

ABSTRACT

Title of Thesis: RTOS-BASED DYNAMIC VOLTAGE SCALING

Degree candidate: Nuengwong Tuaycharoen

Degree and year: Master of Science, 2003

Thesis directed by: Professor Bruce L. Jacob
Department of Electrical and Computer Engineering

Energy consumption of real-time embedded systems becomes more

important as such systems are widely used in many applications. In those

systems, the core processor consumes a large amount of the total energy.

Dynamic voltage scaling (DVS) is accepted as the key technique to reduce energy

dissipation of the core by lowering the supply voltage and operating frequency.

Currently, most DVS heuristics are based on average values of the past

utilization, either with or without real-time constraint guarantees. This thesis is

aimed at exploring the possibility to apply a classical control-systems technique,

namely PID controller, to a DVS heuristic. The PID controller is able to find a

good average value that represents the past, the present, and the changing

workload of the system. By applying the characteristics of real-time application

programs, the technique can also meet the real-time constraints. The technique is

integrated into µC/OS II, a multitasking preemptive real-time operating system

running on a Motorola M-CORE processor model. The applications used in the

experiments are all members of the MediaBench benchmark suite. The

experimental results show that the technique can reduce significantly energy

consumption by consuming only 5% above the PERFECT case, and consuming

only half of the energy consumed by the AVGN algorithm. Besides, the technique

also guarantees the real-time constraints by preserving both jitters and miss-

deadline rates below 5%.

RTOS-BASED DYNAMIC VOLTAGE SCALING

by

Nuengwong Tuaycharoen

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2003

Advisory Committee:

Professor Bruce L. Jacob, Chair
Professor Gang Qu
Professor David B. Stewart

©Copyright by

Nuengwong Tuaycharoen

2003

ii

ACKNOWLEDGEMENT

First of all, I would like to thank my advisor, Dr. Jacob for his dedication

and encouragement. He has helped me develop the idea and data interpretation.

Without his guidance, this thesis would have never been possible.

I would like to thank Brinda and Ankush who are always there for me and

handed me this wonderful idea. I will never find the way out without these

gorgeous people. Also, I would like to thank Dr. Stewart and his students, Tom

and Nitin, who set up the motivated reading seminar in Real-Time Systems and

also all students attending the class. The reading seminar had a great influence in

the development of the thesis.

Finally, I would to thank my family, my father and mother who are

always be the great mentors, my aunt and her family who always be my second

family while I am away from home. Especially, thank to Matin who always

encourage and give me any assistance for this thesis as many times as I ask.

iii

TABLE OF CONTENTS

LIST OF TABLES... v

LIST OF FIGURES..vi

CHAPTER 1:

INTRODUCTION ... 1

1.1 Real-Time Embedded Systems .. 1
1.2 Dynamic Voltage Scaling.. 3
1.3 Motivation... 7
1.4 Overview... 8

CHAPTER 2:

BACKGROUND.. 9

2.1 Energy Reduction in CMOS ... 9
2.2 Real-Time Systems... 11
2.3 RTOSs and Task Scheduling .. 13
2.4 PID Controller .. 16
2.5 Related Works .. 18

CHAPTER 3:

METHODOLOGY... 30

3.1 The nqPID Function .. 31
3.2 The User Program Utilization.. 35
3.3 The Comparisons of PID, nqPID, and RT-nqPID Equations 37

iv

CHAPTER 4:

EXPERIMENT SETUP .. 40

4.1 Experimental Set-up.. 40
4.2 The M-CORE architecture and simulator... 41
4.3 µC/OS-II .. 43
4.4 The MediaBench Suite... 44
4.5 The AVGN Algorithm... 46
4.6 The HPASTS algorithm... 47
4.7 The Experiment-Setup Details for nqPID and RT-nqPID 48

CHAPTER 5:

RESULTS .. 50

5.1 Energy and Performance .. 50
5.2 The Comparison of nqPID and RT-nqPID algorithms 59
5.3 The Run-Time Trace .. 66
5.4 Sensitivity Analysis ... 71

CHAPTER 6:

CONCLUSION.. 75

6.1 Summary... 75
6.2 Future Works.. 77

REFERENCES.. 78

v

LIST OF TABLES

Table 1. The Percentage of Miss Deadlines for HPASTS Algorithm…………57

Table 2. The Percentage of Jitters for HPASTS Algorithm…………………….58

Table 3. The value of Ku for each benchmark. …………………………………73

Table 4.The percentage of Normalized Average Energy Consumption for each

benchmark………………………………………………………………………… 74

vi

LIST OF FIGURES

Figure 1. Energy consumption vs. power consumption………………………..…….5

Figure 2. Psuedo-code for the nqPID algorithm…………………………….……….34

Figure 3. Psuedo-code for the RT-nqPID algorithm. ……………………………..…36

Figure 4. Energy Comsumption for GSM_DECODE. ……………………………....51

Figure 5. Energy Comsumption for GSM_ENCODE. ……………………….……..52

Figure 6. Energy Comsumption for ADPCM_DECODE. ………………………….53

Figure 7. Energy Comsumption for ADPCM_ENCODE…………………….……..54

Figure 8. Speed setting for nqPID algorithm for GSM DECODE 80ms-period….61

Figure 9. Speed setting for nqPID algorithm with 20% headroom for GSM

DECODE 80ms-period…………………………………………………………………62

Figure 10. Speed setting for RT-nqPID algorithm for GSM DECODE 80ms-period.

……………………………………………………………………………………………65

Figure 11. Speed setting for RT-nqPID algorithm for ADPCM DECODE 72ms-

period……………………………………………………………………………………68

Figure 12. Speed setting for AVGN algorithm for ADPCM DECODE 72ms-period.

……………………………………………………………………………………………69

Figure 13. Speed setting for HPASTS algorithm for ADPCM DECODE 72ms-

period……………………………………………………………………………………70

1

CHAPTER 1

INTRODUCTION

1.1 Real-Time Embedded Systems

Embedded systems have become increasingly popular in industrial

applications and in consumer markets. Such systems are used, for example, in

automotive applications and cellular phones. Embedded systems contain

processors running specific software while, in traditional electro-mechanical

systems, most functionality is implemented in hardware. Embedded systems

leave only computation intensive functions as well as system parts that require

fast response times or high concurrency to the dedicated system hardware to

reduce the cost per unit since they are commonly produced in large amounts.

Most embedded processors are based on architectures designed primarily

for general-purpose processors. Both kinds demand massive data processing and

high performance. However, there are design factors differentiating the

embedded processors from the general-purpose processors: power consumption,

code density, cost, and integrated peripherals [1].

Power consumption plays an ever-increasingly-important role since

embedded processors are widely used in portable and inaccessible systems,

operated by battery. Maximizing the battery life is one of the key concerns

because the amount of energy available to these systems is limited. Power

2

consumption has to be considered along with performance. Reducing power

consumption almost always means reducing the processor performance. With

this requirement, increasing overall system performance will be a major challenge

for future embedded-processor designs.

The number one reason in selecting an embedded operating system is the

real-time capabilities of the operating system [2]. The fact is the majority of the

embedded systems market has been traditionally made up by real-time systems,

which are characterized by deterministic, low-latency performances. Thus, the

correct behavior of these systems depends not only on the accuracy of

computations but also on their timeliness. Such systems have typically been used

in aerospace, military, industrial automation, telecommunications and

automotive applications, as well as in other safety-critical applications that

require deterministic response times. While energy consumption for embedded

and mobile computing is important, energy minimization must be carefully

balanced against the need for real-time behaviors.

Recently, the synthesis of application-specific systems in embedded

systems has changed drastically due to a convergence of applications, technology,

and market trends. Market trends are moving towards growing the number of

gates in the integrated circuits, and shortening the clock period. Also, embedded

consumer applications are growing in size of code. Qualitatively, modern

3

applications demand high volume of data processing, cost efficiency, and very

short time-to-market windows [3].

By adopting design reuse techniques, real-time operating systems (RTOSs)

can narrow down the gap between the fast development in semiconductor

technology and the embedded system designs. RTOS isolates application

developers to architecture and integrated circuits, plus the processor architects

and the circuit designers do not have to be concerned with the applications. As a

result, the percentage of developers using no RTOS of a proprietary alternative

has decreased from 38% to 18% in five years, and the percentage of those using

RTOS is increasing significantly [4].

1.2 Dynamic Voltage Scaling

The known fact is the core processor consumes a large portion of energy

[5]. Therefore, reducing the energy consumed by the core is not trivial. By trading

performance for energy savings, one can employ these three methods [6],

1) Voltage Scaling,

2) Transistor Sizing, and

3) Adiabatic Circuits.

Recent technologies allow the implementation of a microprocessor system

that can adjust the operating voltage and the clock frequency at run-time. The

dynamic voltage scaling (DVS) decreases voltage to an appropriate level

4

whenever it is possible to cut energy consumption. The voltage scheduler in the

system RTOS makes the decision when and which level to scale.

Voltage scheduling can be separated into two tasks[7]:

- Load Prediction: predicting the future system load based on past

behavior.

- Speed-Setting: using the load prediction to set the voltage level and

clock frequency.

Dynamic voltage scaling (DVS) is accepted as the key technique to reduce

energy dissipation by lowering the supply voltage and operating frequency in

response to the concept of performance on demand (see Figure 1). Lowering only

the operating frequency can reduce the power consumption, but the energy

consumption remains the same because the computation needs more time to

finish. Lowering the operating frequency and also supply voltage accordingly can

reduce a significant amount of energy because of the quadratic relation between

the energy and the voltage supply.

There are two categories in the voltage schedulers [5]. First, interval-based

voltage schedulers simply analyze system utilization at a global level: no direct

knowledge of individual threads or programs is needed. However, it has a

disadvantage of incorrectly predicting future workloads. As a result, it fails to

guarantee real-time constraints.

5

Figure 1. Energy Consumption vs. Power Consumption. (a) Task ready at time 0; no other task is
ready. Task requires time T to complete, assuming maximum clock frequency f. (b) Reducing the
clock frequency f by half lowers the processor's power consumption and still allows task to
complete by deadline. However, it only spreads the computation out overtime. The energy
consumption remains the same. (c) Reducing the voltage level V by half reduces the power level
further, without any corresponding increase in execution time. As a result, the energy consumption
is reduced significantly, but the appropriate performance is remained.

6

The second category is thread-based voltage schedulers, which require

knowledge of individual thread deadlines and computation. These schedulers can

calculate optimized speeds according to the execution requirements and

deadlines specified by each thread. This type of scheduler is also subdivided into

inter-task schedulers, where the voltage is changed on task-by-task basis, and

intra-task schedulers, where the voltage is changed within the individual task

boundary [8].

There are only three key components for implementing DVS in a general

microprocessor system:

1) an operating system that can intelligently vary the processor speed,

2) a regulation loop that can generate the minimum voltage required for

the desired speed, and

3) a microprocessor that can operate over a wide voltage range.

Therefore, DVS is possible in many systems [9-11].

Currently, most DVS heuristics are based on the average value of the past

system utilization, both with and without considering real-time responsiveness.

