
Abstract

Chip multiprocessors are the next attractive point in the
design space of future high performance processors. There is
a growing need for simulation methodologies to determine the
memory system requirements of emerging workloads in a
reasonable amount of time. To explore the design space of a
CMP memory hierarchy, this paper presents the use of binary
instrumentation as an alternative to execution-driven and
trace-driven simulation methodologies. Using the binary
instrumentation tool, Pin, we present CMP$im to characterize
cache performance of single-threaded, multi-threaded, and
multi-programmed workloads at the speeds of 4-10 MIPS. For
memory intensive single-threaded workloads, the cache
performance reported by CMP$im is three orders of
magnitude faster and within 4% of an cycle-accurate x86
performance model. 

1. Introduction

Recent industry trends show that the future of high
performance computing will be defined by the performance of
multi-core processors [1, 2, 3]. As a result, processor
architects now face key design decisions in designing the
memory hierarchy. Additionally, as parallel applications
become common workloads that execute on CMPs, detailed
memory characteristics of these emerging workloads are
essential in designing an efficient memory hierarchy. Such
characterization and exploratory studies require fast
simulation techniques that can compare and contrast the
performance of alternative design policies. This paper
demonstrates the use of binary instrumentation tools as an
alternative to existing execution-driven and trace-driven
methodologies. Using the binary instrumentation tool Pin, we
present CMP$im to characterize the memory system
performance of workloads on multi-core processors.

Simulation is a common methodology that is used both for
design space exploration and the identification of performance
bottlenecks in existing systems. There exist many free
simulators and software tools to investigate the memory
system performance of applications. In general, memory
system simulators fall into two main categories: trace-driven
or execution-driven [24]. With trace-driven cache simulators,

pre-collected address traces are used to feed a cache simulator
(e.g. Dinero IV [11]). Such simulators rely on existing tools to
collect an applications memory address trace and log them to
file for later use. Execution-driven cache simulators rely on
functional/performance models to execute an application
binary. The memory addresses generated by the functional/
performance model are fed, in real time, to a cache simulator
modeled within the functional/performance model. Among
the two, trace-driven simulation is a popular technique for
conducting memory performance studies [24].

The usefulness of trace-driven simulation, however, lies in
the continued availability of memory address traces to study
the memory performance of different workloads. With several
emerging application domains, understanding the memory
behavior and cache requirements of different applications
requires the ability to generate address traces by just about
anyone. Address trace generation for a target ISA can require
sophisticated hardware tools [24] or functional models that not
only support the target ISA but also the requirements of the
workload. For example, the functional model must provide
support for multiple contexts if executing a multi-threaded
workload. Such infrastructure to capture memory address
traces can be expensive and/or complex to build.

Even if address trace generation were trivial, a practical
problem with storing memory address traces is that the
address traces can be large, potentially occupying several
gigabytes of disk space even in their compressed formats.
Consequently, transferring and sharing large address traces
between different locations can be inconvenient. Furthermore,
another problem of using address traces is that the trace is only
representative of the compiler and compiler optimizations
used to compile the workload. As a result, studying the
behavior of different compiler optimizations of the workload
requires the creation of address traces for each compiler and
compiler optimization type. Ideally, a desirable approach for
conducting memory performance studies is to have the
benefits of the execution-driven methodology without
incurring the associated slow speeds and complexities. 

To address the drawbacks of current methodologies, the
main contribution of this paper is to illustrate the use of
existing binary instrumentation tools to conduct quick
exploratory memory performance studies. We present,
CMP$im, a memory system simulator that uses the Pin [4, 16]
binary instrumentation system. With Pin serving as the
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functional model that provides CMP$im with memory
addresses, CMP$im processes memory requests generated by
a workload on the fly i.e. in real time. Thus, CMP$im
simulates the memory system performance of a workload
without the overhead of dealing with large address trace files. 

CMP$im is fully configurable and can gather detailed
cache performance statistics as well as the total amount of
sharing between different threads of a multi-threaded
application. Specifically, CMP$im users can vary the cache
parameters, allocation/replacement policies, and write
policies. Users can also specify the number of levels in the
cache hierarchy with specifications on the type of inclusion
policy. Even more, users can configure some or all levels of
the cache hierarchy to be shared or private amongst different
threads/cores of the simulated CMP. Our studies show that
CMP$im provides detailed cache statistics over billions of
instructions of an application (or regions of application
specified by the user) at the rate of 4-10 million instructions
per second (MIPS).

