the size and speed of DRAM devices increase,

the performance and energy overheads due to refresh become

more significant. To reduce refresh penalty we propose

techniques referred collectively as “Coordinated Refresh”, in

which scheduling of low power modes and refresh commands are

coordinated so that most of the required refreshes are issued

when the DRAM device is in the deepest low power Self Refresh

(SR) mode. Our approach saves DRAM background power

because the peripheral circuitry and clocks are turned off in the

SR mode. Our proposed solutions improve DRAM energy

efficiency by 10% as compared to baseline, averaged across all

the SPEC CPU 2006 benchmarks.

I. INTRODUCTION
Technology scaling trends have led to a manifold increase in

the density and speed of DRAM devices over several technology
generations. As DRAM devices become faster and denser, they
consume more energy, even when the memory system is not
servicing any requests. The increase in device speed leads to
higher background power dissipation by the peripheral circuitry,
and the increase in device density results in higher refresh energy.
For instance, it is projected that refresh operations contribute to as
much as 50% DRAM power while simultaneously degrading
DRAM throughput by 50% in future 64Gb devices [1]. These
trends have caused the memory subsystem to become an major
contributor of energy consumption in current and future
computing platforms [2].

Commodity DRAM devices employ low power operating
modes to reduce the background power consumed by the
peripheral circuitry. For example, in the deepest low power Self
Refresh (SR) mode, the entire clocked DRAM circuitry is turned
off, resulting in no additional power dissipation beyond the power
required to refresh the DRAM cells. Many previous papers have
proposed intelligent schemes to utilize these low power modes to
save DRAM power [3–8]. The key idea behind these schemes is to
switch a DRAM rank to a lower power mode whenever the rank
stays idle for a time period longer than a pre-determined threshold.

While idle period tracking was originally proposed for
leveraging low power modes, idle periods can also be used for
intelligent scheduling of refresh operations. For instance, to
mitigate the impact of DRAM refreshes on performance, Stuecheli
et al. proposed Elastic Refresh [9], which postpones up to eight
refresh commands for a busy DRAM rank and then issues those
pending refresh requests when that rank becomes idle.

Even though idle period tracking can be leveraged to
implement both intelligent low power mode switching and
intelligent refresh scheduling, we observe that these two sets of
techniques are in conflict with each other and often render each
other ineffective. For example, if a memory controller using
Elastic Refresh issues a batch of pending refresh commands
immediately after the DRAM becomes idle, then the DRAM
would need to be kept in the highest power active mode until all
the pending refreshes have been completed, thereby limiting the
effectiveness of low power mode switching. Conversely, if the
rank is immediately switched to SR mode upon becoming idle,
then Elastic Refresh would be unable to service any pending

refreshes, thereby rendering Elastic Refresh scheme ineffective.
The main reason for the interference between intelligent refresh
scheduling and low power mode switching is that these
mechanisms work in isolation with each other.

In this paper, we make the novel observation that coordinating
the operation of these two mechanisms can improve both the
performance and energy efficiency of the DRAM subsystem. We
propose a new set of techniques, collectively referred to as
“Coordinated Refresh”. The key idea behind these techniques is to
coordinate the scheduling of low power mode transitions and
refresh commands such that most of the required refreshes are
scheduled when the DRAM rank is in the lowest power SR mode.

Our two techniques, Coordinated FAST refreshes in SR (CO-
FAST) and Coordinated FLUSH refreshes in SR (CO-FLUSH),
utilize the full flexibility of refresh scheduling by postponing
refreshes when the memory is busy and servicing them during
periods of idleness. The key difference between our techniques
and Elastic Refresh is as follows: instead of the memory controller
issuing all the pending refresh commands, the coordinated
techniques first transition DRAM to the SR mode and then service
the pending refreshes in the SR mode, thereby saving background
power and mitigating the impact of refresh on performance at the
same time. CO-FAST satisfies the timing constraints for pending
refreshes by doubling the refresh rate during SR mode, whereas
CO-FLUSH simply flushes all the pending refreshes immediately
upon entering the SR mode.