Most studies concentrate on a particular application such as MPEG decoders and

turbo code decoders, which have wide variation in their workload. The latest

work explores the possibility to identify more slack time and efficiently spreading

the workload over it.

Matin Sasaluxanon
Is?

Matin Sasaluxanon
Something is wrong with this sentence. It doesnt sound right?

7

1.3 Motivation

This thesis aims at designing a DVS heuristic integrated into an RTOS,

which can satisfy the following requirements.

- It should be transparent to user programs.

- It can work well with the multiprogrammed systems.

- It guarantees real-time constraints for all hard-real time tasks.

- It has little computation compared to user program.

- It is independent of the RTOS task scheduler.

- It leads to settle to an optimum operating point fast and remains stable in case

of periodic tasks.

A classical control-systems technique, namely Proportional-Integral-

Derivative controller (PID), is applied to find an appropriate value that represents

the past, the present, and the changing workload of the system. Ishihara [12]

brought up interesting theories about the number of voltage levels that maximize

energy saving. The theories show that, in order to produce a schedule that

minimizes energy consumption, only one or at most two voltage levels, which are

the neighbors of the optimum voltage, are needed. This implies that an algorithm

aimed at producing a sole optimum speed value, could be an optimized

algorithm. In addition, they concluded that the processor that has more voltage

levels tends to be able to minimize the energy consumption. Therefore, the future

8

trend in microprocessors is moving toward a processor that can operate in

relatively continuous range of the voltage levels. The algorithm having its

complexity independent of the number of operating voltage levels should be

promising. Furthermore, by applying the real-time behavior of the applications,

the technique can also meet the real-time constraints.

1.4 Overview

This paper is organized as follows. The following chapter discusses the

background, i.e. the energy reduction in CMOS, Real-time systems, Real-time

operating systems and the task scheduling, the PID controller, and the recent DVS

works. Chapter 3 gives the details of the proposed heuristic and chapter 4 gives

the experiment-setup details for this project. Chapter 5 presents the experiment

results and analysis. Finally, chapter 6 ends the thesis with a conclusion

statement.

Matin Sasaluxanon
Which are? Or examples of?

9

CHAPTER 2

BACKGROUND

2.1 Energy Reduction in CMOS
The energy required for a computation on a single static CMOS device is

[11]:

)
f
N

(VI VC E ddleak
2
ddtot +=

Or, simply,

2
ddV α E

with the parameters defined as follows:

Ctot is the total switched capacitance for the computation,

N is the number of clock cycles taken by the computation,

Vdd is the supply voltage,

f is the clock frequency, and

Ileak is the leakage current.

10

A reduction in supply voltage increases the circuit delays as shown by the

following equation:

2
tddox

ddL
d)V(W/L)(VµC

VC
T

−
=

or, simply,

dd

2
tdd

V
)V(V

 α f
−

where

Td is the delay or the reciprocal of the frequency f,

Vdd is the supply voltage,

CL is the total node capacitance,

µ is the mobility,

Cox is the oxide capacitance,

Vt is the threshold voltage, and

W/L is the width to length ratio of transistors.

11

The variations in processor utilization affects N and Ctot. Then, due to a

light workload, an idle processor wastes clock cycles and energy because the

clock signal continues propagating, and the operating voltage remains the same.

Gating the clock during idle cycles reduces the switched capacitance of idle

cycles. Reducing the frequency f during periods of low workload eliminates most

idle cycles altogether. However, reducing the frequency f is limited by Vt, which

must be large enough to overcome noise in the circuit. Neither approaches,

however, affects CtotVdd2 for the actual computation or substantially reduces the

energy lost to leakage current. Reducing the supply voltage Vdd in conjunction

with the frequency f achieves energy savings and reduces leakage current.

Dynamic voltage scaling (DVS) is the on-line adjustment of Vdd and f in

response to a processor’s utilization. A voltage scheduler, running in addition to

an operating system’s task scheduler, can adjust voltage and frequency in

response to a prior knowledge or predictions of the system’s workload.

2.2 Real-Time Systems

The Oxford Dictionary of Computing offers the definition of the word Real

Time [13]:

“Any system in which the time at which the output is produced is

significant. This is usually because the input corresponds to some movement in

12

the physical world, and the output has to relate to that same movement. The lag

from input time to output time must be sufficiently small for acceptable

timeliness.”

The most important characteristic features of the real-time systems is not

only the correctness of its functional computation (logical correctness), but also

the correctness of timely response (timely correctness). In the real-time world, the

fastest response does not mean the best performance. However, the system must

guarantee its timely response to external events.

Since one can trade one feature for another, the real-time can be broadly

categorized into hard real-time systems and soft real-time systems. In the hard real-

time systems, timing correctness is critically important and may not be sacrificed

for other gains. On the other hand, in soft real-time systems, the timing

correctness is important but not critical. An occasional failure can be acceptable.

One can view the concept of soft real-time as a continuous spectrum with non-

real-time at one end-point, and hard real-time as the other end.

A job is a unit of work that is scheduled and executed by the system. A set

of related jobs that jointly provide some system function is a task. The release time

of a job is the instant of time at which the job becomes available for execution. The

response time is the length of the time from the release time of the job to the instant

when it completes.

13

The timely correctness of a real-time system can be specified in the form of

period and deadline. The period is the minimum amount of time between each

iteration of a regularly repeated task. Such repeated tasks are called periodic

tasks. The deadline is a constraint on the instant of time by which the operation

must complete. Most of the time, for a job in a periodic task, a job’s deadline is

that job’s period. Therefore, a hard real-time task has a hard deadline, and a soft

real-time task has a soft deadline.

For periodic tasks, the least common multiple of the periods of all tasks is

call hyperperiod. The phase of a task is the release time of the first job in that task.

The utilization of a task is equal to the fraction of time a truly periodic task with

period pi and execution time ei keeps a processor busy, or simply the ratio of ei/pi.

Hence, the total utilization U of all tasks in the system is the sum of the utilization

of every task. Note that the total utilization specifies how busy the processor is.

On the other hand, an aperiodic task is a task having either soft deadlines or

no deadlines, while a sporadic task is released at random time and has hard

deadlines.

2.3 RTOSs and Task Scheduling

ComputerWorld [14] gives a definition of the real-time operating system as

follows:

14

“A real-time operating system (RTOS) is specialized control software

that's often used in embedded computing applications that have tight memory

resources and stringent performance requirements relating to immediate

response times, high availability and accurate self-monitoring capabilities.”

The most important characteristic of any RTOS is the ability to preserve

the real-time behavior, namely, the correctness of both the functional computation

and the timely response. The RTOS must also have high predictability.

A real-time operating system can supply many functions to an embedded

application, including process management, interprocess communication and

synchronization, memory management, and input/output (I/O) management.

However, the central purpose of an RTOS is task scheduling, the mechanism

making a decision which job in the system’s job pool should execute at the instant

of time. The approaches commonly used in task scheduling are [15]:

1) Clock-Driven Approach: the scheduler makes decisions at regularly

spaced time instants.

2) Weighted Round-Robin Approach: a job with weight wt gets wt time

slices every round, and the length of a round is equal to the sum of the

weights of all the ready jobs.

3) Priority-Driven Approach: the scheduler makes a decision every time a

job releases or completes.

15

The last approach can be categorized by the moment the scheduler makes

decisions into preemptive and nonpreemptive scheduling. The scheduler of

preemptive systems makes a decision every time a job releases, but the scheduler

of nonpreemptive systems makes a decision at the time a job completes.

Priority-driven schedulers differ from each other in job priority

assignment. A fixed-priority algorithm assigns a task priority and then remains

the priority of that task for every job in the task. A dynamic-priority algorithm

assigns different priorities to the individual jobs in each task. Therefore, with

respect to other tasks, the priority of a task changes every time a job releases or

completes.

In 1973, Liu [16] presented the rate monotonic (RM) algorithm as an optimal

fixed priority scheduling algorithm, and the earliest-deadline-first (EDF) algorithms

as optimal dynamic priority scheduling algorithms. The schedulers are optimal in

the sense that they can generate a task schedule if it exists. These algorithms are

widely used in today’s operating systems. The reasons are not only the ease in

implementation for the algorithms, but also the ease in verification. One can

verify whether there is a feasible schedule for a particular periodic task set such

that all the tasks’ deadlines can be guaranteed by checking the schedulability

conditions [15],

16

∑
=

≤
n

1k kk

k 1
),pmin(D

e

, for EDF, and

1)n(2
),pmin(D

e 1/n
n

1k kk

k −≤∑
=

for RM. These conditions are also called acceptance test [46], as they are used to

check if a new arrival task can be scheduled to meet its deadline and all tasks

already scheduled are still guaranteed to meet their deadlines. Note that the

utilization of the schedulable system is only less than 70% for RM scheduling and

100% for EDF scheduling, when the number of tasks in the critical task set

approaches infinity. As a result, [17] introduced maximum-urgency-first (MUF)

algorithm to increase the bound utilization to somewhat over 100%.

2.4 PID Controller

A Proportional-Integral-Derivative (PID) controller is often used in control

systems [15, 18]. To make the value of one variable follow the value of another

with minimum error, the controller ensures that when the controlling variable

17

changes its value, the controlled variable changes accordingly. Usually, this

involves keeping track of past values of both controlling and controlled variables.

In a typical PID controller, these elements are driven by a combination of the

system commands and the feedback signal from the object that is being controlled

(usually referred to as the "plant"). Their outputs are added together to form the

system output. A full PID control algorithm with feedback has the following

equation:

dt
dx

Ky)dt(xKxKy(t) D

t

0
IP +−+= ∫

in which y is the output of the controller at time t, and x is the input at time t.

- The Proportional part of the equation (xKP) makes sure the system reacts as

soon as there is a change in the input, and the change in new output tries to

follow the input. Increasing the gain Kp results in the ability of the system to

correctly track the current value of the input, and responds to it fast.

However, high Kp may cause the output oscillated.

- The Integral part of the equation (∫ −
t

0
I y)dt(xK) is referred to as the integral

of the error of the feedback term, since it measures the net difference between

the output and the input thus far. Applied with the proportional term, it

18

provides the stability under changes in the load on the process or some

environmental condition by remembering the error in the past, keeping the

compensated system stable. That is if the steady-state error to a given input is

constant, the integral term reduces it to zero.

- The Derivative part of the equation (
dt
dx

KD) makes sure that the system

responds to sudden disturbance in the input efficiently. Since derivative term

considers the rate of change of the error signal, it anticipates the future value

and hence acts to reduce the error that would other wise arise from the

disturbance.

Simpler control schemes often use just PI or PD controllers for efficient

control. However, the PID controller is the one used where efficiency, stability

and performance are all required. In fact, because the PID controller can cope

perfectly with 90% of all control problems, it provides a strong deterrent to the

adoption of new control system design techniques [13]. The next chapter will

show how an adaptation of this kind of function can be used for efficient voltage

scaling in today’s microprocessors.

