

CMP Memory Modeling: How Much Does Accuracy Matter?

Sadagopan Srinivasan Li Zhao Brinda Ganesh Bruce Jacob* Mike Espig Ravi Iyer
Systems Technology Lab, Intel Corporation

 * University of Maryland, College Park
Contact: Sadagopan.srinivasan@intel.com

Abstract: As Chip-multiprocessor (CMP) become
the ubiquitous architecture, especially for commercial
servers targeting throughput-oriented applications,
processor manufacturers are likely to integrate
increasing number of cores on-die. Designing and
developing these CMP architectures involves studying
a number of options for on-die interconnect, cache and
memory system while optimizing for both power and
performance. Simulation-based study is widely adopted
for the design space exploration for these systems.
Although most existing CMP simulators have detailed
cache and interconnect models, they use simplistic
memory models that use either a fixed latency to the
memory sub-system or a simple queuing model which
adds bandwidth constraints to the fixed latency
approach. In this paper, we demonstrate the necessity
for a cycle-accurate memory model for CMP
architecture. We study three types of memory models:
(1) Fixed latency model, (2) simple queuing model and
(3) detailed cycle-accurate model. We show that the
performance difference among them is increased as the
number of cores is increased on-chip. We also find that
optimization studies done using simplistic models can
lead to erroneous conclusions. Our studies show that
the performance difference between simplistic models
and accurate memory controller can be as high as 65%
for memory optimization studies.

1. Introduction

The scaling limitations of uni-processor and
availability of large silicon area due to reduced
transistor size has lead to increased number of cores on
a chip. The cost of extracting more instruction level
parallelism (ILP) from a single thread/core is becoming
expensive due to complex logic, wider issue width and
even more accurate branch predictors. These factors
have fueled the growth of chip multi-processors
(CMPs), also known as multi-core processor. These
CMPs are becoming the ubiquitous architecture for
commercial servers targeting throughput-oriented
applications [1].

The emergence of CMPs has lead to increased
exploitation of the thread-level parallelism.
Furthermore, independent processes in a system can be
executed in tandem on different cores for faster
response time, and to improve the overall throughput.
The simultaneous execution of multiple

processes/threads increases the memory bandwidth
demand, i.e. the increased number of cores aggravates
the memory wall problem.

The other factor contributing further to the memory
bandwidth problem is the slowdown in growth of
number of pins per die and pin bandwidth. The
inadequate growth in memory bandwidth will further
aggravate this problem as we move to increased
integration.

To explore CMP design space and propose
optimization techniques, simulation methodology is
widely adopted. Most modern CMP simulators though
have a detailed cache and interconnect models, use a
simplistic memory model [2][3][4]. The memory
system is assumed to be a fixed latency model [2] or a
simple queuing model. In the fixed latency model, all
memory requests experience the same latency
irrespective of bandwidth constraints. For bandwidth-
constrained systems such as multi-threaded processors,
the fixed latency model would give overly optimistic
results. A slightly improved model is a queuing model
which has bandwidth constraints, with a specific
arrival and service rate for memory requests. The
queuing model is based on M/M/1 model where the
arrival and service rate are assumed to be Poisson
distribution.

Figure 1 illustrates the memory response time at
different throughput requirements for the three
memory models. Compared to a detailed memory
model, the two simplistic models behave similar to it at
lower bandwidth requirement, but do not faithfully

Figure 1. Latency response for various memory models

track it at higher bandwidth. Though the queuing
model fares slightly better than the fixed model in
tracking the detailed model’s behavior, it still
underestimates the memory latency by as much as 25%
for the maximum throughput. This is due to the
queuing model’s inability to capture the memory
contention overhead, which we explain later, increases
significantly with the throughput. The simplistic
models do not work as well for memory intensive
workloads as they do for compute intensive workloads.

In this paper, we study these three memory models
in detail. Applications that are memory-bound can
show artificial improvement in performance when
using simplistic models, but will not result in true
performance gain in an actual system which will have a
cycle-accurate model. We show that the performance
difference between the two models can be as high as
15% and can increase up to 65% for memory
optimization studies, such as prefetching. This
behavior can lead to incorrect conclusions about
certain optimization techniques and result in
substandard products.

