
ABSTRACT

Title Of Dissertation: HIGH-SPEED PERFORMANCE, POWER AND THERMAL 
CO-SIMULATION FOR SOC DESIGN

Ankush Varma, Doctor of Philosophy, 2007

Dissertation Directed by: Professor Bruce Jacob
Department of Electrical and Computer Engineering

This dissertation presents a multi-faceted effort at developing standard System Design

Language based tools that allow designers to the model power and thermal behavior of

SoCs, including heterogeneous SoCs that include non-digital components. The research

contributions made in this dissertation include:

• SystemC-based power/performance co-simulation for the Intel XScale micro-

processor. We performed detailed characterization of the power dissipation pat-

terns of a variety of system components and used these results to build detailed

power models, including a highly accurate, validated instruction-level power

model of the XScale processor. We also proposed a scalable, efficient and vali-

dated methodology for incorporating fast, accurate power modeling capabilities

into system description languages such as SystemC. This was validated against

physical measurements of hardware power dissipation.

• Modeling the behavior of non-digital SoC components within standard Sys-

tem Design Languages. We presented an approach for modeling the functional-

ity, performance, power, and thermal behavior of a complex class of non-digital



components — MEMS microhotplate-based gas sensors — within a SystemC

design framework. The components modeled include both digital components

(such as microprocessors, busses and memory) and MEMS devices comprising a

gas sensor SoC. The first SystemC models of a MEMS-based SoC and the first

SystemC models of MEMS thermal behavior were described. Techniques for sig-

nificantly improving simulation speed were proposed, and their impact quantified.

• Vertically Integrated Execution-Driven Power, Performance and Thermal

Co-Simulation For SoCs. We adapted the above techniques and used numerical

methods to model the system of differential equations that governs on-chip ther-

mal diffusion. This allows a single high-speed simulation to span performance,

power and thermal modeling of a design. It also allows feedback behaviors, such

as the impact of temperature on power dissipation or performance, to be modeled

seamlessly. We validated the thermal equation-solving engine on test layouts

against detailed low-level tools, and illustrated the power of such a strategy by

demonstrating a series of studies that designers can perform using such tools. We

also assessed how simulation and accuracy are impacted by spatial and temporal

resolution used for thermal modeling.
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 Chapter 1: Introduction
1.  Motivation

Advances in VLSI technology have allowed exponentially increasing numbers of transis-

tors [9] to be crammed onto a single chip. This has led to the advent of System-on-Chip

(SoC) designs, which implement all major system components on a single chip to achieve

both lower die counts and higher performance. However, the increasing system complexity

can make such larger, faster systems increasingly difficult to design, simulate and verify.

The classic engineering approach to tackling such complexity is to break the design into

sub-modules, so that system design may be tackled in a layered, hierarchical manner, with

extensive design re-use. System Description Languages (SDLs) such as SpecC [6] and

SystemC [5, 7] have now evolved to provide the high levels of abstraction required for

efficient system-level design and high-speed performance modeling, allowing top-level

design space exploration to occur very early in the design flow, before resources are

invested into a particular system implementation. 

The modularity of such a top-down approach for SoCs has led to accompanying

changes in the services offered by the EDA (Electronic Design Automation) industry. A

variety of vendors now offer microprocessors, memory modules, timers, peripherals, DSPs

and hardware acceleration units as pre-designed “shrink-wrapped” IP (Intellectual

Property) modules, which system designers can re-use in systems in a standard manner.

SystemC-specific programming, synthesis and verification tools are all currently incorpo-

rated into the product suites of various EDA vendors. Rather than design each component

of a complex system, system designers can now choose components (or cores) from a host
1



of available alternatives, assemble a high-level system model and perform high-speed

performance analysis and design space exploration to create an optimized design.

Power is a primary design constraint for a wide variety of systems, especially where

battery life or thermal dissipation are critical design parameters. While current SDL-based

tools and methodologies provide excellent performance modeling abilities, designers still

have to rely heavily on guesswork, simplified spreadsheets and previous experience to

estimate power. Inaccurate power estimates have real costs: overestimating power

consumption leads to an over-designed, sub-optimal system, while underestimating power

causes power issues to emerge late in the design flow, when major design decisions have

already been made and resources committed to them. The costs of changing the design late

into the design flow can be prohibitively high, and may even cause the entire design to

become infeasible. The high penalties for exceeding power budgets also mean that

designers must design very defensively, and avoid aggressive designs if there is uncertainty

about their power behavior. There is a real need to be able to model and address power

issues early in the design flow, while there is still scope for design modification. 