2.5 Related Works

At the beginning, the research in DVS mostly involved in interval

schedulers [5] using the global system state to set the speed accordingly without

19

knowledge of the running user programs, i.e. the algorithms proposed by Govil,

Weiser, Pering, and Chandrasena [7, 19-21]. First, the PAST algorithm was

introduced by Weiser [19] et al. The algorithm calculated the utilization over the

previous interval and assigned the new speed value accordingly. Expectedly, the

algorithm may produce oscillated speed setting because it makes the decision

upon the utilization that is changed by the previous speed itself.

Govil et al studied a wide range of heuristics from weighted averages of

past behavior to pattern matching of processor utilization [7]. They concluded

that the simple algorithms based on rational smoothing rather than “smart”

predicting may be most effective. From their experiments, no patterns of the

processor usage were found.

Pering et al [20] investigated a number of algorithms, i.e. PAST, COPT,

and AVGN, over PDA benchmarks. The result showed that the performance of

the algorithms depends on parameter setting and it differs over different

benchmarks.

Grunwald’s paper [22] evaluated a number of the algorithms proposed by

Govil, Weiser, and Pering [7, 19, 20] by implementing them on a real system, Itsy,

an experimental pocket computer that ran a version of LINUX. They concluded

that no heuristics provides satisfied results by approaching the ideal speed for

specific set of benchmarks they used. Specifically, they indicated that the best of

20

class, Pering’s AVGN algorithm, could not settle on the clock speed that

maximizes CPU utilization.

Chandrasena and Liebelt [21] proposed AQRS algorithm, which is only

the average of the sampling workload, and then assign the speed or rate

according to the average and the most recent workloads. They also suggested that

the voltage dithering technique, which handles the optimal rate that does not

equal to quantized rates by assigning to two different rates—one after another,

significantly improves energy savings over the algorithms that simply set the

voltage to the greater one.

More recent works concentrated on thread-based voltage schedulers that

considered the individual thread or task parameters, such as deadline, execution

time, and release time, in order to maintain timing constraints and minimize

energy consumption at the same time. However, most of them still employ

weighted average utilization over the past as the key idea , e.g. the algorithms

proposed by Yao, Pering, Son, and Leung [23-26]. Another approach was to

stretch the workload over available slack time to the next task’s release time, e.g.

the algorithms proposed by Shin, Leung, Pillai, Kim, Aydin, Chakrabarty, and

Swaminathan [27-33].

Yao et al proposed a model of job scheduling aimed at energy

minimization in EDF manner [23]. The scheduling algorithms, one for off-line and

21

one for on-line decision (AVR), are based on the knowledge of the exact execution

cycles of every task in any scheduling interval.

Pering et al proposed another thread-based algorithm that set the

processor speed based on empirically estimated workload and deadline of each

thread [24]. The voltage scheduler set the speed according to the equation,

















−
=

∑
≤

≤∀ ecurrenttimdeadline

work

MAXspeed
i

ij
j

n)(i

, while the work of task j is calculated by an exponential moving average at

completion of an application frame. The scheduler is called every time a thread is

added, removed, or reached deadline, in addition to periodically evaluation. The

algorithm assumed to work with EDF scheduling.

They also claimed that the overhead of the scheduler is quite small such

that it requires a negligible amount of throughput and energy consumption.

Shin and Choi [27] investigated using processor’s power-down mode in

conjunction with DVS, the processor reduced its voltage level when the operating

systems detects there is only one active task in the run queue. The speed is set in

such a way that the job’s worst case execution time spreads until the release time

of the first job located in the delay queue. On the other hand, the processor enters

22

the power-down mode if the operating system detects no active jobs, and the run

queue is empty. The processor stays in the power-down mode until the next

release time of the first job located in the delay queue.

Three heuristics were brought up by Pillai and Shin [29] working with RM

or EDF task scheduling. The first one, static scheduling, selects only one lowest

possible operating frequency to let all tasks meet all the deadlines. The second

one, cycle-conserving scheduling, determines the lowest frequency for each

schedule task satisfying the acceptance test. In the acceptance test, the bound of

the total utilization is decreased to the optimum speed of the system. That is

max

1
n21 f

f
U...UU ≤+++

Then, the system updates the actual utilization, according to the full speed, that

the previous task used in order to calculate the next task speed. The last heuristic,

look-ahead scheduling, tries to spread all tasks backwards and considers the

future tasks simultaneously. The simulation results showed that the look-ahead

scheduling is the best among three heuristics in almost all cases.

Swaminathan [32, 33] introduced a task scheduling that decides the

optimal voltage at the same time. The scheduler, LEDF, selects a task with EDF

policy then tries to reduce the frequency. If all tasks still meet their deadlines with

that scheduled task running with low frequency, the system reduces the

23

frequency for the scheduled task. However, this algorithm requires polynomial

transformation to the period of the task set to the hyperperiod via LCM theorem.

While some works focused on DVS in general real-time systems, others

focused on some specific applications, such as MPEG decoder [25], turbo code

decoder [29, 34], and sensor network [35]. Son et al [25] focused on a heuristic for

an MPEG application. The proposed heuristic employs the weighted average to

find the decode time per byte in each interval. It is very similar to PID controller

technique without proportional term. Therefore, a PID-based algorithm could

give good heuristic in MPEG application.

Chung [36] focused on DVS over MPEG decoding application. The

technique constructs necessary information, i.e. exact execution time while the

VDO is encoding at the server site. Then, the MPEG file is sent with the

information in order to be decoded at the client site.

Leung et al [26, 28] concentrated on the turbo code decoder. The

algorithms aimed at maximizing the delay of each iteration. Their as-slow-as-

possible (ASAP) algorithm decides the delay of each iteration by assuming that

the later iterations need only minimal time (or maximum speed). They improved

the ASAP algorithm by using the SNR. Another proposed algorithm is called

History-Based Assignment Algorithm. It only averages the number of iterations

24

over n previous frames to predict the next one. Then, the scheduler calculates the

optimal delay for the next frame from the iteration number.

Gilbert et al also focused on a heuristic for turbo-decoder in [37], which is

based on the predicted number of current iteration on the average of the number

of the iterations over the past 3 frames. Then, the processor speed is set

accordingly.

Yuan and Qu focused on the application for the sensor network [35]. The

proposed method embedded necessary information in the header of all messages

produced. There are three voltage levels required for three functions, which are

decryption, message processing, and encryption. The embedded information tells

the system how much iteration it needs for each function. As a result, the system

can select the appropriate voltage at the appropriate time.

Another interesting approach is to apply some probability models to the

timing parameters of the tasks as the algorithms proposed by Sinha [38] and

Simunic [39]. Sinha’s algorithm [38] is a reduced-complexity form of the analysis

of the relation between the optimum speed and utilization via probability,

assuming known execution cycles and deadline of the task a stated. However, in

their probability model, which is a binomial distribution, they assumed each time

unit can be independently selected. While, in the real system, the previous time

unit should be selected before the later unit. They also proposed a theory stating,

25

aside from the deadline, minimum energy consumption occurs when all tasks

have the same averaged processing speed.

Simunic [39] et al extended the Dynamic power management (DPM) with

their DVS algorithm. The DVS algorithm analyzed the stochastic model, assuming

exponential distribution for both execution time and task arrival time, and

queuing theory for prediction of execution time for MP3 and MPEG. The

disadvantage of the algorithm was it required off-line analysis to set the Pmax

value, the maximum probability if the system used the maximum frequency.

They compared its performance with Pering’s algorithm [24].

Kim et al compared a diversity of algorithms in a preemptive, periodic,

hard real-time system scheduled with EDF or RM [8]. They classified algorithms

into 3 classes: interDVS which the frequency changes only between tasks,

intraDVS which the frequency changes in a task, and hybridDVS which is the

mixing between those two. Their simulation results, over SimDVS environment,

showed that the heuristics laEDF in [29], lpSHE in [30], and DRA and AGR in [31]

can give very good performance in energy consumption, in other word, very close

to the optimal lower bound. lpSHE, DRA, and AGR analyzed slack times of other

tasks and then effectively use them. The most important point was to identify all

slack times in the system, and spread the current task over.

Qu [40] classified the dynamic voltage scaling systems into 4 classes:

26

1) Ideal which can vary the voltage arbitrary and can change

immediately,

2) Feasible which can vary the voltage arbitrary between vmin and vmax

while the system still continue executing,

3) Practical which stops executing during voltage changing, and

4) Multiple which has only a number of discrete supply voltages

available and the system can transit from one level to another

instantaneously.

The paper also gave the upper bound for energy saving for each class of the DVS

systems.

Additionally, DVS is also applied to multiprocessor systems. Bambha et al

[41] discussed a DVS scheduler in multiprocessor environment in static (off-line)

approach. Their algorithm used the period graph method to find the solution

locally, and the simulated annealing method to find the global solution between

PEs.

Luo and Jha proposed a DVS heuristic in distributed real-time systems

that can manage all periodic, aperiodic and sporadic tasks [42]. The heuristic

assigns a static task schedule and voltage schedule to the periodic tasks, and

reserves an appropriate amount of time for sporadic tasks. For the aperiodic

tasks, it assumes Poisson distribution for the arrival time. Then, predict the next

27

interarrival time from the average arrival time in the past. Next, it estimates the

available time to the task execution,

Available_time = min(predicted_next_arrival,

k-> latest_finish)-currenttime

And, the worst-case remaining execution time,

Worst_remaining = worst_exec_time-executed

Finally, the ratio of available_time to worst_remaining is referred to as the scaling

speed.

Jha also gave a survey in current DVS and DPM in [43].

Both Lee [44] and Azevedo [45] focused on intra-task off-line techniques.

Lee et al introduced an algorithm applying HFSM-SDF theory to determine the

exact remaining workload of the task [44]. This approach constructs a graph to

identify the exact execution path and then assign the speed accordingly. On the

other hand, Azevedo et al introduced a novel intra-task DVS technique under

compiler control that used program checkpoints [45].

Liu and Mok [52] defined two functions, the available cycle function

(ACF) and the required cycle function (RCF) for the system workload. Their

algorithm was generated by defining the DVS problem as a nonlinear

optimization problem.

28

AbouGhazaleh et al [53] introduced an approach using the compiler and

operating system corroboration that used fine-grained information about the

execution times of a real-time application to reduce energy consumption. The

compiler generates the power management hints (PMHs), which is the specific

information for each source code’s path. The speed scaling at every power

management point (PMP) is based on the PMH information.

To our knowledge, only small number of works focused on the

uniprocessor real-time systems having periodic, sporadic, and aperiodic tasks, i.e.

the work introduced by Hong [46] and Flautner [47]. Flautner’s work [47]

categorized the tasks into periodic producers, periodic consumers, and interactive

episodes. For each episode, the operating system extracts the necessary

information from the system. Also, the proper deadline of the interactive episode

is determined by the perception threshold, which is set by human-computer

interaction literature. For periodic episodes, the scheduler stretches the episode’s

execution to the beginning of the next episode or to the beginning of the

associated consumer episode. The interesting point is, for each type of the

episodes, the scheduler sets the speed independently. As a result, the

performance factor, or the speed in our term, does not show the smoothness.