Unlike existing simulation techniques, the main
advantages of CMP$im are: it is a parallel model that can
process memory requests from multiple threads at the same
time; it is fast; it is flexible-users can model any kind of cache
hierarchy; it can model multi-cores and multi-threaded cores;
it can easily run complex applications like Oracle and Java
without any user support; and finally it is relatively simple
when compared to full performance models, thus, making it
easy to extend or modify.

For several SPEC CPU2006 workloads we correlated the
last-level cache (LLC) performance of CMP$im with a
detailed cycle accurate x86 performance model. Our results
show that the miss rate reported by CMP$im is within 13% of
the cycle accurate performance model. For applications with
more than one MPKI (miss per thousand instructions), the
average MPKI is within 4%. For the regions simulated,
CMP$im is 100-1000x faster than the speed of the cycle
accurate performance model. The results are appealing as
CMP$im enables quick exploratory studies with reasonable
correlation to a detailed timing model.

To showcase the use of CMP$im, we present a full-run
memory characterization of representative SPEC CPU2006
workloads, a multi-threaded workload ammp from the
SPECOMP benchmark suite [5], and finally a 8-core multi-
programmed workload mix of SPEC CPU2006 workloads. 

2. Background

2.1. Pin - A Binary Instrumentation Tool

Pin [4, 18] is a dynamic binary instrumentation system for
Linux and Windows binaries running on Intel® IA-32 (x86
32-bit), IA-32E (x86 64-bit), and Itanium® processors. Pin is
similar to the ATOM toolkit [22] and provides infrastructure
for writing program analysis tools called Pin tools. 

The two main components of a Pin tool are:
instrumentation and analysis routines. Instrumentation
routines utilize the rich API provided by Pin to insert calls to
user defined analysis routines. These calls are inserted by the
user at arbitrary points in the application instruction stream.
Instrumentation routines define the characteristics of an
application to instrument. Analysis routines are called by the
instrumentation routines at application run time. For example,
using the Pin API [4], a user can write an instrumentation
routine to instrument every instruction executed by an
application. If the instrumentation routine sets up a call to a
user defined analysis routine DoCount() (which simply
increments a counter), then the Pin tool counts the total
number of dynamic instructions executed by the program.
Besides writing such simple utilities, Pin provides many other
advanced features to conduct a variety of micro architecture
studies. For example, customized Pin tools can profile the
static or dynamic distribution of instructions executed by a
given application, determine the outcomes of branch
instructions and their associated branch targets, acquire
effective addresses of all memory instructions executed,
change architectural state of registers [22]. With such
information, users can write customized Pin tools that model
branch predictors, cache simulators, and simple performance
models. 

Besides instrumenting single-threaded applications, Pin
also supports the instrumentation of multi-threaded
applications. The scheduling of different threads of the
application is controlled by the operating system. To
distinguish between the different threads of the application,
Pin assigns each thread with a unique ID which is different
from the native process ID assigned by the operating system.
Pin assigns the first thread, i.e. the main thread, with thread ID
0 and each additional new thread is assigned the next
sequential ID, i.e. 1, 2, 3, and so on. Thus, when conducting
studies with a four-threaded workload, Pin distinguishes
between threads by assigning the main thread with thread ID
0, and the three remaining threads with thread IDs 1, 2 and 3.
It is the responsibility of the Pin tool to distinguish
instrumentation based on different thread IDs.

2.2. Related Work

Several studies have used trace-driven or execution-driven
methodologies to characterize the memory behavior and
performance of different types of applications. Uhlig et al.
[24] provide a detailed survey of existing trace-driven
methodologies. Iyer et al. [13] introduced a trace-driven
simulation framework called CASPER to explore different
cache organization alternatives, prefetching mechanisms,
coherence protocols and other research studies. Jaleel et al.
[14, 15] used Pin to conduct a detailed memory
characterization study of parallel workloads on CMPs.
Nurvitadhi et al. [20] used an FPGA based cache model