Thermal dissipation is a major design issue for high-performance systems for a

variety of reasons: high costs of chilling server rooms, the rising on-chip heat density, and

the physical limitations of air-based cooling systems. In contrast, embedded systems,

especially mobile embedded systems, have been historically constrained by battery life

(power coming in), rather than heat dissipation (power going out). However, there are a

number of emerging factors that make thermal issues increasingly important for high-end

embedded systems: 
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• A high-end embedded processor for signal or media processing may dissipate as

much as 3W of peak power [1, 2].

• Active cooling solutions and even heat sinks are bulky, heavy and expensive,

making them unsuitable for embedded systems, mobile embedded systems in

particular.

• The infeasibility of cooling solutions means that the junction-to-ambient thermal

resistance for an embedded processor package may be 40 — 60K/W [3], as

opposed to ~0.3K/W for desktop processors [8]. This implies that even the

relatively modest power consumption of an embedded SoC becomes thermally

significant.

• Lastly, embedded systems are often required to operate in harsh and uncontrolled

environments. This may include poor ventilation (such as in a utility closet or

pocket) which translates into a high effective thermal resistance, as well as elevated

environmental temperatures (outdoors operation, locked cars in summer etc.).

These serve to exacerbate any existing thermal issues, and reduce the thermal

design margins. A report by the CDC, studying fatal car trunk entrapment in

children, found that temperatures inside a locked car in summer could reach as high

as 78ºC [4]. As a result of harsh thermal conditions in everyday environments,

embedded system specifications routinely require correct operation at ambient

temperatures as high as 85ºC.

As a result of these considerations, both power and thermal issues have become major

constraints for many embedded systems. The ability to model these issues during system

design phases is central to making optimal design choices.
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2.  Problem Description

This dissertation addresses the issues of estimating the power, performance and thermal

characteristics of SoCs. This involves answering a number of key questions: What are the

power dissipation characteristics of typical embedded systems components? How can

power dissipation be modeled using standard SoC design and performance modeling

methodologies such as SystemC? Can non-digital components with continuous-time

behavior be modeled this way? How can this be extended to modeling chip-level thermal

diffusion? And lastly, what are the trade-offs between accuracy and simulation speed

involved?

These complexity of these issues is exacerbated by feedback behavior in the

system. The relationships between performance, power and temperature are not unilateral.

While a simplistic view would assume that performance characteristics determine power

dissipation, which governs thermal behavior, this is not the complete picture: Temperature,

in turn, affects power (for example, through the temperature-dependence of subthreshold

leakage current), performance (as in the case of Dynamic Thermal Management strategies)

and thermal diffusion itself (through temperature-induced variations in substrate thermal

conductivity).

This dissertation is an attempt to answer the questions raised above, and to make

system-level power and thermal metrics visible to system designers by augmenting the

capabilities of existing SoC performance modeling tools while maintaining the high

simulation speeds required for system-level design.
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3.  Contributions and Significance

This dissertation consists of three major inter-related studies. First, we performed a

detailed study of the power consumption patterns of the Intel XScale embedded micropro-

cessor and built the most detailed instruction-level power model of such a processor to date

[12, 13]. We then showed how an instruction-level power modeling framework can be

overlaid on existing SystemC performance modeling frameworks, allowing both fast

simulation speeds (over 1 Million Instructions Per Second, or MIPS), as well as accurate

power modeling, of the microprocessor, its SIMD co-processor, caches, off-chip bus and

on-board SDRAM. We showed that while high-level system modeling languages do not

currently model power, they can do so. We explored SystemC extensions and software

architectures that enable power modeling and means of obtaining these power models for

IP modules so that accurate simulation-based power estimates can be made available to

system designers as early as possible. The central problem was that low-level system

descriptions can be analyzed for power, but run too slowly to be really useful, while high-

level high-speed system descriptions provide no power modeling capabilities. We

developed a system design methodology that bridges this gap, providing both high

simulation speed and accurate power estimation capabilities. 