However, Flautner’s algorithm did not concentrate on the real-time behavior of

the applications. The later works of this research group concentrated on applying

29

this algorithm with other improvements in physical devices [34, 48] to reduce

more overall energy of the system.

Hong’s HPASTS algorithm [46] employed the acceptance test [15] to

guarantee the real-time constraints for the system that has both periodic and

sporadic tasks. For the speed setting, they only set the speed to the calculated

utilization from the acceptance test. In this thesis, we compare our proposed RT-

nqPID algorithm with the HPASTS algorithm.

30

CHAPTER 3

METHODOLOGY

A classical control-systems technique, namely PID controller, is applied to

find an appropriate value that represents the past, the present, and the changing

workload of the system. The adaptation of the controller, called RT-nqPID,

inherits the tracking and stable properties from the original controller. The

complexity of the algorithm is also independent of the number of operating

voltage levels. Additionally, by considering the real-time behavior of the

applications, the technique can also meet the real-time constraints.

The RT-nqPID algorithm is proposed in this thesis to solve the DVS

problem. The RT-nqPID is integrated into an RTOS, but, due to the property of an

interval scheduler, it is independent of the RTOS task scheduler. It is transparent

to user programs in the multiprogrammed real-time systems. It has little

computation compared to the user programs. As shown in chapter 5, it settles to

an optimum operating point fast and remains stable in case of periodic tasks.

The proposed RT-nqPID algorithm consists of two parts:

1. The nqPID function whose job is to predict the workload.

2. The user program utilization part for real-time constraints guarantee.

31

3.1 The nqPID Function

From the PID controller in chapter 2, we need to simplify and make

extensive changes to tailor it to the task of voltage scaling before we can

implement it as a software algorithm executing on a digital computer. We would

need to make the following changes:

- We would need to convert the equation from continuous-time to discrete-

time, replacing the integral with a summation.

- Similarly, we would replace the derivative with the difference between the

current value of x and the previous value of x. For simplicity, we employ the

difference between the values in only one interval to represent the linear

behavior of the system. The difference is considered as the first order

derivative.

- We would remove the term y from the right hand side and thereby remove

the feedback loop. Systems without feedback have simpler behavior than

systems with feedback. Because our goal was to perform a first order

exploration of control-systems theory to the task of dynamic voltage scaling,

we felt this was an appropriate step. Systems containing feedback loops are

much more complex than systems without feedback loops. However, they

often provide better performance.

32

- We cut the summation in the remaining integral term (now an average) from

an infinite series of terms to a finite series of terms. It now represents the

average value of x over the past m intervals.

- We define utilization (also called the system load) as the fraction of cycles that

are busy in a given interval, and workload as the product of utilization and

CPU speed as the following definition:

speednutilizatio

quencymaximumFre
quencycurrentFre

FrequencysAtCurrenttotalCycle
requencyAtCurrentFbusyCycles

FrequencysAtMaximumtotalCycle
requencyAtCurrentFbusyCycles

workload

FrequencymaximumCPU
FrequencycurrentCPU

speed

stotalCycle
busyCycles

idleCyclesbusyCycles
busyCycles

nutilizatio

×=

×

=

=

=

=
+

=

Applying these changes to the PID controller yields the following discrete-

time equation, where the y term are the predicted workloads and the x terms are

the measured workloads. The nqPID equation is,

33

)x(xK
m
x

KxKy 1nnD

n

1mn

i
InP1n −

+−
+ −×+×+×= ∑

This equation represents a function that uses the previous m values of the

workload to predict what the next value of the workload will be. This estimate of

the workload is used to set the processor’s speed and voltage level for the next

time quantum. Throughout this paper, we will refer to the modified version of the

PID controller for voltage scaling based on the above equation with “nqPID” with

stand for “not quite PID”. The pseudo-code for the simplified, discrete-time

algorithm is given in Figure 2.

Note, we removed both the direct feedback loop and an indirect feedback

loop from the original PID controller. The direct feedback loop is described as the

y term in the controller. On the other hand, the indirect feedback loop is the effect

caused by the relation between the paired speed and the utilization. Therefore,

unlike the PID controller, the “nqPID” algorithm is not expected to demonstrate

the oscillation behavior due to the bad choice of the coefficients.

The beauty of the nqPID is that it produces a good representative for the

past, the present, and the change of the system workload. Instead of using system

utilization to predict the future operating frequency, the workload-approach

nqPID also settles to an optimum operating point fast and preserves smoothness.

An algorithm that sets the speed according to only the system utilization directly

may fail to stabilize at an optimum speed because the system utilization will

34

change with the speed, which is set according to the utilization, itself. However,

as we will show in the next chapter, using only the nqPID method cannot prevent

missing deadlines, while the system utilization is equal to 100%. The state of the

system, where the utilization is equal to 100%, but the speed and the workload

are lower than maximum, is called a “saturated state”. As a result, even though

the speed is not set to the maximum speed, the saturated state causes missing

deadlines.

Figure 2. Psuedo-code for the nqPID algorithm.The code shows only the speed-setting portion of
the algorithm; as a result of the calculations, the CPU's speed is set to be directly proportional to the
estimated load. Not shown is the update of the load array, any error-checking, etc.

35

3.2 The User Program Utilization

To prevent the saturated state described above, the nqPID function

requires more “headroom”, the range of the speed that the function will settle, to

find the optimal speed. The more the headroom there is, the more the range

between the lowest selected speed and the highest selected speed. Since we

assume the energy consumed by changing speed step is varied by the number of

steps changed, we prefer narrow speed range, and, consequently, small

headroom that will not cause system saturation.

As shown in the next chapter, the nqPID function exhibits that the

headroom constant should make the heuristic selects the value speed to the

optimum value. Hong et al [46] suggested that the optimal speed of the system be

equal to the sum of the ratio between the task execution time and deadline, which

is the same concept as the utilization in the acceptance test. Therefore, the

proposed RT-nqPID heuristic consists of four terms,

∑∑
=

−
+−

+ ×+−×+×+×=
tasks#

0i i

i
U1nnD

n

1mn

i
InP1n D

c
K)x(xK

m
x

KxKy

where

KU is an appropriate constant,

36

Ci is the worse-case execution time of task i,

Di is the deadline of task i,

#tasks is the number of the running tasks,

and other variables are as described in the previous section.

The pseudo-code for the RT-nqPID algorithm is in Figure 3. It simply adds

the headroom constant to ensure that the algorithm will never lead the system to

the saturated state.

Figure 3. Psuedo-code for the RT-nqPID algorithm. The algorithm added the 'headroom' constant,
which is only a multiple of the total utilization of the system.

37

3.3 The Comparisons of PID, nqPID, and RT-nqPID Equations

Compared with the PID controller equation is Chapter 2, each term of the

nqPID and RT-nqPID algorithms can be interpreted as following:

- The Proportional part of the equation (the first term) predicts that the next

value of the load will be the same as that seen the last time like the PAST

algorithm [19]. It ensures that the system can react quickly to the most recent

workload. If the workload changes suddenly, the operating system can react

to it appropriately in the next interval.

- The Integral part of the equation (the second term) predicts that the next

workload will be the same as the average workload measured in the past few

intervals. By averaging and “smoothing the ripples” in the workload, it tries

to run the system at a constant optimal speed, thus reducing energy. This

term takes the previous short-interval into account within the algorithm.

- The Derivative part of the equation (the third term) predicts that if the

workload changes in the last interval, it is likely to change again at the same

rate. This is the real predictive part of the equation, because it anticipates the

changes that might occur in the workload and lets the operating system make

a better choice of the required speed setting. This term takes the rate of change

into account within the algorithm.

38

- The User Program Utilization part of the equation (the fourth term in RT-

nqPID equation) gives the algorithm some headroom to find the optimal

value for the speed setting. By setting the speed a little bit more than what the

system requires, the Utilization part gives the voltage scheduler less choices of

speed to set. The Utilization part limits the speed setting to a speed level

which is enough to complete all tasks within their deadlines. Additionally,

instead of trying to set the speed to only the next highest quantized value, the

schedule that tries to set the speed to two or more quantized values so it can

cause more energy saving as described in the work of Chandrasena [21]. The

technique is called voltage quantized dithering. By using the individual task

characteristics, this term takes the future into account within the algorithm.

By itself, each term is not efficient: the proportional part does not

adequately study past behaviors, and so it cannot optimize power requirements.

The integral part minimizes energy consumption at the cost of performance by

not reacting fast enough. The derivative part cannot predict the actual workload,

only changes in the workload, so it is unsuitable for steady-state operations.

Finally, the utilization part is efficient to find an optimal speed to a set of tasks,

but it does not consider other possible changes in workload, such as the OS

overhead. However, the consensus of all of these can provide a very good

39

estimate of what the next value of the workload is likely to be. We take all three

effects into account by taking a weighted sum of them.

40

CHAPTER 4

EXPERIMENT SETUP

4.1 Experimental Set-up

For the experiment, Motorola’s 32-bit M-CORE architecture will be used

as the model architecture [49]. This architecture is chosen because it was designed

for good embedded-system performance and very low power operation. For the

operating system, we use µC/OS II [50], a multitasking preemptive real time

operating system. It is chosen to represent sophisticated preemptive multitasking

RTOSs with footprints small enough for microcontroller systems to utilize. The

operating system is extended to support monitoring system utilization. We also

made modifications to the OS kernel that enable us to choose among the system

with no voltage scaling, an nqPID algorithm, an RT-nqPID algorithm, the AVGN

algorithm [20], and the HPASTS algorithm [46]. The AVGN algorithm is chosen to

represent an algorithm using only the past utilization of the system. On the other

hand, the HPASTS algorithm is represented the algorithm using the acceptance-

test utilization.

We used several benchmarks from the MediaBench suite [48]. To assess

the effects of an increasing workload, readings were taken with different numbers

of tasks running simultaneously, and with different periods.

41

4.2 The M-CORE architecture and simulator

The M-CORE microRISC architecture was developed to achieve the

requirement of the lowest milliwatts per MHz [51]. Its instruction set is designed

to be an efficient target for high-level language compilers in terms of code density

as well as execution cycle count. Variation of the integer data types (8, 16, and 32-

bits) are supported for application migration from existing 8 and 16 bit

microcontrollers. A standard set of arithmetic and logical instructions are

provided, as well as instruction support for bit operations, byte extraction, data

movement, and control flow modification. The processor provides hardware

support for certain operations which are not commonly available in low-cost

microcontrollers, including single-cycle logical shift, arithmetic shift, and rotate

operations, a single cycle find-first-one instruction, a hardware loop instruction,

and instructions to speed up memory copy and initialization operation. To

maximize real-time control loop performance, the processor also has hardware

support for multiplication and division.

Considering high code density, the M-CORE architecture adopts a

compact 16-bit fixed length instruction format, and a 32-bit Load/Store RISC

architecture. To minimize the power dissipation, the core is support for low-

power instructions, DOZE, WAIT, and STOP mode. The system disables all

42

unnecessary peripherals in DOZE mode, while all activities are disabled in STOP

mode. WAIT mode disables only the CPU, leaving peripheral functions active for

short-term idle conditions. The architecture is operated under 2.0 volt and up to

40 MHz. The first implementation is targeted for cellular applications.

To minimize power consumption in the clock system, the core also adopts

1) clock gating, 2) delay clock, and 3) clock tree optimization. The speed, area, and

power options are optimally selected to meet the timing constraints from a set of

solutions from a hill-climbing search. Thorough research was conducted to

determine every single process in datapath designs.