We also show that irrespective of memory
optimization techniques, using simplistic models can
result in incorrect performance projections for multi-
core systems. We observed that the difference in IPC
between simple latency model and cycle-accurate
model (with rest of the system being same for both
models) is 2% for a single core, and increases to 15%
for 8 cores. This can lead to incorrect conclusions
about relative performance gains as the number of
cores is increased.

The rest of the paper is organized as follows. Section
2 describes our motivation. Section 3 describes our
simulation methodology for the three memory models.
Section 4 describes the results, and section 5 describes
the related work. We conclude in section 6 with our
findings.

2. Motivation

In this section, we explain the latency response of a
detailed cycle accurate model similar to [5] and
highlight the importance of memory subsystem for
CMPs. Figure 2 illustrates the memory sub-system
response at different throughput requirements
measured for dual channel DDR3-800 with closed
paging policy. The maximum sustained bandwidth for
this system is around 7GB/s. Maximum sustained
bandwidth is the maximum bandwidth observed in the
simulation and is different from the theoretical
maximum. In our study, this has been observed to be
around 70-80% of the theoretical maximum for server
workloads and depends on various factors such as
read-write ratio, paging policies, address mapping etc.
The bandwidth-latency curve consists of three distinct

regions.
Constant region: The latency response is fairly

constant for the first 40% of the sustained bandwidth.
In this region the average memory latency almost
equals the idle latency in the system. Idle latency is the
default cost of the memory operation i.e. the cost of
opening the page, reading data out of the open page,
and returning it to the processor. The system
performance is not limited by the memory bandwidth
in this zone, either due to applications being non-
memory bound or due to excess bandwidth availability.

Linear region: In this region, the latency response
increases almost linearly with the bandwidth demand
of the system. This region lies for throughputs in the
range of 40% to 80% of the sustained maximum
throughput. The average memory latency starts to
increase due to contention overhead introduced in the
system by numerous memory requests. The
performance degradation of the system starts in this
zone, and the system is claimed to be fairly memory
bound.

Exponential region: This is the last region of the
bandwidth-latency curve. This region exists between
80%-100% of the sustained maximum. In this zone the
memory latency is dominated by the contention latency
which can be as much as twice the idle latency or
more. Applications operating in this region are
completely memory bound and their performance is
limited by the available memory bandwidth.

The figure clearly illustrates the need for a system to
operate in the constant region or at least the linear
region. However, due to the increased bandwidth
demands of multi-core systems and the hurdles faced
in scaling memory bandwidth, systems will be forced
to operate in the linear and exponential region more
frequently.

0

100

200

300

400

500

600

700

800

0 1000 2000 3000 4000 5000 6000 7000 8000

Bandwidth (MB/Sec)

L
at

en
cy

 (
cy

cl
es

) Constant region

Linear region

Exponential region

The memory bandwidth problem will lead to

significant reduction in performance gain as the
number of threads is increased. Figure 2 illustrates this
non-linear performance scaling for SPECJbb [6], a
server workload. We simulated various threads with
each having a private 16KB L1 cache (separate
instruction and data cache), each set of 8 threads

Figure 2. Memory Bandwidth Vs Latency curve

shared the 512KB L2 cache and all threads shared the
last level cache. The last level cache size (L3) was
increased proportionally from 2MB to 32MB for 8 to
128 threads. The maximum available memory
bandwidth was set to 52 GB/Sec.

0

2

4

6

8

10

12

14

16

0 32 64 96 128

Number of Threads

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

8 16

Ideal performance

performance constrained by
bandwidth

 The system performance scales linearly from 8
threads to 32 threads. Beyond 32 threads, this
performance gain tapers down because of the increased
average memory latency of the system. The memory
latency increases exponentially, as explained above,
for a large number of threads (greater than or equal to
64 in this case). This contributes to the non-linear
increase of system performance with the number of
threads. This non-linear scaling in performance can be
captured only in a system which faithfully models all
memory system interactions.