Secondly, we showed that such a methodology need not be restricted to pure-digital

systems, and we investigated the means to extend it to MEMS devices whose behavior is

governed entirely by continuous-time differential equations, which cannot currently be

handled by SystemC. To do this, we used SystemC to model an heterogeneous SoC that

includes a MEMS microhotplate structure developed at NIST. We demonstrated how

equation solvers may be implemented in SystemC, what some of the trade-offs are, and
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how high simulation speed may be maintained in the integrated modeling of such devices.

We also showed how the integrated modeling of such devices allows implicit feedback

behaviors to be modeled at design time [10, 11]. Overlooking such feedback phenomena

can frequently lead to suboptimal system designs. 

Third, we used the experience gained from the power modeling and mixed-mode

modeling study above to extend our SystemC-based modeling infrastructure to the next

level: solving the system of tens of thousands of differential equations that govern chip-

level thermal behavior. We found that we were able to do so efficiently, while maintaining

high simulation speeds, and reasonably accurate temperate estimates. Further, we showed

how a vertically-integrated unified modeling tool could model various forms of feedback

behavior that is important for accurate thermal modeling, and for estimating the efficacy

and performance cost of thermal management techniques. This approach is illustrated in

Figure 1.1. We used execution-driven simulation (rather than a trace-driven approach) to

enable the modeling of feedback relationships between power, temperature and

performance at runtime. 

4.  Organization of Dissertation

The rest of this dissertation is organized as follows. Chapter 2 provides detailed

background on the issues involved and discusses related work. Chapter 3 describes a

detailed study of the power consumption patterns of the Intel XScale embedded micropro-

cessor and experimentally-validated techniques for power-performance co-simulation in

SoC design environments. Chapter 4 shows that such a methodology need not be restricted

to pure-digital systems, and explores techniques to extend it to MEMS devices whose

behavior is governed entirely by continuous-time differential equations. Chapter 5
6
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Figure 1.1. Overview of the Integrated Power, Performance and Thermal Modeling Approach.
Various component performance models run a standard SystemC-based performance simulation
(the bottom layer in the above figure). These performance models are modified to provide high-
level activity information to power models, whose output is fed to a thermal modeling
infrastructure that uses differential equation solvers to compute the spatial thermal distribution
for the SoC studied. An example of this kind of distribution is shown at the very top. The
simulation is execution-driven, allowing updated thermal information to be fed back to power
models (allowing subthreshold leakage effects to be modeled) as well as to simulated temperature
sensor performance models (allowing Dynamic Thermal Management techniques to be
evaluated). Details of this approach are discussed in Chapter 5.

The spatial thermal distribution can potentially also be used by a variety of external tools, such
automated design space explorers, software optimizers, or thermally-aware floorplanning, layout
and routing tools
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describes the design, validation and use of an integrated performance, power and thermal

co-simulation methodology. Chapter 6 summarizes the findings of these studies, and draws

conclusions based on them. This is followed by appendices and references for each chapter.
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 Chapter 2: Background and Related Work
This dissertation draws extensively upon a wide variety of previous work in a number of

fields, and builds upon it further. Much of the work presented is based on concepts from the

following fields:

• Performance Simulation: Performance simulation is a well-studied field, and

simulators are used very extensively both for software development and architec-

tural exploration. We build on recent work on System Description Languages

(SDLs) as tools for modeling the performance and functionality of complex

systems in an efficient manner. In particular, we explore how the simulation

infrastructures used for SDL-based performance modeling can be extended to

model power as well.

• Power Modeling: This includes work on modeling the power dissipation character-

istics of microprocessors and peripherals in isolation, as well as system-level power

modeling. 

Microprocessor power consumption has been studied for well over ten years

now. Microarchitectural power models use an extremely detailed processor model

and switching activity information to model power. At a higher level, instruction-

level power models assign energy costs to each instruction type to obtain simple but

accurate models of microprocessors. Instruction-level power models have been

used to successfully model a wide variety of embedded microprocessors. Their

main limitation is that they are not known to work for high-performance out-of-

order processors, which employ extensive instruction re-ordering and high degrees

of speculation. We focus on embedded systems, and build further on work done on
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instruction-level power modeling.