The simulator of the M-CORE architecture is used in our experiments. The

simulator is a part of SimBed [49], a high-level-language model of an embedded

hardware system that runs unmodified real-time operating systems. All devices,

interrupts, and interrupt handlers used by the operating systems and applications

are accurately simulated. The model has been verified as cycle-accurate to within

100 cycles per million compared to the actual hardware. The processor simulator

is modeled to measure energy consumption within a difference of 10-15%

different from the real measurements. The M-CORE simulator allows 36 voltage

scaling levels, corresponding to clock frequencies from 2 to 20MHz. To keep track

of the time with the real world, the simulator also provides an external timer. The

43

external timer is not changed its speed due to the voltage-frequency changes. So,

the operating system can maintain constant voltage-scaling interval.

Finally, we assume a practical microprocessor [40], which cannot process

data while its core voltage or operating frequency is changing. It takes a finite

amount of time, and a finite amount of energy, to effect this change. Changing

voltage levels and clock frequencies lower performance and has a cost in terms of

energy that must be made up by the energy it saves. The amount of clock

transitions taken in order to change from one voltage step to another linearly

relates to the difference between those voltage steps. And, the time taken for the

change is the ratio of the clock transitions to the current frequency. In the worst

case, the processor requires 250 microseconds to change from the lowest clock

frequency to the highest. The energy consumed during the transition is modeled

as if the processor is executing the most energy-intensive instructions.

4.3 µC/OS-II

µC/OS-II is a preemptive multitasking RTOS that is in the public domain

[50]. It is a highly portable, ROMable, scalable kernel, and has been ported to

more than 40 different processor architectures ranging from 8- to 64-bit CPUs.

Execution times of all kernel functions and services are deterministic,

nevertheless, it is written in ANSI C for maximum portability. Despite its small

size, it provides such services as mailboxes, queues, semaphores, time-related

44

functions, etc. It is chosen to represent sophisticated preemptive multitasking

RTOSs with footprints small enough for microcontroller systems.

The scheduler of the µC/OS-II has 2-level table-lookup mechanism. There

is a 8-bit first-level bit-vector that indicates which of these priority groups

contains a task that is ready-to run. First, the scheduler looks for a ready task

group from this bit-vector. One bit in this first-level bit-vector represents one task

group. Therefore, the RTOS supports for 8 task groups, and each task group can

have up to 8 tasks. If there are two or more group tasks ready, the scheduler will

select the highest priority group. Then, the scheduler looks up in the 256-entry

second-level table to determine which task in the selected group is ready. The

256-entry table is used in both determining the ready group and the ready task in

a group. The priority of a task is determined by putting together the task number

for the three least significant bits and task group number for the rest. Finally, the

resulted priority is passed to the system’s context switch module to be executed.

Despite maintaining large look-up 256-entry table, this implementation has many

advantages of executing in a deterministic amount of time since it does not

directly depend on the number of tasks.

4.4 The MediaBench Suite

The MediaBench Suite [48] is a benchmark suite that has been designed to

fill the gap between the compiler community for instruction level parallelism and

45

the embedded applications developers. The goals of the development are to

accurately represent the workload of multimedia and communications

applications, which are widely used in embedded systems. This kind of

applications is well suited with the need of instruction level parallelism

techniques.

MediaBench is composed of complete applications coded in high-level

language. All applications are publicly available, making the suite available to a

wider user community. The applications are ranging from image processing,

communications and DSP applications. The application benchmarks used in our

experiments include:

- ADPCM : Adaptive differential pulse code modulation is one of the simplest

and oldest forms of audio coding. It is a speech compression and

decompression algorithm. It is commonly implemented by sampling 16-bit

linear PCM and converting them to 4-bit samples. The output is a

compression rate of 4:1.

- GSM: GSM 06.10 compresses frames of 160 13-bit samples (8 kHz sampling

rate) into 260 bits. However, for compatibility with typical UNIX applications,

the MediaBench implementation compresses frames of 160 16-bit linear

samples into 33-byte frames (1650 Bytes/s). The quality of the algorithm is

good enough for reliable speaker recognition; even music often survives

46

transcoding in recognizable form (given the bandwidth limitations of 8 kHz

sampling rate).

For our experiments, we choose the period of 80 milliseconds and 160

milliseconds for ADPCM Encode, and 72 milliseconds and 120 milliseconds for

ADPCM Decode. For GSM applications, we choose 80 and 160 milliseconds for

the periods of the decode, and 100 and 200 milliseconds for the periods of the

encode. The shorter periods are chosen to exhibit the near-overload or completely

overload conditions. The longer periods are chosen to exhibit the general

behavior of the system under a variety of numbers of tasks.

 4.5 The AVGN Algorithm

The AVGN algorithm is a subset and simplification of Govil’s

AGED_AVERAGES algorithm and reminiscent of Weiser’s PAST algorithm.

Under AVGN, an exponential moving average with decay N of the previous

intervals is used. That is, at each interval, it computes a “weighted utilization” at

time t:

1N
1]U[t1]-W[tN

W[t]
+

−+×
=

which is a function of the utilization of the previous interval U[t]. The

AGED_AVERAGES algorithm allows any geometrically decaying factor, not just

N/N+1.

47

Grunwald indicated that AVGN cannot settle on a clock speed that

maximizes CPU utilization [22]. The set of parameters chosen could result in an

optimal performance for a single application, but these parameters may not work

for other applications. However, they found that the AVGN policy resulted in

both the most responsive system behavior and the most significant energy

reduction of all the policies they examined.

Care was taken to implement the AVGN algorithms faithfully. All

parameters other than the algorithms themselves were kept the same to ensure a

fair algorithm-to-algorithm comparison. The AVGN algorithm was set to change

speed whenever the system utilization drifted out of its optimum range of 50-

70%, and a value of 3 will be used throughout the experiments.

4.6 The HPASTS algorithm

The HPASTS algorithm was introduced by Hong et al [46]. The algorithm

considers the task characteristics to determine the appropriate setting speed. It

adopts the concept of total utilization as in the acceptance test using widely in

RTOS. The heuristic accounts for both periodic tasks and sporadic tasks in the

system. Since we consider only periodic tasks in our experiment, the algorithm

calculates the speed as equal to the sum of the utilization (the ratio of a task’s

execution to its period) of all periodic tasks in the system.

48

We will show in the next chapter that even though the heuristic gives

near-perfect results in the case containing small number of tasks. However, when

the number of tasks is large, the heuristic set the processor speed too low, then

causes the lowest-priority task to miss its deadline.

4.7 The Experiment-Setup Details for nqPID and RT-nqPID

The nqPID coefficients were chosen to reflect a middle-of-the road

configuration that would not be fine-tuned to any particular benchmark. We

select the value of each parameter as m=10, Kp=0.4, Ki=0.4, and Kd=0.2. For the

RT-nqPID algorithm, we select the same parameter values as in the nqPID with

Ku=0.36.

For the control rate, the voltage scheduler computes the desired speed

every 5 milliseconds. Even though a small voltage interval means fast response, a

small interval also means more frequent computation and higher processor-time

demand. Since the periods of the tasks are in order of a hundred milliseconds, the

voltage scheduling rate of every 5 milliseconds, which is around a tenth to a

twentieth of the periods, should be reasonable as described by Nyquist sampling

theorem. Additionally, the voltage interval should be large enough compared

with the voltage-scaling transition time. For the M-CORE simulator, the worst-

case voltage-scaling transition time is 250 microseconds, which is accounted for

only 5% of the 5-millisecond interval. Since the 5-millisecond interval is large

49

enough for the voltage transition overhead and it is small enough for the task

periods, 5 milliseconds should be sufficient for our voltage-scaling interval to be

used within the system.

50

CHAPTER 5

RESULTS

5.1 Energy and Performance

Our experiments use benchmark programs from the MediaBench suite of

embedded-systems applications [48] that we have ported to the µC/OS-II

embedded operating system. To vary the load on the system, two different

periods were used for each benchmark, and up to 8 tasks were run

simultaneously. Each task refers to a producer-consumer pair of processes. To

measure the efficiency of the voltage-scaling heuristics, we measure total

processor energy consumed by the system over a set number of user-level

instructions and the variability in a task’s execution time in terms of jitters and

miss deadline rates. Energy is reported as a percentage of the energy of the non-

DVS-enabled system. A jitter is defined as the variation in the period of all tasks

due to the variation of the execution time. A jitter is reported as a percentage of

the task’s desired period. Finally, the task miss-deadline rate is reported as a

percentage of the expected number of tasks completed in the simulation interval.

Note, many real-time control systems require accurate timely behaviors upon a

task completion. An acceptable jitter and a miss-deadline rate should be around a

51

percent or two [18], while more than a few percent of those can make the system

unusable.

Figure 4. Energy Comsumption for GSM_DECODE. The upper figure shows the normalized
energy consumption for 80ms-period tasks and the lower figure shows the normalized energy
consumption for 160ms-period tasks. The y-axis is the normalized energy consumption with the
non-DVS-enabled system. The x-axis is the number of tasks in running simultaneously.

52

Figure 5. Energy Comsumption for GSM_ENCODE. The upper figure shows the normalized
energy consumption for 100ms-period tasks and the lower figure shows the normalized energy
consumption for 200ms-period tasks. The y-axis is the normalized energy consumption with the
non-DVS-enabled system. The x-axis is the number of tasks in running simultaneously.

53

Figure 6. Energy Comsumption for ADPCM_DECODE. The upper figure shows the normalized
energy consumption for 72ms-period tasks and the lower figure shows the normalized energy
consumption for 120ms-period tasks. The y-axis is the normalized energy consumption with the
non-DVS-enabled system. The x-axis is the number of tasks in running simultaneously.

54

Figure 7. Energy Comsumption for ADPCM_ENCODE. The upper figure shows the normalized
energy consumption for 80ms-period tasks and the lower figure shows the normalized energy
consumption for 160ms-period tasks. The y-axis is the normalized energy consumption with the
non-DVS-enabled system. The x-axis is the number of tasks in running simultaneously.

55

Figure 4, Figure 5, Figure 6, and Figure 7 compare the energy

consumption of the RT-nqPID (labeled with profiling), AVGN, and HPASTS

algorithms. The x-axis is the number of tasks running simultaneously, and the y-

axis is the energy consumption normalized to non-DVS-enabled system. The

PERFECT line is the energy consumption of the speed settings that is set to a

constant speed that has an acceptable jitter and overall miss-deadline rate (below

5% for both of them). Since speed dithering may produce better results than the

PERFECT line, we conducted another simulations using a constant speed of one

step less than the PERFECT speed. Therefore, any algorithm consuming the

energy below the one-step-lower-than-PERFECT line would have an

unacceptable timely behavior, i.e. unacceptable jitters and/or miss-deadline rate.