3. Methodology

In this section, we explain our simulation
methodology, memory models and simulation
parameters in detail.

3.1 Simulation Framework
We use a trace-driven platform simulator called

ManySim [3] to evaluate CMP platforms. ManySim
simulates the platform resources with an abstracted
core. ManySim contains a detailed cache hierarchy
model, a detailed coherence protocol implementation,
an on-die interconnect model and a queuing memory
model as described in previous section.

L2

Memory

On-die interconnect

L3

L2

C C

L2

C

Figure 4 shows our multi-core architecture model.
Each core in our model has a private L1, a private L2
and all cores share a distributed L3 cache as shown in
figure 4. To study the impact of different memory
models on estimating memory performance we
enhanced the ManySim simulator to run with three
different memory models including a detailed memory
model in this study. We refer the reader to [3] for a
more detailed description about the methodology.
(1) Fixed Memory Model: In this model, all memory
requests incur the same delay irrespective of the
requested system bandwidth, access pattern, ratio of
read to write requests etc. There is no concept of
bandwidth limitation in this model. This does not
address the memory contention overhead either.
Memory contention overhead is the effect experienced
by a memory request when the memory controller’s
transaction queue is full. In this scenario, a memory
request has to contend with other requests to get
serviced and becomes more pronounced at higher
bandwidths of the system. This is the most simplest of
all models, and hence the fastest. This is used in most
uni-processor CPU simulators such as Simplescalar
[7], alpha-sim [8] and multi-processor simulator like
GEMS [2].
(2) Queuing Memory Model: This model is based on
the memory requests arrival and servicing rate. The
arrival and service rate are assumed to be Poisson
distribution in our study. Unlike the fixed latency
model, the queuing model is able to capture the effects
of bandwidth-constraints on memory latency albeit to a
limited extent as shown in later sections. This model
still does not capture the effects introduced in the
system due to contention among memory requests
accurately. This model is faster than the accurate
memory controller but slower than the idle latency
model.
3) Detailed Memory Model: The memory controller
is a detailed cycle-accurate model that supports DDR
and FBD protocols similar to DRAMSim [5]. The
model supports various scheduling algorithms such as
read first, write first, adaptive etc. The scheduling
algorithm used in this study is an adaptive scheduling
algorithm. This policy gives priority to read requests
over write requests as long as the number of
outstanding writes is below a threshold. The threshold
is set to be 2/3rd of the write queue size. The model
also provides the flexibility to vary the address
mapping policies, number of ranks, DIMMs etc. in the
system. In our studies we call this Accurate Cycle
Latency Model (ACLM). The detailed memory
controller is the most cycle accurate of all models and
captures the memory system behavior completely. This
is also the slowest among all models.

Both the fixed and queuing models need to specify
service latency for a request. This latency value is used

Figure 3. Performance scaling over threads for SpecJbb

Figure 4. Multi-core Architecture

by the Fixed Memory Model as the latency value for all
transactions, while it is used in the Queuing Memory
Model as the basic memory latency without any
bandwidth impact. This provides two additional
variations:
• Idle Latency Model (ILM), where the minimum

round trip time for a memory request is equal to
the idle latency of the accurate memory controller.

• Average Latency Model (ALM), where the
minimum round trip time for any memory request
is equal to the average memory latency of the
accurate memory controller i.e. the idle latency of
this model is equal to the average latency of the
accurate model. Average latency for each
workload is computed for the entire simulation
period using an accurate memory controller.

Based on the memory model and latency value it uses,
we have the following four types of simplistic memory
models:
• Simple Idle Latency Model (SILM): This fixed

latency model uses the idle latency value as the
memory latency.

• Simple Average Latency Model (SALM): This
fixed latency model uses the average latency of the
cycle accurate model for the memory latency.

• Queue Idle Latency Model (QILM): In this model
the minimum latency for a memory request is
equal to the idle latency of the AMC.

• Queue Average Latency Model (QALM): This is
the type of queuing model where the minimum
latency of a memory request is equal to the
average latency of the cycle accurate model.

Table 1 summarizes the behavior of these various
memory models.