Energy consumption patterns of DRAM, SRAM, buses and peripherals have also

been the subject of research, although not as much as microprocessors. We draw

upon or adapt existing power models of these components where possible.

However, we also study some novel components (such as MEMS gas sensors) that

have not been studied before, and develop new power models for them.

System-level power modeling encompasses techniques to model an entire SoC,

including microprocessors, buses, caches, memory and peripherals. Techniques

used in the industry for modeling SoC power are currently ad hoc, based on

spreadsheets, guesswork and experience, and there have been only a handful of

papers in research that address this issue. This is primarily because methodologies

for system-level (as opposed to microarchitectural) power modeling have been

developed relatively recently. The research done so far by various groups includes

case studies and proposed software architecture solutions to the problem of

integrating power modeling into a performance modeling framework. We draw

upon this to develop a software architecture that is suited to SDL-based power

modeling. However, rather than assume the existence of power models, we address

the issue of how such models are created, calibrated and integrated into the

framework while simultaneously addressing how the computational overheads of

power modeling can be minimized so that high simulation speeds can be

maintained.

• Thermal Issues: These include the characterization and modeling of the impact of

temperature on circuit correctness and power dissipation, including the impact of
10



temperature on subthreshold leakage current, performance characteristics, thermal

conductivity, reliability, signal integrity and power/ground supply integrity. We

also draw upon extensive research on device-level and finite-element modeling of

on-chip thermal behavior, as well as some studies on dynamic thermal management

strategies.

The rest of this chapter is organized as follows. Section 1 discusses the traditional

and SoC design flows, and the differences between the two. Section 2 discusses various

approaches to performance modeling and provides an overview of the SystemC system

description language. Section 3 discusses power dissipation and provides a literature

overview of techniques for estimating the power dissipation of various system

components. Section 4 discusses related work on the system-level modeling of MEMS and

heterogeneous SoCs. Lastly, Section 5 provides background on chip-level thermal issues,

including the impact of temperature on performance and power, thermal and power

management strategies and chip-level thermal modeling techniques.

SI units are used for all quantities discussed in all equations and measurements in

this dissertation, except where specified otherwise.

1.  Design Flows

1.1  The Traditional Design Flow

Traditionally, designers start with C or C++ simulators to model the components of

interest, such as processors, caches, memory systems and so forth. Rather than model the

entire system, these typically model the components of interest in detail, and make

simplifying assumptions about the rest of the system. 
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In the design flow, top-level decisions are taken based on simulations using tools

such as the ones mentioned above, and then the design is implemented in RTL (Register

Transfer Level) in a Hardware Description Language (HDL) such as Verilog [31] or VHDL

[50], which can be further synthesized. An intermediate step may be to implement the

design in behavioral HDL first, which is higher level than synthesizable HDL and may

allow some tweaking of the design, since it is more amenable to simulation.

Synthesis tools then operate on the HDL and a technology-specific library of

standard cells to create a gate-level netlist, based on the constraints and operating

conditions specified by the designer and on various technology parameters. This netlist is

then placed-and-routed on a floorplan of the chip, and finally undergoes layout, where the

exact masks of the various layers that will go on silicon is defined. This is then ready for

fabrication into silicon.

At each step of the way, lower-level design decisions are taken, optimizations

made, and verification performed to ensure that the lower-level implementation indeed

conforms to the higher-level specification. The tool flow described above is mature, well-

understood and widely used. There exist tools at the circuit, gate and HDL level to model

designs in terms of both power and performance. However, these can typically run only at

a few thousand instructions per second, making them too slow for system designers to

explore power consumption of realistic workloads.
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1.2  The SoC Design Flow

Both monolithic and SoC designs may incorporate pre-designed modules, commonly

referred to as IP cores1, which provide parameterizable modules such as processors,

memory and peripherals for re-use. However, heavy use of modular pre-designed IP cores

is the major distinguishing feature of SoC design.