That unacceptable area is labeled as the ‘drop task(s)’ area. Additionally, the

optimal algorithm should have its energy consumption somewhere below the

PERFECT line but above the ‘drop task(s)’ area.

Figure 4 shows the energy consumption of all algorithms for the GSM

decode applications, and Figure 5 shows the energy consumption for the GSM

encode applications. The energy consumption graphs for the ADPCM decoder

applications are shown in Figure 6, and the graphs for the ADPCM encoders are

shown in Figure 7. In each of the figures, the upper graph represents different

task periods than the lower graph. For example, in Figure 4, the upper graph

56

represents task periods of 80 milliseconds, and the lower graph represents task

periods of 160 milliseconds. Each graph shows results for up to 8 simultaneous

executing tasks . The area labeled ‘overloaded’ represents system-overloaded

workload configuration.

The RT-nqPID algorithm reveals impressive behaviors across all

benchmarks and load configurations: the energy consumption lines of the RT-

nqPID algorithm are lying above the PERFECT line with only 4.68% gap on

average. It gives the near-perfect results in case of small workloads. Compared

with AVGN, the systems with RT-nqPID algorithm consume only 46.3% of the

energy that is consumed by those with AVGN on average. On a light workload,

the RT-nqPID consumes as low as 10% of the energy consumed by AVGN.

Additionally, the algorithm preserves real-time behaviors of the applications by

neither allowing any task to miss the deadline nor allow their jitters to go over

3%. This behavior is shown in the graphs since the energy consumption of the RT-

nqPID never drops into the ‘drop task(s)’ area.

On the other hand, the HPASTS algorithm also produces near-perfect

results in the case of a light workload. Nevertheless, as the number of tasks

grows, it causes the system to drop tasks. Table 1 shows the percentage of missed

deadline jobs containing low priority tasks, and table 2 shows the percentage of

jitters across all benchmarks. The shaded areas represent the percentages that

57

shows unacceptable timely behaviors since the HPASTS algorithm does not take

the operating systems overhead into account. While increasing the number of

tasks causes the operating system overhead to grow, the algorithm still selects the

same constant speed. As a result, the algorithm cannot preserve real-time task

behaviors.

GSM decode GSM encode ADPCM decode ADPCM encode#task

80ms 160ms 100ms 200ms 72ms 120ms 80ms 160ms

1 0.6 1 0.4 0.9 0.6 0.7 0.4 0.8

2 0.7 2 4.1 2.5 0.5 1 0.02 1.6

3 0.6 1.2 11.7 14.6 1 1.4 1 0.4

4 3 1.2 O/V 16 0.9 32.7 0.8 1.2

5 32.4 25.3 N/A N/A 42.9 56.9 0.6 1.8

6 35.2 33.3 N/A N/A 51 84.2 0.5 0.8

7 39 43.3 N/A N/A 53.7 68 O/V 2.4

8 66.9 51.7 N/A N/A 57.2 94.6 O/V 2.3

Table 1. The Percentage of Miss Deadlines for HPASTS Algorithm. The value in the table is the
percentage of the lowest-priority task missing its deadline. O/V means an overloaded workload
configuration. Unacceptable values, exceeding 5%, are shaded. A black cell represents a
configuration with no experiment conducted.

58

#task GSM decode GSM encode ADPCM decode ADPCM encode

80ms 160ms 100ms 200ms 72ms 120ms 80ms 160ms

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 0.00 0.00 1.57 0.00 0.00 0.00 0.00 0.01

3 0.00 0.01 3.50 4.07 0.01 0.00 0.01 0.01

4 0.43 0.00 O/V 2.98 0.00 8.06 0.00 0.00

5 6.46 4.60 N/A N/A 3.81 11.64 0.00 0.00

6 6.02 5.51 N/A N/A 4.67 13.87 0.07 0.00

7 5.50 5.72 N/A N/A 5.18 10.14 O/V 3.54

8 8.77 6.56 N/A N/A 5.84 7.40 O/V 0.00

Table 2. The Percentage of Jitters for HPASTS Algorithm. The value in the table is the percentage
of the jitters compared with the period of the tasks. O/V means overloaded workload configuration.
Unacceptable values, exceeding 5%, are shaded. A black cell represents a configuration with no
experiment conducted.

In addition to the original RT-nqPID algorithm, we conducted more

experiments to find the worst-case execution time for each task. Instead of using

preset worst-case execution time from profiling information, we ran the

benchmark applications with maximum speed for a number of task periods to

find the worst-case execution time. This interval is called the learning phase.

Then, the RT-nqPID uses that execution time to determine the speed in the

algorithm as usual. We set the learning phase to 5 and 40 task periods. The results

are shown in Figure 4, Figure 5, Figure 6, and Figure 7 with the line labeled with

RT-nqPID 5P and 40P for the RT-nqPID algorithm with 5 task periods and 40 task

59

periods for the learning phase, respectively. The modified algorithms still give

effective results: the energy consumption graphs of both cases are very close to

the original RT-nqPID across all benchmarks. We can conclude that the learning

phase can take only a little amount of time to make the algorithm as efficient as

the original algorithm. Therefore, the RT-nqPID algorithm is a practical and an

effective solution to the DVS problem in real-time embedded system.

5.2 The Comparison of nqPID and RT-nqPID algorithms

The PID controller has been widely used to solve problems in control

systems for decades. The controller has an ability to track the input value by

using the error between the measured output and the reference value. It is

acceptable as an efficient method to solve most problems in any control system.

Even though only the nqPID function, using only the adaptation of the

PID controller, can correctly track the system utilization, but it is not enough for

real-time applications. The nqPID function exhibits unacceptable real-time

behaviors by dropping tasks when the workload is increasing. As a result, we

need more than just the nqPID function, namely the RT-nqPID algorithm.

This section shows how the nqPID function behaves when the number of

tasks increases. Then, we display the behaviors when the headroom constant is

increased. The results show that, even increasing the headroom constant, the

60

nqPID cannot preserve the real-time behaviors. Finally, we show the proposed

RT-nqPID behavior and how it maintains the real-time behavior.

First, we implement the adaptation of the PID control algorithm, the

nqPID algorithm, as described in chapter 3 and chapter 4. We also added the

algorithm’s speed settings with 2 different constants to generate headroom. First,

we add a constant of 10% of the maximum speed (about 2 MHz) to the calculated

results. Figure 8 shows the speed settings of the nqPID algorithm with 10%

headroom constant. In this case, the figure shows the speed setting of 1 to 8 GSM

decode tasks running simultaneously with 160-millisecond task period. None of

the experimental load configurations are overloaded. The x-axis is the time in

milliseconds, and the y-axis is the processor speed in MHz. The speed setting is

oscillating between 4 MHz and 8.5 MHz in every case. However, in the case of 7

and 8 tasks running simultaneously, the system demonstrates the saturated state

as described in chapter 3. The speeds settle at 8.5 MHz with 6.95% jitters and 52%

miss deadline rate of the lowest-priority task in the 7-task case, and 8.61% jitters

and the system totally discards the lowest-priority task in the 8-task case.

61

Figure 8. Speed setting for nqPID algorithm for GSM DECODE 160ms-period. The x-axis is the
time in milliseconds, and the y-axis is the processor speed in MHz. The speed is varied in the same
range in all cases. In case of 7 and 8 tasks running simultaneously, even though the speed is not the
highest, the saturated state occurs.

62

Figure 9. Speed setting for nqPID algorithm with 20% headroom for GSM DECODE 160ms-
period. The x-axis is the time in milliseconds, and the y-axis is the processor speed in MHz. The
speed is varied in the same range in all cases. All miss-deadline rates are below 5 per cent.

63

Next, we test with an added headroom constant of 20% to the calculated

results. Figure 9 shows the speed setting for the later headroom constant. In the

case of 20% headroom, the speed setting is oscillating between 6MHz and 14MHz,

wider range, without any occurrences of saturated state in this particular

benchmark. However, the energy consumption in the 20% headroom case is

much more than the 10% case in all benchmarks as shown in Figure 4, Figure 5,

Figure 6, and Figure 7. In the case of short task period in all benchmark

applications, as we can see here that the energy graphs lie in the drop-tasks area,

even adding 20% headroom cannot guarantee real-time constraints. As a result,

increasing the headroom constant only postpone the unacceptable real-time

behavior to some configuration containin greater number of tasks.

The disadvantage of the nqPID algorithm is it cannot detect system-

overloaded condition. . The algorithm sets the speed oscillating between smaller

ranges, but it will show unacceptable real-time behavior even when the

headroom constant is increased. The reason is the maximum speed allowed in the

range does not scale with the system utilization. The allowed maximum speed is

always 8.5 MHz in the 10% headroom case, and always 14 MHz in the 20%

headroom case. Therefore, we need a mechanism to increase the allowed

maximum speed when the number of tasks grows.

64

As a result, we set the headroom constant related to the total utilization of

the system as described in chapter 3. The experiment results of the new algorithm,

RT-nqPID, in the case of running 1 to 8 GSM decode tasks simultaneously with

160-millisecond task period are shown in Figure 10. Obviously, with the constant

headroom adjusted by the application parameters, the speed settings are

smoother than those in the case of 10% and 20% headroom are. The maximum

speed allowed is scaled with the number of tasks: while the number of tasks is

increasing, the maximum speed also increases. The energy consumption is above

the perfect case with only 5% different on average (see Figure 4).

Therefore, the RT-nqPID algorithm, which is the adaptation of the nqPID,

is able to maintain real-time behaviors of all benchmark applications. The

algorithm inherits the advantageous properties from the nqPID as it preserves

smoothness, reacts to changes quickly, and learns from the past measured

variables. Additionally, since it takes the future information into consideration via

system utilization computations, it can set the system speed to meet the real-time

constraints.

65

Figure 10. Speed setting for RT-nqPID algorithm for GSM DECODE 160ms-period. The x-axis is
the time in milliseconds, and the y-axis is the processor speed in MHz. The speed setting range is
varied in each case. All miss-deadline rates are below 5 per cent.

66

5.3 The Run-Time Trace

To compare the behaviors of the three algorithms, RT-nqPID, AVGN, and

HPASTS, we took snapshots of the system during execution. Figure 11, Figure 12,

and Figure 13 show how each algorithm responds to system load over the interval

of one second. The graphs show 1 to 8 ADPCM decode tasks running

simultaneously with a 72 -milliseconds task period. As described in the previous

section, the x-axis is the time in milliseconds, and the y-axis is the speed in MHz.

Figure 11 is the speed setting behavior of the RT-nqPID algorithm. Figure 12 and

Figure 13 show the speed setting behaviors of AVGN and HPASTS algorithms,

respectively. Since the voltage level is scaled proportionally with the processor

speed, the speed setting graphs also indicate the voltage level at which the

processor is running.

We derived these conclusions by inspecting the speed setting graphs:

- The AVGN algorithm cannot converge to an optimal speed and continues

oscillating between the lowest speed and the highest speed. This behavior of

the algorithm is expected, and it was analyzed by Grunwald [22].