(PHA$E) that connects directly to the front-side bus to
understand the L3 cache behavior of SPECjAppServer and
TPC-C. Abandah et al. [7, 8] proposed a configuration
independent approach to analyze the working set,
concurrency, communication patterns, as well as sharing
behavior of shared memory applications. They present a
tracing tool called Shared-Memory Application
Instrumentation Tool (SMAIT) to measure different sharing
characteristics of the NAS shared-memory applications.
Barroso et al. [9] characterized the memory system behavior
of commercial workloads such as Oracle, TPC-B, TPC-D, and
AltaVista search engine. They did their characterization of the
memory system behavior using ATOM [23], performance
counters on an Alpha 21164 as well as the SimOS simulation
environment. Woo et al. [25] characterized several aspects of
the SPLASH-2 benchmark suite. They used an execution-
driven simulation with the Tango Lite tracing tool [12]. Perl et
al. [21] studied Windows NT applications on Alpha PCs and
characterized application bandwidth requirements, memory
access patterns, and application sensitivity to cache size.
Chodneker et al. [10] analyzed the time distribution and
locality of communication events in some message-passing
and shared-memory applications. 

The work presented in this paper differs from prior work in
that it presents binary instrumentation as an alternative
approach to study cache performance of workloads. We
introduce CMP$im, a CMP cache simulator that can
characterize the memory behavior of single and multi-
threaded workloads. We believe that CMP$im also fills the
gap on the lack of simple x86 performance tools to
characterize the memory behavior of applications across
different memory system configurations. Full system
simulators such as Bochs [17] and Simics [19] support the x86
ISA, however they emulate an entire system with peripherals
and an operating system. Even though such tools are valuable
for research, characterizing the memory behavior of
individual workloads on such systems can be non-trivial and
rather slow. Unlike existing simulators, CMP$im can
characterize the behavior of applications over their entire run
or periods of interest defined by the user without using tracing
mechanisms, performance counters, or bus sniffers. Existing
work has demonstrated the usefulness of Pin to conduct
performance analysis of different applications. Reddi et al.
[22] discuss the use of Pin as a tool for computer architecture
research and education. We demonstrate a working example
of CMP$im based on Pin that can be used to characterize
application behavior and memory performance of emerging
x86 workloads on CMPs.

3. CMP$im - A Multi-Core Cache Simulator

The interfaces to most binary instrumentation tools are API
calls that allow users to insert instrumentation and analysis
routines. The instrumentation routine defines WHERE in the

application to insert instrumentation while the analysis routine
defines WHAT to do when the instrumentation is activated. 

To simulate the cache behavior of an application, all
memory references generated by a workload must be captured
and played through a cache model. The Pin API is used to
capture the type of memory operation (read/write), the
memory address, the size of the memory operation (in bytes),
and finally the Thread ID of memory reference (if a multi-
threaded application is being studied). 

Figure 1 graphically illustrates the interaction between
workloads, Pin, and CMP$im. The user application runs on
top of Pin and Pin provides to CMP$im the necessary memory
instruction information. The memory instruction information
extracted by the Pin API is dynamically sent to a cache model
that handles user defined cache sizes, associativity, and
allocation and replacement policies. The cache hierarchy is
fully configurable where the user can specify the number of
levels in the cache hierarchy, whether the levels are shared or
private, and the appropriate inclusion policy. CMP$im also
supports an invalidate-based cache coherence protocol
(similar to MESI). Finally, since Pin supports instrumentation
of multi-threaded workloads, it was required that CMP$im be
thread safe. As a result, CMP$im is a parallel software model
that makes use of shared memory primitives (e.g. locks) to
guarantee correct behavior. 

3.1. Multi-Programmed Workload Simulation

Since multi-core processors enable concurrent execution of
multiple programs, it is also highly desirable for simulation
techniques that enable quick multi-programmed memory
system simulation. 

Pin-based multi-programmed CMP$im simulation would
require a single instance of Pin to simultaneously instrument
multiple applications. However, currently Pin only supports
instrumenting a single application. Since CMP$im already
supports multi-threaded applications, we extended CMP$im
to enable multi-programmed simulation. Instead of rewriting
Pin to support multiple programs at the same time, the cache

Single / Multi-Threaded
Workload

Pin

CMP$im

Figure 1: CMP$im Implementation Overview. 

Pin dynamically instruments ST/MT
application (no source code required)

Pin feeds CMP$im necessary information

CMP$im characterizes cache behavior
of the workload

to conduct cache simulation (e.g. address)



hierarchy was created in shared memory (using System V or
memory mapped I/O) and required multiple instances of Pin
and CMP$im to connect to the shared memory (see Figure 2).
We distinguished identical virtual addresses between the
different applications by comparing the application ID along
with the virtual address. Once the required number of
applications connects to the shared memory, cache simulation
proceeds normally.