A typical IP core may contain synthesis scripts, documentation and tests, which

allow the user to adapt the IP core to arbitrary process technologies (for soft cores) and test

the correctness of the implementation. IP cores are typically provided by design companies

and other such vendors. In this document, we will use the term “IP core” to refer to any

self-contained design intended primarily for re-use in larger systems, regardless of whether

is developed by a third party or in-house. For our purposes, it is simply the basic block of

design re-use.

IP Cores fall into three broad categories:

• “Hard” IP Cores are provided at the layout level. The SoC designer has little or no

flexibility in terms of their configuration, and they are directly plugged into the

final design in the design flow back end. Their aspect ratio, size and fabrication

technology are fixed.

• “Soft” IP Cores are provided as technology-independent HDL code or netlists.

They are thus extremely flexible and can be synthesized for different technology

libraries. However, they may involve an additional investment of effort from the

SoC designer, who has to perform synthesis and later design steps for these, rather

than just insert the core into a layout. These are the most commonly-available and

1. “IP” standing for “Intellectual Property”.
13



most flexible IP cores. Many vendors provide a users a choice of hard or soft IP

cores, and charge a premium for the soft version.

• “Firm” IP Cores are technology-specific and provide an intermediate degree of

flexibility. They are somewhat configurable but are not provided as high-level

HDL. They typically contain some placement data but allow some degree of

configurability as well.

As the degree of integration increases, the increase in complexity is handled through re-

use, and system designers increasingly use IP cores in designs [91] in order to reduce

design cost and address time-to-market pressures, to the point where IP Cores comprise the

bulk of the chip. 

The SoC design flow from HDL onwards falls to the chip designer, and has

remained similar the traditional design flow. However, top-level design decisions about

which cores to use, what the top-level design parameters of each configurable core should

be, and how they should be interconnected are crucial to successful system design, and

have an enormous impact on both performance and cost.

Languages to describe hardware at higher levels than current HDLs have evolved to

address the increasing complexity of system-level design, since RTL is too low a level of

abstraction for efficient design of large multi-million gate systems. These System Descrip-

tion Languages (SDLs) are aimed at extending existing languages to allow high-level

hardware description, often while maintaining a C/C++-like syntax. Examples of these

include SpecC [38], SystemC [44], SystemVerilog [76], HardwareC [66] and Handel-C

[62], among others. A survey of SoC design languages is presented by Habibi and Tahar
14



[47]. Of these, SystemC has rapidly emerged as a standard for high-level system design,

and was approved as IEEE Standard 1666 in December 2005 [51].

Designers first create a very high-level SDL design, make basic design decisions,

and refine it into successively more detailed SDL designs by adding more detail as design

decisions are made. For this purpose, SDLs such as SystemC allow designers to describe

designs at a variety of levels of abstraction [17]. In the final step, a sufficiently detailed and

low-level SDL model can either be directly synthesized (using newly available SoC design

tools) or refined further into an HDL implementation, after which the traditional optimize,

place-and-route and layout steps can be followed. 

EDA vendors now provide synthesizable, configurable IP cores with SDL models

along with HDL implementations so that designers can use the SDL description for high-

level design, and plug in the HDL into the final implementation. As system complexity

increases, increasing portions of SoC design get replaced by IP cores, much in the same

way that chip designers use HDL-based IP cores, and software engineers re-use code

libraries. System designers choose, configure and connect IP cores, but typically do not

design the innards of the cores [91]. 

Despite these vast improvements in performance estimation and design re-use,

there are still few tools for SoC power estimation, and designers frequently have to depend

solely on spreadsheets and previous experience for power estimation until well into the

design flow. Even when RTL, netlists, or circuit-level models for IP cores are available,

their simulation speeds are orders of magnitude lower than those required for SoC design

space exploration, where designers want to simulate many seconds of real time. In

addition, there exist no systematic techniques for modeling and integrating analog or
15



MEMS components into such SDL-based design flows, and these components are often

simply treated as black boxes, limiting the accuracy and scope of the system model.

2.  Performance Modeling

Traditionally, processor designers, programmers and researchers have used specialized

processor simulators, typically written in procedural sequential languages such as C and

C++. This approach has been around at least since the IBM/360 [16]. While designers use

these simulators to explore the microarchitectural space and find the optimal processor

designs, programmers use fast, simple instruction-set simulators (also known as functional

simulators) to quickly check that code behaves as expected, and then use more complex

cycle-accurate microarchitectural simulators to analyze performance and optimize code

further.