- The HPASTS algorithm sets the speed to a constant, thus the speed setting is

smooth for the entire interval. However, the algorithm reveals unacceptable

real-time behaviors as shown in table 1 and in table 2.

67

- The RT-nqPID algorithm tries to find the optimal speed in a range. It

demonstrates oscillation between a narrow range, and the oscillating

frequency is much smaller than the frequency in AVGN. The proposed

algorithm settles down fast as soon as the workload stabilizes as it correctly

tracks the system’s workload. The rate of change in the derivative term helps

the algorithm keep up with the change of the workload in both positive and

negative directions.

- In the case of running 8 tasks simultaneously, the workload is nearly

overloaded. The AVGN algorithm sets the speed to the maximum, while the

RT-nqPID still keep s trying to reduce the speed. As a result, the RT-nqPID

can reduce more energy consumption.

68

Figure 11. Speed setting for RT-nqPID algorithm for ADPCM DECODE 72ms-period. Even
though the speed setting is oscillating, the range is much smaller than the AVGN algorithm, and the
frequency of oscillating is much less. Additionally, the miss deadline rate is always below 5% in
every case.

69

Figure 12. Speed setting for AVGN algorithm for ADPCM DECODE 72ms-period. The speed is
oscillating between the minimum speed and the maximum speed. It never settles in an optimum
speed as analyzed by Grunwald.

70

Figure 13. Speed setting for HPASTS algorithm for ADPCM DECODE 72ms-period. The speed
settles at an optimum speed. However, the lowest-priority task misses its deadline when the
number of task are from 5 to 8 (42.9% , 51.0%, 53.7%, and 57.2%, respectively).

71

5.4 Sensitivity Analysis

The different choices of coefficients in the RT-nqPID algorithm can make

one to misinterpret the efficiency of the algorithms. For each coefficient in the

nqPID function, we conducted an experiment by running the system with the sets

of KP, KI, and KD in table 3 and table 4. Note, the sum of KP, KI and KD are equal to

100% of the predicted workload to represent a planar cut through the design

space and to simplify design exploration. The KD is not shown for simplification.

One can calculate KD by simply subtracting 100 with KP and KI. The duty of the

nqPID function is to track and predict the system workload; therefore, the output

from the function should be bounded by the maximum workload, which is 100%.

Given that the miss-deadline rates and the jitters must be lower than 5%,

we choose the value KU as small as possible so that the system only maintains the

real-time behaviors. The user program utilization part will add up with the

nqPID function to push the workload in the future back to the current interval.

Since the excessive workload procrastinated to the future causes the system to

miss deadlines, the user program utilization part makes sure that no excessive

workloads are carried to the next cycle. However, the coefficient KU has to be

minimal to prevent the system to be too conservative and to cause idle clock

cycles in the system.

72

The table 3(a)-(d) shows the value of the chosen KU for a particular

configuration, and the table 4(a)-(d) show the average energy consumption for

each configuration. The numbers shown are reported as the percentage of the

energy consumed by the non-DVS system. As the tables show, the energy

consumption is relatively in the same range, i.e. only 15% difference from the

maximum value and the minimum value. No configurations significantly

consume more energy than others do when running with the same application.

We conclude that, even though, the choice of coefficients can vary the

performance for a particular benchmark, we would like to present the algorithm

fairly with respect to others. Therefore, we choose to implement our algorithm

with the middle-of-the-road configuration: KP=40%, KI=40%, KD=20%, and

KU=36%.

73

Kp/Ki 0 20 40 60 80 100
0 100 100 76 76 38 17

20 100 90 70 40 23
40 65 55 36 20
60 63 45 25
80 35 23
100 22

(a) The value of Ku for GSM Decode

Kp/Ki 0 20 40 60 80 100
0 100 100 100 52 37 16

20 100 100 55 35 14
40 100 100 33 17
60 99 30 12
80 72 12
100 38

(b) The value of Ku for GSM Encode

Kp/Ki 0 20 40 60 80 100
0 100 100 76 63 37 22

20 80 80 60 33 20
40 65 47 33 15
60 55 32 17
80 32 14
100 14
(c) The value of Ku for ADPCM Decode

Kp/Ki 0 20 40 60 80 100
0 100 96 77 56 39 27

20 79 74 55 40 23
40 63 60 33 23
60 55 35 18
80 35 29
100 20
(d) The value of Ku for ADPCM Encode

Table 3. The value of Ku for each benchmark. Each benchmark requires different
Ku values for different sets of the coefficients. Note, that in the case of GSM
encode application, the algorithm shows unacceptable real-time behavior when Ku
is 100.

74

Kp/Ki 0 20 40 60 80 100
0 18.56 22.46 21.22 27.21 20.96 21.11

20 25.86 26.16 26.12 22.32 23.06
40 21.63 22.04 21.54 23.16
60 28.96 26.47 26.79
80 28.29 28.17
100 33.00

(a) Normailized Average Energy Consumption for GSM Decode

Kp/Ki 0 20 40 60 80 100
0 29.03 32.66 39.28 28.68 29.80 30.73

20 36.75 39.88 31.01 29.31 27.23
40 42.54 47.03 30.80 32.24
60 48.21 30.66 32.03
80 47.43 34.08
100 45.82

(b) Normailized Average Energy Consumption for GSM Encode

Kp/Ki 0 20 40 60 80 100
0 23.01 27.98 26.15 27.73 24.47 27.48

20 23.39 28.12 27.59 23.89 26.11
40 26.51 22.25 24.23 24.71
60 32.24 25.29 29.20
80 32.76 28.58
100 36.74
(c) Normailized Average Energy Consumption for ADPCM Decode

Kp/Ki 0 20 40 60 80 100
0 31.54 34.08 33.93 33.15 33.62 37.96

20 31.25 33.54 33.03 34.80 36.06
40 33.59 36.29 32.53 36.87
60 39.17 35.66 36.89
80 41.20 42.94
100 45.06
(d) Normailized Average Energy Consumption for ADPCM Encode

Table 4.The percentage of Normalized Average Energy Consumption for each
benchmark. The energy is normalized to the energy consumed by the no-DVS system.
The difference between the maximum value and the minimum value is 15%.

75

CHAPTER 6

CONCLUSION

6.1 Summary

Minimizing power consumption is a growing concern since embedded

processors are widely used in portable and inaccessible systems, operated by

battery. Known fact, the core processor consumes a large portion of energy in

such systems. Dynamic voltage scaling (DVS) is accepted as the key technique to

reduce energy dissipation by lowering the supply voltage and operating

frequency in response to the concept of performance on demand. Lowering the

operating frequency in conjunction with the supply voltage can reduce a

significant amount of energy because the quadratic relations between energy and

voltage supply are so intertwined.

This thesis proposes a new approach to Dynamic Voltage Scaling

heuristics, the nqPID and its real-time extension RT-nqPID, on an embedded

microcontroller. The algorithms are adaptations of the classical control method,

PID controller. The RT-nqPID can be used as a mechanism to find a good

representative among the present, the past, and the changing workload of the

system. Also, it settles to an optimum operating point fast and preserves

smoothness. In addition to producing a good representative value, the RT-nqPID

also preserves the real-time constraints.

76

The controller is implemented in an execution-driven environment: a

simulation model of Motorola’s M-CORE microcontroller that is realistic enough

to run the same unmodified operating system and application binaries that run

on hardware platforms. The simulation model is instrumented to measure

performance as well as energy consumption. The controller is integrated into the

embedded operating system that executes a multitasking workload. As a

comparison, we also implement the AVGN and the HPASTS heuristics.

The experiment results show that the RT-nqPID algorithm can

significantly reduce the energy consumption. The proposed algorithm can reduce

the energy consumption to only less than 5% difference on average from the

perfect case. In some cases, the RT-nqPID can produce results that are less than

1% difference. On the other hand, the best of the class, AVGN algorithm reduces

the energy consumption by up to 40% difference from the perfect case, while our

proposed algorithms use less than half of that energy. From the real-time

behavior perspective, the RT-nqPID algorithm neither causes any tasks jitters to

exceed 5% nor causes any tasks to miss their deadline over 3%. While the

acceptance-test-based HPASTS algorithm causes the lowest priority task to miss

its deadline up to 90% of the expected number of tasks completed in the

simulation interval. Therefore, the RT-nqPID scheme outperforms both AVGN

77

and HPASTS algorithms in both energy consumption and performance as

measured by miss deadlines in the periodic task’s execution time.

In conclusion, the RT-nqPID algorithm is practical and effective solution

to minimize energy consumption, specifically DVS, problems in embedded

systems. It is designed to be independent from any task scheduling algorithm. In

all cases, the RT-nqPID shows impressive energy reduction performance and real-

time constraints guarantee.

6.2 Future Works

For the future works, we will explore the possibility to extend the RT-

nqPID algorithm to support applications that have wide variation in execution

such as MPEG. Additionally, we will also apply it to support the systems with

aperiodic and sporadic tasks. More energy saving schemes, such as dynamic

power management (DPM), will be applied along with an algorithm to further

reduce energy consumption. Furthermore, we will explore using other ‘average’

techniques, such as finding an expected value in a probability model and

applying a certain signal-processing filter in order to find a good representative

value for the system at any interval.

78

REFERENCES

1. Schlett, M., Trends in Embedded-Microprocessor Design. IEEE Computer,

1998. 31(8): p. 44-48.

2. Most Important consideration in Selecting an Embedded OS, in Embedded

Systems Developer survey. 2003, Evans Data Corporation.

3. Y. Li, M. Potkonjak, and W. Wolf, Real-time Operating Systems for Embedded

Computing. Predeedings of the 1997 IEEE Internatinal conference on

Computer Design: VLSI in Computers and Processors, 1997: p. 388-392.

4. Barr, M., Moving Targets, in Embedded systems Programming. 2003.

5. T. Pering, T. Burd, and R. Brodersen, Dynamic voltage scaling and the design

of a low-power microprocessor system. Power Driven Microarchitecture

Workshop, attached to ISCA98, 1998.

6. M. Horowitz, T. Indermaur, and R. Gonzalez, Low-Power Digital Design.

Symposium on Low Power Electronics, 1994. 1: p. 8-11.

79

7. K. Govil, E. Chan, and H. Wasserman, Comparing algorithms for dynamic

speed-setting of a low-power CPU. Proceedings of The First ACM

International Conference on Mobile Computing and Networking, 1995.

8. Woonseok Kim, Dongkun Shin, Han Saem Yun, Jihong Kim, and Sang

Lyul Min, Performance Comparison of Dynamic Voltage Scaling Algorithms for

Hard Real-Time Systems. Proceedings of the 8th IEEE Real-Time and

Embedded Technology and Applications Symposium (RTAS 2002), 2002.

9. T. Burd, R. Brodersen, Design issues for Dynamic Voltage Scaling.

Proceedings of the International Symposium on Low Power Electronics

and Design (ISLPED '00), 2000: p. 9-14.

10. T.D. Burd, T.A. Pering, A.J. Stratakos, R.W. Brodersen, A dynamic voltage

scaled microprocessor system. IEEE Journal of Solid-State Circuits, 2000. 35

(11): p. 1571-1580.