While operating in SR mode saves DRAM background power,
there is a performance cost associated with the latency of
switching back to active mode. Therefore, frequent transitions
between SR and active modes could degrade performance and
energy efficiency. Thus, the effective use of SR mode requires
accurate and quick detection of long idle periods as well as the
capability to issue more refreshes in SR mode. To that end, we add
two more optimization techniques. First, we augment the history
based prediction scheme proposed in [3], which tracks the length
of previous idle periods to accurately predict the length of current
idle period. We use this prediction to guide the thresholds for
switching to low power modes in our coordinated refresh
techniques. Second, we utilize the advance refresh option, which
issues multiple refresh operations ahead of time during an idle
period, so that the latency penalty of these refreshes during the
subsequent active period is avoided. We enhance the effectiveness
of CO-FAST and CO-FLUSH by using advance refresh, in
addition to the pending refreshes used in Elastic Refresh.

The key contributions of this work are as follows:

 This is the first paper that addresses the need for coordinating
the scheduling of low power mode transitions and refresh
operations during idle DRAM periods

 We propose CO-FAST and CO-FLUSH, two novel techniques
together referred as Coordinated Refresh, which save DRAM
background power by carrying out most of the refreshes
during the lowest power SR mode.

 Our proposed solutions improve the DRAM energy efficiency
by 10% on average (up to 25%), as compared to baseline
technique across the entire SPEC CPU 2006 benchmark suite.

II. BACKGROUND AND MOTIVATION

A. DRAM Power Consumption
DRAM power consumption can be divided into three

categories (1) active power, (2) background power, and (3) refresh
power. Active power represents the energy required to activate and
pre-charge the rows, and to service read and write requests,
including I/O transfers. Active power is consumed only when the
DRAM is servicing memory requests. Background power, on the
other hand, consists of the energy consumed by the peripheral
circuitry, irrespective of whether the DRAM is servicing requests
or is sitting idle. Finally, since DRAM cells lose charge over time,
they are required to be refreshed periodically and thereby
dissipating refresh power.

Background power is reduced substantially by switching to a
low power mode. Current DRAM devices have the following three
operational modes: (1) Active, (2) Power-Down (PD), and (3) Self
Refresh (SR). Active mode is the normal operating mode in which
the rank can immediately service requests. In the PD mode, some
I/O signals and peripheral logic is disabled, resulting in lower
power consumption.

In SR mode, the entire DRAM clocked circuitry and the DLL
are turned off. Therefore, no power is consumed except by refresh
operations, which are triggered internally by a built-in timer. The
DDR3 switching time from SR to active mode is specified as the
maximum of the following two parameters: (i) tRFC: the time
required to service a refresh command, (ii) tDLLK: the DLL lock
period. tRFC increases with the size of the DRAM device; whereas
tDLLK remains constant (e.g. 512 clock cycles in DDR3 devices)
irrespective of device size and speed.

B. Refresh Penalty
In DDR devices, scheduling of refresh operations is dictated

by two timing parameters. The first parameter, tRFC, represents the
time required to complete one refresh operation, and the second
parameter, tREFI, specifies the average time period between two
refresh operations. The value of tRFC depends upon the number of
rows refreshed with one refresh operation, whereas tREFI depends
on tRFC and the total number of rows to be refreshed. As device
density increases, we either have to refresh more rows per refresh
operation (increase tRFC) or service refreshes more frequently
(decrease tREFI). DDR3 devices are specified to keep tREFI constant
at 7.8µs. Consequently, tRFC increases with increasing device
density.

When the memory controller issues a refresh command (also
called Auto-refresh) to a rank, each device in that rank
simultaneously starts to refresh; therefore the entire rank becomes
unavailable to service any memory requests for tRFC period.
Furthermore, Auto-refresh commands can be issued only when the
rank is in active mode. If the rank happens to be in PD mode, the
memory controller must first transition it to the active mode, and
then schedule an Auto-refresh command. Consequently, while
servicing Auto-refreshes, DRAM devices not only consume
refresh power but also high background power.

C. Prior Art
The most prevalent refresh approach in current-day memory

controllers is Demand Refresh (DR), in which an Auto-refresh

command is issued immediately after every tREFI time period
(shown in Figure 1(a)). However, DR does not address the
increasing refresh penalty in high density devices. Recently
proposed Elastic Refresh [9] postpones up to eight refresh
commands during a high memory activity phase, and then
compensates by servicing those pending refreshes during a
subsequent idle memory phase (shown in Figure 1(b)). To satisfy
the average refresh rate constraint specified by tREFI, pending
refreshes have to be issued at a rate faster than 1/tREFI. The Elastic
memory controller satisfies this constraint by adjusting the Auto-
refresh command issue rate based on the number of pending
refreshes. If the number of pending refreshes is high, Auto-refresh
commands are issued at a faster rate, and vice versa. Therefore, by
scheduling most of the refreshes during idle periods, Elastic can
mitigate the performance impact of refreshes. However, since
Auto-refresh commands require the DRAM to stay in active mode,
which consumes more background power, Elastic mitigates only
the performance impact of refreshes and does not address the
background power consumption during refresh operations.