3.2. CMP$im Statistics

CMP$im gathers statistics such as the total number of
cache accesses and misses, sharing characteristics of multi-
threaded applications, coherence traffic, and much more. All
statistics are output to a data file when the program finishes
execution. Alternatively, to characterize the time varying
behavior of the application, statistics can also be logged
periodically to the output file. This enables users to visualize
the time varying behavior of an application over the course of
simulation and helps identify representative regions of
execution for detailed simulation. A detailed listing of
statistics collected by CMP$im is provided in [15].

4. Experimental Methodology

For our studies, we assume a multi-core system with one
thread per-core. We model a three level cache hierarchy. The
L1 and L2 caches are private to each core and the L3 cache is
either configured to be private or shared. We used CMP$im to
characterize the run time memory behavior of the SPEC
CPU2006 suite on the reference input sets, the ammp
workload from the SPECOMP [5] suite with the reference
input set, and a multi-programmed mix of 8 SPEC CPU2006
workloads. The L1 data cache is 32KB, 2-way set associative,
with 64B line size. The L2 cache is 256KB, 8-way set
associative, with 64B line size. The L3 cache is 16-way set
associative, with 64B line size and write-back policy. All

caches allocate on a store miss and use the LRU replacement
policy. A MESI cache coherence protocol is also modeled. 

All workloads are run on a system of Intel® Pentium® 4
3.2 GHz processors and are compiled using the icc compiler,
with optimization flags -O3. Except for the multi-programmed
workload mix, all workloads were run to completion with
statistics logged to file every 10 million instructions. For the
8-core workload mix, simulations were run until the last
application executed a billion instructions. After simulation,
the behavior of the workload over the different intervals of
execution is depicted graphically.

5. Results

We showcase the use of CMP$im by presenting the cache
performance studies of single-threaded, multi-threaded, and
multi-programmed workloads.

5.1. Single-Threaded Workloads

Figure 3a presents the last-level cache (LLC) performance
of representative SPEC CPU2006 workloads run to
completion on a three-level cache hierarchy with a 2MB LLC.
The x-axis represents the total number of instructions
executed in billions and the y-axis represents the miss rate of
the application. The time varying behavior of the workload is
presented at a ten million instruction granularity (represented
by the green-dotted lines). The cumulative behavior of the
workload is represented by the red solid line. Based on our
studies, CMP$im can characterize different phases of
execution of the single-threaded workloads (e.g. for tonto over
3 trillion instructions) at the speed of 8-12 MIPS. A detailed
memory characterization of all SPEC CPU2000 and CPU2006
workloads run to completion is available at [6].

Figure 3b compares the cache performance results
provided by CMP$im to a detailed x86 cycle accurate
performance model (on the secondary/right axis). Since
CMP$im does not model a prefetcher, we disable the
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Figure 2:  Multi-Programmed CMP$im Implementation Overview. 



prefetcher in the detailed performance model. Both CMP$im
and the cycle accurate performance model ran identical
regions of the SPEC CPU2006 benchmark suite. The metric of
comparison is misses per 1000 instructions (MPKI). The
results show CMP$im is within 13% of the cycle accurate
model. For applications with more than one MPKI, CMP$im
is within 4% of the cycle accurate model. The difference

between CMP$im and the detailed performance model are
most likely due to the lack of speculation and out-of-order
exeuction in CMP$im. 

Figure 3b also shows the relative speed of CMP$im
compared to the speed of the cycle accurate performance
model. The results show that CMP$im is two to three orders
of magnitude (average 435x) faster than the cycle accurate

Figure 3: Full Run Cache Characterization of ST Workloads and Comparison of CMP$im to Detailed Performance Models. 
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performance model. These results are appealing as CMP$im
enables quick exploratory studies with reasonable correlation
to a cycle accurate detailed performance model.

5.2. Multi-Threaded Workloads

We now present the cache performance of the SPECOMP
workload ammp. The workload was run to completion using
CMP$im at a speed of 5 MIPS. Figure 4a shows the number
of L1 cache accesses and misses of ammp when run to
completion. The x-axis represents the total number of
instructions (in billion) and the y-axis represents the accesses
per 1000 instructions and miss rate of the L1 cache. The figure
shows that the workload has a periodic pattern with
approximately 90 loops. Since the workload exhibits a
periodic behavior, we arbitrarily zoomed in on the region
between 180 and 250 billion instructions. 