Memory
Models

Bandwidth
Limitations

Memory
Contention
overhead

Simulation
speed

Fixed

Memory

model

N N Fastest

Queuing

Memory

model

Y N Medium

Detailed

Memory

Model

Y Y Slow

Table 1. Memory Model Comparison

Table 2 summarizes the various simulation
parameters in our study. We varied the number of
threads (threads are synonymous to cores in our
studies) in the platform from 1-16. The L2 cache

slice/core is 256KB and scaled linearly with the cores.
The L3 cache size was 1MB/core and was scaled
linearly as well. We set the simplistic model bandwidth
to be the maximum sustained bandwidth of the detailed
DRAM model. We also modeled different memory
channels (1, 2 and 4) for the detailed model and had
corresponding service latencies for the simplistic
models.

Parameter Variations
Number of

cores/threads

1, 2, 4, 8, 16

Shared L2

cache size

256KB - 2MB (scaled linearly with

cores). 8-way, 64-byte line size

Shared L3

cache size

1MB - 8MB (scaled linearly with

cores). 16-way 64-byte line size

Simplistic

Memory Model

Fixed and Queuing Model

Detailed

DRAM Model

DDR3 800 with support for 1, 2 and

4 channels, read and write queue size

of 42, adaptive scheduling

Table 2. Simulation Parameters

3.2 Workloads

We used server benchmarks in our study as these are
some of the important classes of applications to exploit
the performance benefits of chip multiprocessors. The
memory traces were captured from a four socket dual
core Pentium 4 machine. The traces were captured
from significant points in the workload that reflect the
benchmarks behavior accurately.

On-line transaction processing (OLTP) is
represented using TPC-C [9]. TPC-C simulates a
complete computing environment where a population
of users executes transactions against a database.

ERP is represented using sales and distribution
benchmark, the SAP SD 2-tier benchmark [10].
Transactions in this application involve creating orders,
creating deliveries for orders, displaying orders,
changing options, listing and creating invoices.

SPECjbb2005 [6] is a Java-based server benchmark
that models a warehouse company that serve a number
of districts (much like TPC-C). This workload is
intended to test the performance of JVM components
including garbage collection and runtime optimization.

SPECjAppServer2004 [11] is a multi-tier benchmark
for measuring the performance of Java 2 Enterprise
Edition (J2EE) technology-based application servers. It
is an end-to-end application which exercises all major
J2EE technologies implemented by compliant
application servers.

4. Performance Evaluation

In this section, we present the performance
evaluation using the different memory models. We
present the impact on CPI, throughput projection and
also show the impact of various models on memory
optimization techniques like prefetching. Our results
show that all benchmarks exhibit similar trend, hence
we present the results for SPECJbb in this section.

4.1 Impact on CPI

Figures 5, 6 and 7 illustrate the performance of
SILM and QILM for different number of threads with
1, 2 and 4 memory channels respectively. The y-axis
shows the CPI normalized to the detailed memory
model. Figure 6(a) shows that for single threaded
workloads the CPI obtained from both models are
nearly identical to that obtained from the detailed
model. However, increasing the number of threads,
results in an increase in the difference between the CPI
values predicted by the detailed model and those
obtained from the SILM. The CPI is off by 35% and
62% respectively for 8 and 16 threads. This large error
in estimation is because SILM makes an unrealistic
assumption of infinite bandwidth. SILM behaves close
to the cycle accurate model only in the constant region
of the bandwidth latency curve as shown in figure 5(b).

QILM behaves different from SILM, and the
difference with detailed model is minimal. The error
increases to 5% when the number of threads is 8, but
reduced to 2% for 16 threads. This is because of the
bandwidth constraint imposed by the queuing model is
identical to the detailed model in the operating region
of the applications. QILM model behaves similar to the
detailed model at the two extreme end of the
bandwidth requirement (i.e. constant and exponential
region) as show in latency response graphs and
diverges from it in the linear region. Hence the
performance difference with detailed model first
increases and then decreases.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16
Number of threads

N
o

rm
al

iz
ed

 C
P

I

SILM
QILM

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 1000 2000 3000 4000 5000

Bandwidth (MB/s)