D. Taking Advantage of SR Mode
When a DRAM rank is in the SR mode, the memory controller

does not need to issue any external Auto-refresh commands as the
device internally issues refreshes. Since all the clocked circuitry
during the SR mode is turned off, background power is reduced
when refresh is issued internally in SR mode. Table 1 shows the
currents drawn during refresh when DRAM is in active mode
versus in the SR mode for Micron’s 4Gb DDR3 devices running at
different speed grades [10]. The last row in the table is for
3200Mbps bandwidth devices, which corresponds to upcoming
DDR4 devices. The parameter values for 3200Mbps bandwidth
are extrapolated from current DDR3 device trends.

The current drawn during Auto-refresh command (IDD5B),
increase with clock speed for the same DRAM device size. This is
mainly due to the clocked peripheral circuitry, which consumes
more power at higher clock speeds. In contrast, IDD6, which is the
current drawn during SR mode remains constant for same density
device, even for device with higher speed operations. This is
because, in SR mode, the external clock is disabled, and the
refresh is generated by a built-in timer. Furthermore, IDD6ET is the
current drawn when the refresh rate in SR mode is doubled, which
is intended for DRAM cells to operate in the higher extended
temperature range. The difference between IDD6 and IDD6ET
represents the average current drawn by a refresh command when
it is issued internally in SR mode. This value remains constant (6
mA) for all speed grades of same density DRAMs.

The last column in Table 1 shows the power savings achieved
during refresh operations by serving refreshes in SR mode instead
of through Auto-refresh commands in active mode. For instance,
in 4Gb devices running at 1333Mbps, 26% of the power is saved
by issuing a refresh command in SR mode. Further, this savings
increases to 50% in 3200Mbps devices. For devices with density
8Gb and higher, these power savings will be more substantial,
since refresh operations will take longer and the overall
contribution of refresh energy to the total memory system energy
would become more significant.

Table 1: Refresh currents in 4Gb DRAMs. Avg. Auto-refresh current in second last column is calculated as “IDD5B*(tRFC/tREFI)”.
Speed IDD5B

(mA)

IDD6

(mA)

IDD6ET

(mA)

tRFC

(Cycles)

tDLLK

(Cycles)

Refresh Current

in SR (mA)

Avg. Auto-refresh

Current (mA)

Savings: SR vs

Auto-refresh

DDR3-1333 210 22 28 200 512 6 8.07 26%

DDR3-1600 220 22 28 240 512 6 8.46 29%

DDR3-1866 230 22 28 280 512 6 8.84 32%

DDR4-3200 300 22 28 480 512 6 11.53 48%

III. COORDINATED REFRESH
The key towards reducing the background power consumption

during refresh operations is to coordinate the scheduling of low
power mode transitions and refresh commands in such a way that
most of the required refresh operations are scheduled when the
DRAM rank is in the SR mode. Furthermore, this rescheduling of
refresh operations must not violate retention time constraints for
DRAM cells. Below, we present two techniques, collectively
referred to as “Coordinated Refresh”, which achieve these goals:

A. Coordinated Fast Refreshes in SR (CO-FAST)
In current DDR3 devices, there is an option to double the

refresh rate in SR mode [11]. This is configured by a mode
register, which could be changed any time before switching to SR
mode. When the faster rate is enabled, one refresh command is
scheduled internally every 3.9µs rather than the usual 7.8µs (tREFI)
period. This option is provided for DRAM to work in the extended
high temperature range. However, we observe that one can also
use this option in the regular temperature range to artificially
increase the refresh rate. Our first technique, called Coordinated
Fast Refreshes in SR mode (CO-FAST), leverages this option to
service more refreshes in the SR mode, thereby reducing the
number of refreshes issued in the active mode.