11. R. Min, T. Furrer, A. Chandrakasan, Dynamic voltage scaling techniques for

distributed microsensor networks. Proceedings. IEEE Computer Society

Workshop on VLSI, 2000: p. 43 -46.

80

12. T. Ishihara , and H. Yasuura, Voltage scheduling problem for dynamically

variable voltage processors. Proceedings 1998 international symposium on

Low power electronics and design, 1998: p. 197-202.

13. Bennett, S., Real-time computer control: an introduction. 2nd ed. Series in

Systems and Control Engineering, ed. M.J. Grimble. 1994, London:

Prentice Hall International.

14. Joch, A., Real-Time Operating Systems, in Computerworld. 2001.

15. Liu, J.W.-S., Real-time systems. 2000: Prentice Hall.

16. C. L. Liu, and J. W. Layland, Scheduling Algorithms for Multiprogramming in

a hard real time environment. Journal of the Association for Computing

Machinery, 1973. v.20, n.1: p. 44-61.

17. D. B. Stewart and P. K. Khosla, Real-time scheduling of sensor-based control

systems, in Real-Time Programming, W. Halang and K. Ramamritham,

Editor. 1992, Pergamon Press. p. 139-144.

18. Wescott, T., PID without PhD, in Embedded Systems Programming. 2002.

81

19. M. Weiser, B. Welch, A. Demers, and S. Shenker, Scheduling for reduced

CPU energy. Preceedings of the First USENIX Symposium on Operating

Systems Design and Implementation (OSDI '94), 1994: p. 13-23.

20. T. Pering, T.Burd, and R. Brodersen, The simulation and evaluation of

dynamic voltage scaling algorithms. 1998: p. 76-81.

21. L.H. Chandrasena, P. Chandrasena, M.J. Liebelt, An energy efficient rate

selection algorithm for voltage quantized dynamic voltage scaling. Proceedings

of the International Symposium on System Synthesis, 2001: p. 124 -129.

22. D. Grunwald, P. Levis, C.B.M. III, M. Neufeld, and K.I. Farkas, Policies for

dynamic clock scheduling. Proceedings of the Fourth USENIX Symposium

on Operating Systems Design and Implementation (OSDI 2000), 2000: p.

73-86.

23. F. Yao, A. Demers, and S. Shenker, A scheduling model for reduced CPU

Energy. IEEE Annual foundations of computer science, 1995: p. 374-382.

82

24. T. Pering, T.Burd, R. Brodersen, Voltage scheduling in the IpARM

microprocessor system. Proceedings of the 2000 International Symposium on

Low Power Electronics and Design (ISLPED '00), 2000: p. 96-101.

25. Donghwan Son, Chansu Yu, Heung-Nam Kim, Dynamic voltage scaling on

MPEG decoding. Proceedings of the Eighth International Conference on

Parallel and Distributed Systems (ICPADS 2001), 2001: p. 633- 640.

26. O.Y.-H. Leung, Chi-Ying Tsui, R.S.-K. Cheng, Reducing power consumption

of turbo-code decoder using adaptive iteration with variable supply voltage. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 2001. 9(1).

27. Y. Shin , and K. Choi, Power conscious fixed priority scheduling for hard real-

time systems. in Proceedings of the 36th ACM/IEEE conference on Design

automation conference. 1999.

28. O.Y.-H. Leung, Chung-Wai Yue, Chi-Ying Tsui, R.S. Cheng, Reducing

power consumption of turbo code decoder using adaptive iteration with variable

supply voltage. Proceedings of the 1999 International Symposium on Low

Power Electronics and Design, 1999: p. 36-41.

83

29. P.Pillai and K.G. Shin, Real-time dynamic voltage scaling for low-power

embedded operating systems. Proceedings of the 18th Symposium on

Operating Systems Principles (SOSP 2001), 2001: p. 89-102.

30. Woonseok Kim, Jihong Kim, and Sang Lyul Min, A Dynamic Voltage

Scaling Algorithm for Dynamic-Priority Hard Real-Time Systems Using Slack

Time Analysis. Proceedings of the Design Automation and Test in Europe

(DATE 2002), 2002: p. 788-794.

31. H. Aydin, R. Melhem, D. Mosse and P.M. Alvarez, Determining optimal

processor speeds for periodic Real-time tasks with different power characteristics.

Proceedings of the 13th EuroMicro Conference on Real-Time Systems

(ECRTS'01), 2001.

32. V. Swaminathan and K. Chakrabarty, Real-time task scheduling for energy-

aware embedded systems. to appear in Proc. IEEE Real-Time Systems Symp.

(Work-in-Progress Session), 2000.

33. V. Swaminathan, C.B. Schweizer, K. Chakrabarty, A.A. Patel, Experiences

in implementing an energy-driven task scheduler in RT-Linux. Proceedings of

84

the IEEE Real-Time and Embedded Technology and Applications

Symposium, 2002: p. 229-238.

34. S.M. Martin, K. Flautner, T. Mudge, D. Blaauw, Combined dynamic voltage

scaling and adaptive body biasing for lower power microprocessors under

dynamic workloads. IEEE/ACM International Conference on Computer

Aided Design (ICCAD 2002), 2002: p. 721-725.

35. Lin Yuan and Gang Qu, Design space exploration for energy-efficient secure

sensor network. 2002: p. 88-97.

36. Eui-Young Chung, L. Benini, and G. De Micheli, Contents provider-assisted

dynamic voltage scaling for low energy multimedia applications. Proceedings of

the 2002 International Symposium on Low Power Electronics and Design

(ISLPED '02), 2002: p. 42-47.

37. F. Gilbert, A. Worm, and N. Wehn, Low power implementation of a turbo-

decoder on programmable architectures. Proceedings of the ASP-DAC 2001

Design Automation Conference, 2001: p. 400-403.

85

38. A. Sinha and A.P. Chandrakasan, Energy efficient real-time scheduling.

IEEE/ACM International Conference on Computer Aided Design (ICCAD

2001), 2001: p. 458-463.

39. T. Simunic, L. Benini, A. Acquaviva, P. Glynn, and G. de Micheli, Dynamic

voltage scaling and power management for portable systems. Proceedings of the

Design Automation Conference, 2001: p. 524-529.

40. Qu, G., What is the limit of energy saving by dynamic voltage scaling?

IEEE/ACM International Conference on Computer Aided Design (ICCAD

2001), 2001: p. 560-563.

41. N. K. Bambha, S. S. Bhattacharyya, J. Teich, and E. Zitzler, Hybrid

global/local search strategies for dynamic voltage scaling in embedded

multiprocessors. Proceedings of the Ninth International Symposium on

Hardware/Software Codesign (CODES'01), 2001: p. 243-248.

42. Jiong Luo, N.K. Jha, Power-conscious joint scheduling of periodic task graphs

and aperiodic tasks in distributed real-time embedded systems. IEEE/ACM

International Conference on Computer Aided Design (ICCAD-2000), 2000:

p. 357-364.

86

43. Jha, N.K., Low power system scheduling and synthesis. IEEE/ACM

International Conference on Computer Aided Design (ICCAD 2001), 2001:

p. 259-263.

44. Sunghyun Lee, Sungjoo Yoo, Kiyoung Choi, An intra-task dynamic voltage

scaling method for soc design with hierarchical fsm and synchronous dataf low

model. Proceedings of the 2002 International Symposium on Low Power

Electronics and Design (ISLPED '02), 2002: p. 84-87.

45. A. Azevedo, I. Issenin, R. Cornea, R. Gupta, N. Dutt, A. Veidenbaum, A.

Nicolau, Profile-based dynamic voltage scheduling using program checkpoints.

Proceedings of the Design, Automation and Test in Europe Conference

and Exhibition, 2002: p. 168-175.

46. I. Hong, M. Potkonjak, and M.B. Srivastava, On-line Scheduling of Hard

Real-time Tasks on Variable Voltage Processor. Proceedings of the 1998

IEEE/ACM international conference on Computer-aided design, 1998: p.

653-656.

87

47. K. Flautner , S. Reinhardt , and T. Mudge, Automatic performance setting for

dynamic voltage scaling. Proceedings of the seventh annual international

conference on Mobile computing and networking, 2001: p. 260-271.

48. C. Lee, M. Potkonjak and W. Mangione-Smith, MediaBench: A tool for

evaluating and synthesizing multimedia and communications systems. In Proc.

30th Annual International Symposium on Microarchitecture (MICRO'97),

Research Triangle Park NC, 1997: p. 330-335.

49. K. Baynes, C. Collins, E. Fiterman, B. Ganesh, P. Kohout, C. Smit, T.

Zhang, and B. Jacob, The performance and energy consumption of three

embedded real-time operating systems. Proc. International Conference on

Compilers, Architecture, and Synthesis for Embedded Systems (CASES

2001), 2001: p. 203-210.

50. Labrosse, J.J., MicroC/OS-II: The Real-Time Kernel. 1999, Lawrence, KS: R&D

Books (Miller Freeman, Inc.).

51. J. Scott, L. H. Lee, J. Arends, and B. Moyer, Designing the Low-Power M-

CORE Architecture. Proceedings of the IEEE Power Driven

Microarchitecture Workshop, 1998: p. 145-150.

88

52. Y. Liu, A. K. Mok, An Integrated Approach for Applying Dynamic Voltage

Scaling to Hard Real-Time Systems. Proceedings of the 9th IEEE Real-Time ad

Embedded Technology and Applications Symposium (RTAS’03), 2003.

53. N. AbouGhazaleh, D. Mosse′, B. Childers, F. Melhem, and M. Craven,

Collaboratice Operating System and Compiler Power Management for Real-Time

Applications. Proceedings of the 9th IEEE Real-Time ad Embedded

Technology and Applications Symposium (RTAS’03), 2003.

	ABSTRACT
	RTOS-BASED DYNAMIC VOLTAGE SCALING
	ACKNOWLEDGEMENT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1 INTRODUCTION
	1.1 Real-Time Embedded Systems
	1.2 Dynamic Voltage Scaling
	1.3 Motivation
	1.4 Overview

	CHAPTER 2 BACKGROUND
	2.1 Energy Reduction in CMOS
	2.2 Real-Time Systems
	2.3 RTOSs and Task Scheduling
	2.4 PID Controller
	2.5 Related Works

	CHAPTER 3 METHODOLOGY
	3.1 The nqPID Function
	3.2 The User Program Utilization
	3.3 The Comparisons of PID, nqPID, and RT-nqPID Equations

	CHAPTER 4 EXPERIMENT SETUP
	4.1 Experimental Set-up
	4.2 The M-CORE architecture and simulator
	4.3 (C/OS-II
	4.4 The MediaBench Suite
	4.5 The AVGN Algorithm
	4.6 The HPASTS algorithm
	4.7 The Experiment-Setup Details for nqPID and RT-nqPID

	CHAPTER 5 RESULTS
	5.1 Energy and Performance
	5.2 The Comparison of nqPID and RT-nqPID algorithms
	5.3 The Run-Time Trace
	5.4 Sensitivity Analysis

	CHAPTER 6 CONCLUSION
	6.1 Summary
	6.2 Future Works

	REFERENCES