L
at

en
cy

 (
cy

cl
es

)

SILM

QILM

ACLM

As shown in figure 6, the dual channel configuration
gives similar trend for both SILM and QILM. Both
models have increased difference from the detailed
model when the number of threads is increased.
However QILM still performs better. The difference is
15% and 57% for QILM and SILM respectively. Since
the 2 channel configuration provides more bandwidth
than 1 channel, the applications operate in the linear
region of the bandwidth-latency curve.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16
Number of threads

N
o

rm
al

iz
ed

 C
P

I

SILM
QILM

0

100

200

300

400

500

600

700

800

900

1000

0 1000 2000 3000 4000 5000 6000 7000 8000

Bandwidth (MB/s)

L
at

en
cy

 (
cy

cl
es

)

SILM

QILM

ACLM

 (a) CPI Normalized to a detailed model

 (b) Bandwidth vs. Latency response
Figure 5: Single Channel performance results

 (a) CPI Normalized to a detailed model

(b) Bandwidth vs. Latency response
Figure 6: Dual Channel performance results

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16
Number of threads

N
o

rm
al

iz
ed

 C
P

I
SILM
QILM

0

100

200

300

400

500

600

700

0 2000 4000 6000 8000 10000
Bandwidth (MB/s)

L
at

en
cy

 (
cy

cl
es

)

SILM

QILM

ACLM

The difference between QILM and ACLM is
maximal in this zone, and hence the performance
difference is more for QILM with 2 channels
compared to 1 channel. It is due to the same reason,
increased bandwidth availability, SILM fares better
with 2 channel configuration than 1 channel.

We observe a similar trend continuing with 4
memory channels as shown in figure 8. The
difference from the detailed model is increased to
about 19% when the total number of threads is 16 for
both the models. Since 4 channels provide even more
bandwidth as opposed to 2 channels, the difference
between the two models and detailed model becomes
comparable.

4.2 Impact on Throughput Projection

We also looked at the throughput projection as we
increased the number of threads with the three
memory models. Figure 8 (a), (b) and (c) shows this
data for 1, 2 and 4 memory channels respectively.
The y-axis shows the performance improvement
normalized to a single thread. We can see that with
single memory channel, QILM has the same curve as
the detailed model: the memory throughput is
increased to its maximum with 8 threads, but starts to
reduce as we keep increasing the number of threads
due to the increased memory traffic. QILM is able to
capture the bandwidth constraints of a real machine
accurately in a tightly constrained system. SILM, on

the other hand has a very different behavior. The
throughput keeps increasing as the number of threads
is increased. This is due to the fact lack of bandwidth
constraint in the model. This model works fine in a
memory unconstrained environment but not so well
when memory is overloaded. Hence SILM can
capture the performance improvement from 1 to 4
threads as well as ACLM but not so for higher
threads.

QILM matches the detailed model with 1 memory
channel, but it shows different behavior as we
increase the memory channels, as shown in figure
8(b) and 8(c). With 4 memory channels, QILM
behaves more like the SILM. This is because of the
QILM diverging from the detailed model in the linear
region of the bandwidth-latency curve as shown in
Figure 8(c).

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16 18

Number of threads

N
o

rm
al

iz
ed

 IP
C

SILM

QILM

ACLM

(a) Single Memory Channel

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16 18

Number of threads

N
o

rm
al

iz
ed

 IP
C

SILM

QILM

ACLM

(b) Dual Memory Channel

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16 18

Number of threads

N
o

rm
al

iz
ed

 IP
C

SILM

QILM

ACLM

(b) Bandwidth vs. Latency response
Figure 7: Quad Channel performance results

 (a). CPI Normalized to a detailed model

(c) Quad Memory Channel
Figure 8: Throughput projection for various

memory channels with different threads

4.3 Average Latency Results

In the above results both the SILM and QILM used
the ACLM idle latency as the memory service delay
in their models. It is expected that using the average
latency can provide more accurate results. Therefore,
we ran the benchmarks with ACLM, computed the
average latency, and used them in these two models.