Figure 1(c) explains the workings of CO-FAST. When a
DRAM rank is busy, CO-FAST postpones any periodic refresh
commands (up to a maximum of eight refreshes) and waits till
the next idle period opportunity to issue extra refreshes to
compensate for pending ones. The key difference between CO-
FAST and Elastic is that unlike Elastic, CO-FAST attempts to
coordinate the scheduling of pending refreshes with low power
mode transitions. Specifically, for long idle periods, CO-FAST
switches to SR mode before servicing the pending refreshes.
Furthermore, for long enough idle periods, CO-FAST issues up
to eight advance refreshes (According to JEDEC standard for
DDR3 device [11], up to eight refresh commands can be either

issued in advance or can be postponed). The issuance of advance
refreshes is based on the prediction that in the next active
phase, this rank will receive high memory traffic, and carrying
out some of the refreshes in advance could avoid the latency
penalty of refresh commands. However, in case of short idle
periods, CO-FAST falls back to an approach similar to Elastic,
where refreshes are flushed in the active mode in short idle
periods, so that the performance penalties of switching from
SR to active mode are avoided. Finally, in the worst case, when
there are no idle periods at all, refreshes are issued like the
demand refresh scheme, since pending refresh count will reach

to its maximum of eight.
A scenario could arise in which CO-FAST may switch to SR

mode with a faster refresh rate, and the idle period may prolong to
the extent where all the pending refreshes and the maximum
allowed advance refresh commands have already been issued. In
such a scenario, the rank refresh rate needs to be reduced to its
usual 7.8µs value in order to avoid the energy overhead of faster
refresh rate. To enable this change, the rank is first transitioned to
active mode, the mode register is re-written to decrease the refresh
rate, and then the rank is switched back to SR mode.

The main advantage of CO-FAST is that it does not require
any change to the DDR3 device. However this advantage also
becomes a limitation, since the maximum increase in refresh rate
during the SR mode cannot be more than 2x of the usual refresh
rate. Consequently, for short idle periods, CO-FAST can only
issue a small number of extra refreshes (for example, one extra
refresh during a 7.8µs idle period). To mitigate this limitation, the
DRAM device must provision for higher refresh rates beyond 2x
of usual refresh rates during the SR mode.

B. Coordinated Flush Refreshes in SR (CO-FLUSH)
In order to transition a DRAM rank into the SR mode, the

memory controller issues a “self-refresh” command. In existing
DDR3 devices, the self-refresh command does not need any other
attribute, since the DRAM rank internally tracks the address of the
next row to be refreshed and uses an internal timer to schedule the
required refreshes. Our second technique, Coordinated Flush
refreshes in SR mode (CO-FLUSH), requires a minor modification
in the DRAM device, wherein a specified number of refreshes
could be flushed (initiated as a batch), just after switching to the
SR mode. To make this modification, we introduce a new
command called “self-refresh-flush”, wherein a few of the address
bits would be used to specify the number of immediate refreshes
to be initiated. After entering SR mode, the device would first
finish these many refreshes as shown in Figure 1(d), and then only
it would resume the normal refresh rate.

With this small change in the DRAM device, CO-FLUSH can
flush many refresh commands in SR mode, which otherwise
would have been issued in active mode. This change enables CO-
FLUSH to be more effective than CO-FAST in situations where
the idle periods are too short such that the simpler approach of
doubling the refresh rate is insufficient to issue extra refreshes.

A scenario could arise where the memory controller may
transition the DRAM device from SR mode to the active mode
before all the immediate refresh commands have been issued. In
such a scenario, the memory controller must account for the
remaining refreshes and service them in the active mode. This
functionality can be implemented by adding a timer to track the

Figure 1: An illustration of prior art and proposed Coordinated Refresh techniques. Elastic (b) postpones refreshes during high memory activity and

schedules Auto-refresh when device is idle. However in coordinated techniques (c & d), first the device is switched to self refresh (SR) mode and then
only extra refreshes are serviced. Therefore, background energy is saved in proposed schemes.

number of cycles in SR mode. Based on the timer value, memory
controller would decide the number of unfinished refreshes.
Furthermore, an extra 3 bit counter is required in the DRAM
device, which stores the number of refreshes to be initiated
immediately in SR mode. This counter is decremented for each
refresh issued, and reset when the SR mode exits.