Figures 4b, 4c, 4d, and 4e illustrate the L1, L2, private L3,
and shared L3 cache behavior for the selected region of
execution. For each cache, we present the total number of
cache accesses per 1000 instructions, the total number of
cache misses per 1000 instructions, and the miss-rate. The
figure shows a periodic behavior in the cache access and miss
pattern with one period spanning 4 billion instructions. Each
loop begins with a cache miss rate as high as 95%. The cache
miss rate reduces to 40% during the second half of the loop
because of improved locality. Despite the existence of locality,
the large miss rates in the L2 cache imply a working set larger
than the size of the L2 cache (256KB). 

Figures 4d and 4e shows the L3 cache behavior of ammp
for private and shared cache configuration. The size of the L3
cache in the shared configuration is 2MB and the size of each
L3 cache in the private configuration is 512KB. On average,
the shared configuration has 25% fewer misses than a private
configuration. This is because the larger effective capacity of a
shared cache allows it to accommodate to the variable

working set of each core. Additionally, if multiple cores share
a cache line, a shared cache reduces miss rate by making full
use of the cache capacity by avoiding duplication. 

Figure 4f presents the distribution of cache lines shared
between different cores of the CMP. The x-axis represents the
total number of instructions and the y-axis represents the
distribution of cache lines that are either private, or shared
between two, three, or four cores. The bottom-most segment
represents private cache lines, followed by cache lines shared
by two cores, three and four cores respectively. Figure 4f
shows that half the cache is shared by two or more cores and
Figure 4g shows as much as 50-80% of the last-level cache
accesses are to lines that are shared by two or more cores.
With the significant amount of data sharing between multiple
cores, ammp performs better with a shared last-level cache.

5.3. Multi-Programmed Workloads

We finally present the use of multi-programmed CMP$im
to study the cache performance behavior of eight SPEC
CPU2006 workloads sharing a 16MB LLC. Figure 5 shows
the time varying behavior of the workloads with the first graph
showing access per 1000 instructions and the second graph
showing misses per 1000 instructions. The x-axis presents the
total number of instructions executed by all applications. For
each metric, we present the distribution of references and
misses for each workload in the mix. From the figure, we
observe that of the eight workloads, four of the workloads
have significant activity in the shared LLC. We also observe
applications going through different phases of execution
which result in an increase or decrease in cache misses. For
example, at about 8 billion instructions we observe gcc.expr2
change phases and suffer an increase in cache accesses and
misses. The characterization of the multi-programmed
workload mix occurred at approximately 5 MIPS. 

Figure 5: Cache Performance Study of an 8-core CMP sharing the Last-Level Cache. 



6. Conclusions

This paper illustrates the use of binary instrumentation as
an alternative to execution-driven and trace-driven
methodologies. Using the binary instrumentation system Pin,
we present a memory system simulator, CMP$im, that is fast,
flexible, easy to use, and simple to modify. We demonstrated
the use of CMP$im to characterize the memory system
performance of single-threaded and multi-threaded workloads
run to completion. We also demonstrated the use of CMP$im
to conduct multi-programmed workload simulation using
shared memory programming. 

Since binary instrumentation using Pin normally occurs at
the speed of native execution, we show that CMP$im-driven
cache simulation allows for full run characterization of
workloads at speeds ranging from 4-10 MIPS. Compared to a
detailed cycle accurate performance model, CMP$im is two to
three orders of magnitude faster. Correlating CMP$im with
the detailed performance model showed that the cache
performance reported by CMP$im is within 17% (4% for
memory bound applications) of a detailed performance model. 

As part of our on-going work, we are correlating multi-
threaded and multi-programmed cache performance with the
cycle accurate performance models. We are also investigating
techniques to incorporate a performance model within the
CMP$im infrastructure without sacrificing speed. For
example we are exploring the use of analytical performance
models as proposed by [16]. 

Besides cache performance studies, CMP$im can also be
used to explore the design space of TLBs and prefetching.
CMP$im can be used to investigate novel cache replacement
and advanced cache management studies such as providing
quality of service guarantees when executing multi-
programmed workloads on CMPs. 
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