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1 2 4 8 16
Number of threads

N
o

rm
al

iz
ed

 C
P

I

SALM
QALM

Figure 9. CPI normalized to detailed model for
SALM and QALM with dual memory channels

Figure 10. Memory latency distribution

0

1

2

3

4

5

6

7

8

0 5 10 15 20

Number of threads

N
or

m
al

iz
ed

 IP
C

SALM

QALM

ACLM

Figure 11. Throughput projection for Dual
memory channels with different threads

Figure 9 shows the CPI of SALM and QALM
memory models normalized to ACLM. Here, the
SALM model performs better than the idle latency
model and varies from over predicting the CPI by

0.5% for 1 thread to under predicting it by 5% for 16
threads. QALM over predicts the CPI for all case
with the maximum difference being 4% for 16
threads. Over prediction of performance happens due
to the fact that most memory requests in a real system
don’t necessarily experience the average memory
latency as shown in figure 10. This figure shows that
almost 65% of the requests experienced less than the
average latency. Since we assume the same memory
latency for all requests, the average latency models
tend to be more conservative. Hence, the average
latency models lead to over prediction of CPI.

Figure 11 shows the throughput projection using
the two average latency models. The y-axis shows the
performance improvement normalized to a single
thread. Both these models track the detailed ACLM
model well. Even the SALM fixed latency model,
with no bandwidth constraint, captures the trend
accurately due to a more accurate average latency
being used in the model. This is due to the fact that
we capture the average latency for each thread
configuration using the ACLM and plug it back into
the service latency of the simplistic models. As we
show in the next section, computing the average
latency from ACLM for each thread/benchmark
configuration is cumbersome, but the model behaves
very close to a detailed model.

4.3.1 Challenges in Average Latency Model

Though the average latency models capture the
memory system behavior well, we highlight the
challenges in computing the average latency in this
section.

Figure 12. Average memory latency for various
memory channels

Figure 12 shows the average memory latency for
the three memory channels for different threads. This
graph illustrates that the average latency can vary
from about 450 cycles to 1250 cycles, a factor of
2.6X, for different number of threads and memory
channels. The average latency is subject to change for

each benchmark as well. This is because the average
memory latency in a system depends on various
factors such as number of DIMMs, number of banks,
read-write ratio of the memory requests, scheduling
algorithms, number of cache misses etc. This is a big
challenge as the number of such parameters is huge
and variation in the latency can vary a lot as well. A
solution would be to use Monte Carlo approach of
running various benchmarks with different memory
configurations and using the average latency thus
computed in simplistic models. This still cannot
guarantee an accurate performance prediction as any
change in the platform architecture can affect the
average memory latency. Hence, for our base case we
used the idle latency of the system over average
latency.

4.4 Impact of memory optimization techniques

In this subsection we study the impact of simplistic
models on memory optimization studies:prefetching.
Prefetching has been well established to reduce
memory latency in the system [12]. We studied the
performance of stream prefetchers in the last level
cache with a stream depth of 5.

Figure 13 illustrates the IPC difference of all the
simplistic memory models (SILM, SALM, QILM
and QALM) with respect to ACLM for dual memory
channel. We observe that the idle latency models
(SILM) under predict the performance by up to 65%
(and 13% for QILM) for 8 threads, a trend shown
earlier. This is due to the lack of bandwidth
constraint in SILM, and inability to capture
contention overhead in QILM.

 Figure 13. IPC difference of simplistic models
normalized to ACLM for SpecJbb

The average latency models (QALM) over predict
the performance by up to 18% (and 8% for SALM),
as shown earlier, due to most requests experiencing a
latency less than the average latency in a real system.
These results highlight their inability to capture

actual platform behavior.