Similar to CO-FAST, CO-FLUSH postpones refreshes in a
high activity phase and then finds the appropriate idle period for
switching to SR mode, wherein those pending refreshes are
internally serviced by the DRAM. Also, like CO-FAST, CO-
FLUSH may schedule some refreshes in advance depending on the
length of the idle period. Since CO-FLUSH could use smaller gaps
to flush extra refresh commands; it needs smaller threshold values
to switch to SR mode if there is scope for issuing extra refreshes.
Consequently, short gaps in activity could sometimes be utilized to
transition into SR mode quickly and flushing extra refreshes.

C. Implementation Details
A simple history-based prediction (HBP) has been proposed

by Delaluz et al. [3] to predict the next inter-access time based on
the previous inter-access time value. We observe that HBP’s
approach of relying only on one previous idle period length makes
it incapable of capturing common patterns present in many
programs, like alternating low and high activity phases.

We instead implemented a more sophisticated prediction

mechanism, which categorizes previous idle periods in ranges,
based on period lengths. The number of previous idle periods
stored for history (n) and the number of levels used for idle period
ranges (m) are controlled by configurable parameters for a DRAM
rank. In our simulations, we used m=3 which categorized idle
period lengths as: Low (0 to 0.67*tREFI), Medium (0.67*tREFI to
1.5*tREFI) and High (longer than 1.5*tREFI). We found that storing
three previous idle periods (n= 3) was sufficient to predict stable
as well as alternating memory patterns with an overall accuracy of
84% in the simulated workloads. In our predictor, alternating idle
period pattern is captured when a sequence of {Low, High, and
Low} is seen, while a stable long idle period is predicted after
observing previous two High periods.

Figure 2 shows the implementation details of coordinated
techniques when integrated with our prediction mechanism. When
a rank becomes idle, the memory controller first checks the
pending refresh count. If the pending refresh count exceeds eight
then the memory controller immediately issues an Auto-refresh.
Otherwise, an Auto-refresh command is issued only if all the
following three criterions have been satisfied (in Figure 2):
First, the number of pending refreshes has exceeded a threshold
(PendingTh); we set PendingTh to 4 in CO-FAST and 5 in CO-
FLUSH. Second, the rank has been idle for more than a threshold
(waitRefTh); we set this threshold as a function of the number of
pending refreshes. Third, this idle period is predicted as a short
idle period. Together, these three criteria enable our techniques to
be conservative in scheduling Auto-Refresh commands for
servicing pending refreshes.

Both CO-FAST and CO-FLUSH switch to SR mode under
two scenarios: (a) Regular switching: If the idle period exceeds a
threshold (SRTh), we switch to SR mode, irrespective of the
prediction made by HMAP (in Figure 2), (b) Eager switching: If
prediction is a long idle period, then we wait for a much shorter
threshold (minWaitTh) before switching to SR-mode (in Figure
2). CO-FAST characterizes only High idle period predictions as
long idle periods, whereas CO-FLUSH characterizes both Medium
and High predictions as long idle periods. We have experimented
with different values of switching thresholds, and found that, SRTh
= tREFI and minWaitTh = 2 * tRFC works best for our techniques.
Once in SR mode, both CO-FAST and CO-FLUSH issue advance
refreshes if idle periods are long enough and all the pending
refreshes have been serviced.

IV. SIMULATION METHODOLOGY
To evaluate our proposed techniques, we use MARSSx86 [12],

a full-system x86 simulator, configured as shown in Table 3 for
single and multi-core experiments. We integrate MARSSx86 with
a modified version of DRAMSim2 [13] to model refresh and low
power mode timings, compliant with DDR3 standard. The DRAM
parameters used in our simulations are listed in Table 3. We
calculate DRAM energy from the device’s IDD numbers, using the
methodology described in [14]. For refresh timing parameters
(tREFI and tRFC), we use the same values as those used in [9].

Table 3: CPU and memory parameter settings used in the simulations
 Single Core Multi-core

Processor 2 GHz, out-of-order, 4-issue per core 4 cores, 2 GHz, out-of-order, 4-issue per core

L2 Cache 2MB, 8-way, 64B Block Size, 5 cycles latency Shared, 8MB, 8-way, 64B Block Size, 8 cycles latency

Main Memory 1 Channel, 64 bit width, 8GB, 2 Ranks 2 Channels, 2 Ranks per channel, 16GB, 64 bit width

L1 Cache (per core) 128 KB, 8-way associativity, 64B Block Size, 2 cycle latency

Memory controller Open row closes after 4 access or queue is empty, FR-FCFS, “row:bank:rank:channel:column” mapping, 64-entry queue

DRAM devices 8Gb, x16, speed 3200Mbps, tRP=15ns, tRCD=15ns, tRFC=550ns, tREFI = 7.8μs,

IDD Currents (mA) IDD0=150, IDD2P0=35, IDD2P1=71, IDD3N=113, IDD5B=360, IDD6=35, IDD6ET=45

Figure 2: Implementation details of Coordinated Refresh integrated with
idle period predictions.