SimpleScalar [4] is a freely available simulator suite and simulation infrastructure

that focuses on the microprocessor and cache hierarchy, allowing both software

performance exploration and microarchitectural design space exploration. SimpleScalar

simulates a MIPS-like architecture at the instruction level. It provides five different

simulators that focus on different aspects of the architecture, going from high to low levels

of abstraction. At the highest level, Sim-Fast is a functional simulator providing quick

results without detailed statistics or timing information. At the lowest abstraction level,

Sim-Outorder is a detailed low-level cycle-accurate microarchitectural simulator. The

SimpleScalar toolkit provides the basic simulation infrastructure of the type used to

evaluate modern processor architectures and memory subsystems. In addition, it also

allows designers and researchers to evaluate the impact of specific design choices, such as

branch prediction, cache architecture, pipelining etc. SimpleScalar does not directly
16



Figure 2.1. A Juxtaposition of Traditional and SoC Design Flows. 
In a traditional design flow, the HDL is usually written after the top-level design is finalized, while
the SoC design flow uses the HDL implementations that are supplied as part of soft IP core
components and designers simply connect IP cores and write HDL for “glue logic” that links the
cores together. The post-synthesis flow is quite similar in each case. Synthesis, Place&Route and
Layout steps all use technology-specific standard-cell library information. Externally-designed
supplied components, such as standard-cell libraries and IP cores, are shown in grey in the above
figure. The bottom, centre image is a die photograph of an XScale-based SoC.
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support power modeling, although there are tools based on it that are used to estimate

power.

SimICS [63] is an instruction level functional simulator developed at the Swedish

Institute of Computer Science. SimICS aims at being fast and memory-efficient, and

achieving a balance between detailed timing simulation and full-featured functional

simulation. It supports complex memory hierarchies, and can simulate multi-processor

systems. SimICS gathers statistics about memory usage, frequency of various events, and

instruction profiling. It allows exploration of the memory hierarchy space, but does not

provide power information.

The SimOS simulator [77] is designed to enable the study of operating systems in

uniprocessor and multiprocessor systems. The SimOS simulator is capable of simulating

the computer hardware in sufficient detail to run a complete operating system. It provides a

flexible trade-off between simulation speed and the level of detail and statistics that are

collected. However, power consumption is not directly modeled. 

Specialized proprietary simulators are also used widely in industry to perform these

tasks. Processor manufacturers often have teams aimed specifically at the task of building

simulators for these purposes. These are usually performance simulators only, and power

budgets are typically calculated based on spreadsheets, experience and conservative

design.

As system complexity increases, some drawbacks of ad hoc simulators become

more apparent. These include:

• Simulators written from the ground up are usually cycle-driven. Every subcompo-

nent is triggered on every cycle, even if it does nothing.
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• Simulators assume that the processor directs (or “drives”) the simulation i.e., it

makes the appropriate calls to other components and no higher-level entity makes

function calls to the processor model. This often creates scalability issues when

going from uniprocessor to multiprocessor scenarios.

• Microarchitectural simulators are written in C, since that is the language most

familiar to microarchitects. However, this choice of language has negative implica-

tions on scalability since it does not discourage use of static and global variables.

This often prevents multiple-instantiation of components in a design. 

• There is no formal model for concurrency, and brute-force cycle-driven simulation

is used to ensure synchronicity between components.

• For each new simulator, designers much re-create code for simple functionality

such as arbitrary-precision arithmetic, FIFOs, 4-value logic etc.

Traditional simulators were designed to help explore processor microarchitecture,

and they have been enormously successful at this job. However, the emerging demands of

SoC design demanded that all the problems listed above be solved in a manner that is

relatively transparent to the designer. This was addressed by System Description

Languages (SDLs), which are aimed at extending existing languages to allow high-level

hardware description, often while maintaining a C/C++-like syntax. Examples of these

include SpecC [38], SystemC [44], SystemVerilog [76], HardwareC [66] and Handel-C

[62], among others. A survey of SoC design languages is presented by Habibi and Tahar

[47]. Of these SystemC has rapidly emerged as a standard for high-level system design, and

has recently been accepted as an IEEE standard [51]. The SystemC system description

language is discussed in detail in Section 2.1.
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Given these tools, the job of the SoC designer revolves around choosing pre-

existing components, connecting them together and configuring the system to find optimal

configurations, and these languages have been very successful as tools for aiding this.