Memory
Model

1
thread

2
threads

4
threads

8
threads

ACLM 4.0% -3.7% -28.4% -56.9%

SILM 10.5% 8.8% 5.7% 5.3%

SALM -3.8% -10.7% -32.9% -57.7%

QILM 6.19% 0.3% -22.0% -54.1%

QALM -6.7% -15.6% -38.1% -61.7%

Table 3. Performance Improvement over threads
with prefetching

Most studies focus on relative performance
improvement rather than absolute numbers. Table 3
shows the performance improvement for various
threads using different memory models with
prefetching (i.e. each model is compared against
itself without prefetching and the resulting
performance improvement is shown). We notice that
the performance trend for SILM is vastly different
from ACLM. SILM shows performance benefits of
5% with prefetching for 8 threads, whereas ACLM
shows a significant degradation in performance for
the same case. As explained earlier, this is due to the
lack of bandwidth constraint in SILM. Similarly,
QILM shows performance benefits for 2 threads
whereas ACLM shows benefits only for single thread
scenario and degradation for others due to the system
operating in the exponential region of the bandwidth
latency curve. The average latency models, due to
their conservative nature, project performance
degradation even for the single threaded case. These
results show that one might reach erroneous
conclusions about relative performance improvement
using simplistic models.

5. Related Work

 There are various studies that highlight the need
for accurate architectural models to evaluate the
system performance. Alameldeen and Wood
identified the performance variability as a major
challenge for architectural simulation studies for
multi-threaded workloads [13]. Variability in this
study refers to the differences between multiple
estimates of a workload performance. The impact of
variability on multi-threaded workloads can be
extended to chip-multiprocessors. Alameldeen et al.
also have characterized commercial workloads
dependency on non-determinism [14]. The authors

propose a methodology that uses pseudo-random
perturbations and standard statistical techniques to
compensate for the non-deterministic effects.

Desikan et al. highlight the experimental error that
arises from the use of non-validated simulators in
computer architecture research in a uni-processor
environment [7]. This work describes ways to reduce
the error by considering specific aspects of the
pipeline. A similar study involving multiprocessors
was studied in [15] by Gibson et al. The authors have
compared their simulator with an actual hardware for
FLASH based systems. This paper studies the source
and magnitude of error in a range of architectural
simulators by comparing the simulated execution
time of several applications to their execution time on
the actual hardware being modeled.

Krishnan and Torellas examined experimental
errors in multiprocessor simulations due to simple
processor models [16]. They propose a novel direct-
execution framework that allows accurate simulation
of wide-issue superscalar processors without the need
for code interpretation.

Cain et al. discusses the issues of precision and
accuracy in simulation [17]. Their work highlights
the operating system effects on both commercial and
SPECint workloads. They also show that incorrect
speculative path in a simulation environment is
unimportant for these benchmarks and show the I/O
effects on simulation accuracy for uni-processors.

Simulation errors by selecting particular program
phases were investigated by Sherwood et al. [18].
This study proposes a solution to address this
problem by selecting basic block distribution that
represents the entire program’s execution across
different architectural metrics such as branch miss
rate, IPC, cache miss rate etc. This approach is based
upon using program’s profile code structure to
uniquely identify the different phases of execution in
the program.

Oskin et al. introduce a hybrid processor simulator
that uses statistical models and symbolic execution to
evaluate design alternatives [19]. This simulation
methodology allows for quick and accurate contour
maps to be generated to the performance space
spanned by design parameters.

Most of these aforementioned studies focus on the
core and omit the memory system. Our work
highlights the need for an accurate modeling of
memory system in CMPs where the memory plays a
crucial role in determining the performance.

6. Conclusion

In this work, we presented various simplistic
memory models and highlighted the drawbacks of
using them. One of the main arguments in favor of

such models has been that they are sufficient to
compute the performance difference between various
configurations, though may not be useful for absolute
values. Our studies show that these models can be
wrong both in absolute performance numbers and
relative performance comparison between different
configurations.

Our studies show scenarios wherein the simplistic
models either over-predict or under-predict the
system performance with respect to cycle accurate
model. We also show that using simplistic models
can lead to wrongful conclusions in terms of
performance projection as shown with SALM and
QALM. These simplistic models predicted
performance degradation with prefetching for single
thread system whereas the ACLM predicted
improvement. Under-predicting the performance can
lead to over designing the system, and will render it
expensive. Over-predicting the performance can lead
to system being ineffective due to not being able to
meet the performance constraints of applications in a
real world environment. Both these cases are causes
of concern due to simplistic models.