Issue Auto-
refresh

Is Rank
Idle?

PendingR
ef > 8

Serve
Memory
Requests

(PendingRef > PendingTh)
&&

(IdlePeriod >
waitRefTh[PendingRef])

&&
(Prediction != High)

IdlePeriod
> SRTh

(Prediction == High)
&&

(idlePeriod >
minWaitTh)

Switch to SR
Remain in or
Switch to PD

N

Y

N

N

N

N

Y

Y

N

1

2 3

PendingR
ef > 8

Issue Auto-
refresh

Y

Y

Y

Table 2: Composition of heterogeneous workload mixes

workload benchmarks workload benchmarks workload Benchmarks

low_1 povray,h264ref,

namd,calculix

med_1 gcc,milc,astar,

cactusADM

high_1 mcf,libquantum,

lbm,leslie3d

low_2 gamess,hmmer,

h264ref,dealII

med_2 milc,gromacs,

wrf,sjeng

high_1 GemsFDTD,mcf,

lbm, libquantum

low_3 povray,namd,

calculix,tonto

med_3 gobmk,sjeng,

sphinx3, leslie3d

high_1 omnetpp,leslie3d,

GemsFDTD,libquantum

low_4 h264ref,gamess

, namd,povray

med_4 soplex,hmmer,

bwaves,cactusADM

high_1 mcf,omnetpp,

leslie3d,lbm

mix_1 namd,h264ref,

gobmk,mcf

mix_2 hmmer,GemsFDTD,

gamess,sjeng

mix_3 GemsFDTD,libquantum,

gromacs,namd

We use the SPEC CPU2006 benchmark suite [15] for both
single- and multi-core experiments. For single core runs, each
program executes 1 billion instructions in its region-of-interest
(RoI) determined using SimPoint 3.0 [16]. We characterize
programs into three categories based on their main memory
bandwidth requirements: (1) LOW (< 100MBps), (2) MEDIUM
(>100MBps and < 1500MBps) and (3) HIGH (> 1500 MBps). For
our multi-core runs, we simulate a total of 1 billion instructions,
where each program starts from its RoI. We use total instructions-
per cycle (IPC) for performance results. Further, we construct
heterogeneous multi-core workload mixes as shown in Table 2.

Our baseline scheme uses fixed switching thresholds to
transition idle DRAM ranks into low power modes. A rank
switches to PD slow exit immediately after the request queue for
that rank becomes empty, as proposed in [17]. If the rank remains
idle for a time period equal to tREFI, then the rank switches to SR
mode.

We compare our techniques against Elastic Refresh. Note that
the Elastic implementation in [9] does not employ any low power
modes. Our evaluation showed that such an implementation
consumes on average more than twice the energy as compared to
the baseline. To enable a fair comparison of our techniques against
Elastic, we implemented a modified version of elastic refresh,
which switches idle ranks to low power modes based on the same
thresholds as the baseline. Our experiments show that this
modified Elastic implementation performs only 3% slower on
average, compared to Elastic without using low power modes,
while consuming less than half of the DRAM energy. We use this
modified Elastic scheme in all our evaluations.

V. RESULTS
In this section, we present the energy and performance results

of single and multi-core systems using the near-future DRAM
devices of 8Gb density and 3.2Gbps speeds.

A. Single Core Evaluations
Figure 3 shows the energy reduction and performance

improvement for Coordinated and Elastic techniques normalized
to the baseline in a single-core CPU. We arrange benchmarks from
LOW to HIGH categories and show average results in the
rightmost set of bars.

Both CO-FAST and CO-FLUSH achieve significant energy
savings and performance improvements, in particular for the
MEDIUM and HIGH categories. CO-FAST reduces DRAM
energy by up to 17% and increases performance by up to 13%,
whereas CO-FLUSH provides up to 25% energy reduction and up
to 14% IPC improvements.