Examples of using high levels of abstraction for system performance analysis include

Conti et. al.’s work on comparing different arbitration schemes for the AMBA AHB on-

chip bus [29] and Pasricha et. al.’s work on exploring communication architectures [71],

among others.

2.1  The SystemC Language

SystemC is an ANSI and IEEE standard C++ class library for system and hardware design.

Its provides a C++-based standard for designers and system architects who need to design

and model complex systems, including systems that are a hybrid between hardware and

software.

SystemC is implemented as a C++ class library, and is thus closely related to C++.

However, the SystemC language imposes some of its own rules and syntax, and it must be

noted that it is possible to create a well-formed C++ program that is legal according to the

C++ programming language standard but that violates the SystemC standard [51].

SystemC provides the following facilities to the user:

• The Core SystemC Language: providing primitives such as modules, interfaces,

ports, inter-module communication channels (known simply as “channels”), events

and so on. At the most fundamental level, a SystemC application consists of a

number of modules having ports through which they are attached to channels that

enable inter-module communication. 
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• The SystemC Kernel: an event-driven process scheduler that mimics the passage of

simulated time and allows parallel processes to synchronize and communicate in a

manner that is useful for modeling a system of hardware and software components.

The event-driven, rather than cycle-driven, nature of the simulation kernel allows

high simulation efficiency, since synchronization functions need not be invoked for

every clock cycle. The SystemC scheduler is non-preemptive, and is deterministic

with reference to events occurring and different simulation times. It is not determin-

istic with reference to events that occur at the same simulation time.

• Data Types: most of which are specifically designed to ease the modeling of

commonly used hardware primitives, such as 4-valued logic (0/1/X/Z), bit vectors,

finite-precision integers and fixed point types. 

• Predefined Channels: representing the common communication types. These

include clocks, signals, FIFOs, mutexes, semaphores etc. 

• Utilities: providing common reporting, tracing and debugging functionality.

• Specialized libraries: Other task-specific libraries built on top of SystemC, such as

the SystemC Verification (SCV) Library, the SystemC Transaction-Level Modeling

(TLM) library, and many bus models.

SystemC provides support for multiple levels of abstraction, going from RTL-like

cycle-accurate simulation to pure functional simulation (i.e. no timing) and a variety of

highly useful intermediate levels of abstraction [17].
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3.  Power

3.1  Power Dissipation 

Power Dissipation for CMOS VLSI integrated circuits is dominated by substrate power

dissipation, which is the power dissipated in the active devices, rather than by energy losses

in the interconnect. Total power dissipation consists of dynamic, static and short-circuit

components.

The dynamic power (often also referred to as switching power) is the power

dissipated while charging and discharging the capacitive load at the outputs of each CMOS

logic cell whenever a transition occurs. Historically, the dynamic power has been the

dominant component of power dissipation. It can be expressed as:

(EQ 2.1)

Where

• α is the average number of output transitions in each clock period. α is usually less

than 1, and so is often also defined as the probability of an output transition in a

clock period.

• f is the clock frequency.

• Cl is the load capacitance.

The Static Power dissipation is the power used by on-chip constant-current sources, and

the leakage current, with the latter dominating. The three main components of leakage

current are the subthreshold leakage current, the reverse-biased junction leakage current,

Pdynamic
1
2
--- αfVdd

2 Cl⋅=
22



and the gate-direct tunneling leakage, with the subthreshold leakage current being the

largest of these. According to the BSIM3v3.2 MOSFET model [55, 74], off-state (Vds =

VDD, Vgs = 0) subthreshold leakage current can be expressed as:

(EQ 2.2)

where 

• ktech is a transistor geometry and CMOS technology dependent parameter

• W and L are the transistor width and length

• VT denotes the device threshold voltage 

• S (the subthreshold swing parameter) is the subthreshold voltage decrease required

to increase Isub by a factor of ten. 