Our results show that as the system complexity
grows more accurate models are needed to evaluate
the system performance. The ease of use and speed
offered by the simplistic models are easily offset by
the inaccurate results produced by them and may not
serve their purpose. An optimized solution would be
to have a hybrid memory model wherein the detailed
model co-exists with the simplistic models and based
on the platform throughput requirements the
appropriate memory model is chosen. This kind of
modeling can be both fast and accurate.

References

1. John D. Davis, James Laudon, Kunle Olukotun,
“Maximizing CMP Throughput with Mediocre
Cores”, PACT 2005

2. Milo M.K. Martin, Daniel J. Sorin, Bradford M.
Beckmann, Michael R. Marty, Min Xu, Alaa R.
Alameldeen, Kevin E. Moore, Mark D. Hill, and
David A. Wood, “Multifacet's General
Execution-driven Multiprocessor Simulator
(GEMS) Toolset”, Computer Architecture News
(CAN), September 2005

3. L. Zhao, R. Iyer, J. Moses, R. Illikkal, S.
Makineni, and D. Newell, “Exploring Large-
Scale CMP Architectures using Manysim”, IEEE
Micro, vol. 27, issue 4, pp. 21-33, August 2004

4. P. G. Emma, A. Hartstein, T. R. Puzak, and V.
Srinivasan, “Exploring the limits of prefetching”,
IBM Journal of Research and Development, vol.
49, issue 1, pp. 127-144, January 2005

5. David Wang, Brinda Ganesh, Nuengwong

Tuaycharoen, Katie Baynes, Aamer Jaleel, and
Bruce Jacob, “DRAMsim: A memory-system
simulator”, SIGARCH Computer Architecture
News, vol. 33, no. 4, pp. 100-107. September
2005

6. SPECjbb2005 Java Business Benchmark, available
online at http://www.spec.org/jbb2005/

7. R. Desikan, D. Burger, and S. W. Keckler,
“Measuring experimental error in
microprocessor simulation”, in 28th ISCA 2001

8. Doug Burger and Todd M. Austin. The
simplescalar tool set version 2.0. Technical
Report 1342, Department of Computer Sciences,
University of Wisconsin-Madison, June 1997

9. “TPC-C Design Document”, www.tpc.org/tpcc/
10. Sap America Inc., “SAP Standard Benchmarks”,

http://www.sap.com/solutions/benchmark/index.e
px

11. http://spec.org/jAppServer2004/
12. N. P. Jouppi, “Improving direct-mapped cache

performance by the addition of a small fully-
associative cache and prefetch buffers”, In
Proceedings of the 17th International
Symposium on Computer Architecture, pp. 364-
373, May 1990

13. A. R. Alameldeen and D. A. Wood, “Variability
in architectural simulations of multi-threaded
workloads”, in 9th HPCA, 2003

14. A. R. Alameldeen and D. A. Wood, “Variability
in architectural simulations of multi-threaded
workloads”, in 9th HPCA, 2003

15. J. Gibson, R. Kunz, D. Ofelt, M. Horowitz, J.
Hennessy, and M. Heinrich, “Flash Vs.
(Simulated) Flash: closing the simulation loop”,
in ASPLOS 2000

16. V. Krishnan and J. Torellas, “A Direct execution
framework for fast and accurate simulation of
superscalar processors”, in proceedings of
International Parallel Architecture and
Compilation Techniques, 1998

17. H. W. Cain, K. M. Lepak, B. A. Schwartz, and
M. H. Lipasti, “Precise and accurate processor
simulation”, in proceedings of fifth workshop on
computer architecture evaluation using
commercial workloads, pp. 13-22, 2002

18. T. Sherwood, E. Perelman, and B. Calder, “Basic
block distribution analysis to find periodic
behavior and simulation points in applications”,
in proceedings of International Parallel
Architecture and Compilation Techniques, 2001

19. M. Oskin, F. T. Chong, and M. Farrens, “HLS:
Combining statistical and symbolic simulation to
guide microprocessor designs”, in 27th ISCA,
2000