The energy reductions achieved by the coordinated techniques
are primarily due to the higher fraction of refreshes serviced in the
SR mode. To quantify this benefit, Table 4 shows the percentage
(over the total number of refreshes) of refreshes issued during the
SR mode for different techniques. In the LOW category, the
baseline already issues most of the refreshes (97%) in SR mode;
therefore coordinated techniques do not provide substantial extra
benefit. However, in the MEDIUM category, which contains 15 of
our 29 benchmarks, coordinated techniques are particularly
effective in increasing the percentage of SR mode refreshes from
40% in the baseline to 59% and 67% for CO-FAST and CO-
FLUSH, respectively. Consequently, in the MEDIUM category,
CO-FAST and CO-FLUSH reduce DRAM energy on average by
10% and 13% as compared to the baseline, and 9% and 12% as
compared to Elastic, respectively. For the HIGH category, most of
the refreshes have to be issued in the active mode due to the
shorter idle periods. In these programs, coordinated and Elastic
technique provide similar performance improvements as compared
to the baseline.

B. Multi-core Evaluations
For multi-core experiments, we use two types of workloads: (i)

SPECRate-type homogeneous workloads (ii) heterogeneous
workloads composed of program mixes from Table 2.

Figure 4 shows the energy and performance results for our
multi-core workloads, when using Coordinated and Elastic
techniques. For homogeneous workloads, we show only average
results for each category in the interest of space. Compared with
the baseline, Elastic, CO-FAST and CO-FLUSH achieve energy
reductions of 2.0%, 8.2% and 10.1%, and performance
improvements of 3.7%, 3.5% and 3.5% respectively, over all the
workloads

Most of the trends observed in the single program workloads
(Section V.A) repeat in the multi-core scenarios. In homogeneous
multi-core workloads, coordinated techniques provide higher
energy benefits in MEDIUM and HIGH workload categories. The
results for heterogeneous workload mixes demonstrate significant
benefits for coordinated techniques, even if they have fairly
random memory request patterns generated by characteristics of
constituent programs.

Table 4: Percentage of Refresh operations scheduled in SR
Technique % of Refresh in SR mode for each category

LOW MEDIUM HIGH

Baseline 97.3 40.4 8.1

Elastic 97.3 40.2 7.8

CO-FAST 99.5 58.7 13.9

CO-FLUSH 99.6 66.6 24

Figure 3: DRAM energy and performance improvements for our proposed coordinated techniques in 8 Gb devices. X-axis common

-5

0

5

10

15

20

25

30

35

% Energy Reduction in single core

ELASTIC CO-FAST CO-FLUSH

-5

0

5

10

15

20

25

% Performance Improvement

Low Memory
Medium Memory

High Memory

C. High Speed Device Termination
Multi-DIMM DDR3 memory systems have signal integrity

challenges at high speeds due to interference between multiple
DRAM ranks sharing the same multi-drop bus. In addition, when
using low power modes (slow exit PD or SR), DRAM ranks turn-
off their on-die termination (ODT), worsening the interference
from non-target ranks in a multi-rank system. We validated our
techniques in a single-rank-per channel configuration. For this
configuration, CO-FLUSH achieves 9% memory energy savings
and 3% IPC improvement across MEDIUM and HIGH categories,
relative to the baseline.

VI. RELATED WORK
Early works on reducing DRAM background power propose

hardware and software policies for switching to low power DRAM
modes [3–6], [18]. Our techniques further reduce DRAM
background by servicing most of the required refreshes in the
lowest power mode.

Huang et al. [7] observed that the PD mode switching can be
done immediately when the request queue for a rank is empty.
Delaluz et al. [3] proposed a simple history based predictor (HBP)
for switching thresholds based on the length of previous idle
interval on that device.

Recent work in [13, 19, 20] have either throttled or reshaped
the main memory traffic to create longer idle periods, thereby
increasing the opportunity to switch to low power modes. Bi et al.
[20] use the file I/O and system calls information to predict the
DRAM activity for memory used as buffer cache. Our proposed
techniques do not actively reshape or throttle the memory
requests; therefore these techniques are complementary and can
co-exist.

Flikker [21], RAPID [22], and RAIDR [1] techniques use the
information about variability in DRAM cell retention times to
reduce the required refresh operations. Our approach of
intelligently coordinating DRAM refreshes and low power mode
transitions is orthogonal to these schemes.

VII. CONCLUSIONS
In order to satisfy the ever-increasing memory capacity and

performance requirements for computer systems, the speed and
density of DRAM devices has increased in successive technology
generations. These trends have resulted in two main scalability
concerns relating to the energy efficiency of future DRAM
subsystems, namely, the increase in background power
consumption of the DRAM peripheral circuitry and the growing
performance and energy penalties of DRAM refresh operations.
To address these concerns, we have proposed a set of novel
techniques, called coordinated refresh. Our techniques are based

on the key idea that coordinating the scheduling of low power
mode transitions and refresh operations during idle memory
periods can provide both energy savings and mitigate the
performance penalties of refresh operations. Our proposed
techniques increase DRAM energy efficiency by 8% as compared
to the state-of-the-art Elastic technique (10% compared to
baseline), averaged across all the SPEC 2006 programs. As energy
efficiency quickly becomes a key design constraint, techniques
like coordinated refresh will become a key driver for energy-
efficient operation of future computer systems.

References

[1] J. Liu, et al. “RAIDR: Retention-aware intelligent DRAM refresh,” in
ISCA, Jun. 2012.

[2] L. Minas and B. Ellison, “The problem of power consumption in servers,”

Intel Press Report, 2009.
[3] V. Delaluz, et al.“DRAM energy management using software and

hardware directed power mode control,” in HPCA, 2001.

[4] X. Fan, et al. “Memory controller policies for DRAM power
management,” in ISLPED, 2001.

[5] V. Delaluz, et al.“Scheduler-based DRAM energy management,” in

Design Automation Conference, 2002.
[6] V. Pandey and R. Bianchini, “DMA-Aware Memory Energy

Management,” in HPCA, 2006.

[7] H. Huang, et al. “Improving energy efficiency by making DRAM less
randomly accessed,” in ISLPED, 2005.

[8] B. Diniz, et al. “Limiting the power consumption of main memory,” in

ISCA, 2007.
[9] J. Stuecheli, et al.“Elastic Refresh: Techniques to Mitigate Refresh

Penalties in High Density Memory,” in MICRO, 2010.

[10] Micron Technology, “4Gb DDR3 SDRAM Datasheet,” 2009.
[11] JEDEC, “JEDEC DDR3 Standard,” 2010.

[12] A. Patel, et al. “MARSS: a full system simulator for multicore x86

CPUs,” in DAC, 2011.
[13] P. Rosenfeld, et al. “DRAMSim2: A Cycle Accurate Memory System

Simulator,” Computer Architecture Letters, 2011.
[14] Micron “Calculating Memory System Power for DDR3,” 2007.

[15] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” SIGARCH

Comput. Archit. News.

[16] G. Hamerly, et al.“Simpoint 3.0: Faster and more flexible program phase

analysis,” in JILP, vol. 7, no. 4, pp. 1–28, 2005.

[17] I. Hur and C. Lin, “A comprehensive approach to DRAM power
management,”in HPCA, 2008.

[18] A. R. Lebeck et al. “Power Aware Page Allocation” in In ASPLOS, 2000.

[19] A. M. Amin and Z. A. Chishti, “Rank-Aware Cache Replacement and
Write Buffering to Improve DRAM Energy Efficiency,” ISLPED, 2010.

[20] M. Bi, et al.“Delay-Hiding energy management mechanisms for

DRAM,” in HPCA, 2010.
[21] S. Liu, et al.“Flikker: saving DRAM refresh-power through critical data

partitioning,” in ASPLOS , 2011.

[22] R. K. Venkatesan, et al., “Retention-Aware Placement in DRAM
(RAPID): Software Methods for Quasi-Non-Volatile DRAM,” in HPCA

2006.

Figure 4: DRAM energy savings and Performance improvements in 4 cores. Heterogeneous workloads composition shown in Table 2

-5

0

5

10

15

20

25

low med high low_1 low_2 low_3 low_4 med_1 med_2 med_3 med_4 high_1 high_2 high_3 high_4 mix_1 mix_2 mix_3 Mean

% Energy Reduction in 4 cores ELASTIC CO-FAST CO-FLUSH

-2

0

2

4

6

8

10

12

low medium high low_1 low_2 low_3 low_4 med_1 med_2 med_3 med_4 high_1 high_2 high_3 high_4 mix_1 mix_2 mix_3 Mean

% Performance Improvement

Homogeneous Workloads Heterogeneous/Mix Workloads