Here, S is given by:

(EQ 2.3)

where 

• n≥1 is a device-dependent parameter

• kB is the Boltzmann’s constant 

• T denotes the temperature in Kelvin

• q is the electron charge. 

Typical values of S are 70-90mV/decade for bulk CMOS devices. In general, the tempera-

ture sensitivity of Isub is 8-12x/100ºC [74].

Figure 2.2 illustrates these trends in subthreshold leakage and total power as a

function of substrate temperature.
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Figure 2.2. Subthreshold Leakage Trends.
(a) Subthreshold Leakage Current (Isub(Vgs=0))trends as a function of substrate temperature.
(b) Total Die Power as a function of substrate temperature.
The above figures were taken from work published by Pedram and Nazarian [74], where they
were published courtesy Vivek De, Intel.

(a)

(b)
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3.2  Microprocessor Power Estimation

A large amount of research has been done on microarchitectural power analysis, especially

for microprocessors. Wattch [15] is a widely-used tool built on the SimpleScalar [4]

framework that allows power analysis and simulation of microprocessors. It uses

capacitance-based analytical power models of regular structures in the processor such as

arrays, buses, register files and caches to build up a picture of overall power consumption.

XTREM [30] is a microarchitectural power model of the XScale [73] based on Sim-XScale,

which is in part derived from ARM-SimpleScalar. It uses an approach similar to Wattch to

model microarchitectural power. XTREM is not publicly available at the time of writing. 

Powell and Chau [75] describe the Power Factor Analysis (PFA) technique, which

assigns a fixed activity factor to each functional unit inside the processor, and assumes that

this does not depend on input signals to the unit. Landman and Rabaey [59, 60, 61] extend

this with more powerful statistical tools and allow the power consumption to be a function

of the incoming data. They aim at empirically creating statistical power models of

functional units, and making power predictions based on certain assumptions about the

statistical properties of the inputs. A similar powerful statistical approach is also proposed

by Marculescu et. al. [65] who use information theory to create short input sequences that

have the same statistical properties as much larger ones, thus allowing for faster analysis.

Although these techniques have been applied in large part to processors and DSPs, they are

applicable to digital hardware in general.

Chen, Irwin and Bajwa [22] describe a methodology for microarchitectural power

estimation and design space exploration based on having a lookup table for each functional

unit that maps input signals transitions to power consumption. They also describe a
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technique for reducing the size of the ensuing tables, to prevent them from being combina-

torially large. However, the level of detail required for accurate modeling makes this

approach slow, and they do not demonstrate its applicability on large benchmarks.

SimplePower [100], also based on SimpleScalar, allows the power models of functional

units to be either table-lookups (as described by Chen et. al. [22]) or analytical models.

SimplePower models the processor core, instruction and data caches, and the on-chip back-

end bus between the processor and caches. Intel’s Architecture-Level Power Simulator

(ALPS) [45] also takes a microarchitectural activity-based approach to power modeling,

and is also used to provide power data for subsequent thermal modeling.

While microarchitectural power analysis is aimed at optimizing processor configu-

ration for a set of input programs by predicting power, higher-level power models discard

fine-grained microarchitectural information to create a mapping between incoming instruc-

tions and power. Tiwari et. al. [88, 89] show how instruction-level power can be character-

ized from hardware measurements. Sinha et. al. [85] perform energy profiling of ARM

processors and also describe how leakage power can be estimated by plotting processor

power at various frequencies. Brandolese et. al. [14] propose a generic mathematical model

for 32-bit microprocessors which decomposes instructions into functionalities, allowing

for simpler instruction-level characterization and modeling of 32-bit microprocessors.

Chakrabarti and Gaitonde [20] present a simple instruction-level power model based on

dividing instructions into categories, and characterizing only representative instructions

from each category. Julien, Laurent et. al. study similar instruction-level power models for

DSPs [53]. However, they validate their approach only on extremely small programs, not

on realistic workloads. Sinevriotis et. al. study [84] low-power optimizations and instruc-
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tion-level power models of a 3-stage ARM7 processor as well as a Motorola DSP56100

DSP. Zhang [101] and Baynes et. al. [6] create and use similar instruction-level power

models of the Motorola M-Core processor in order to study the power consumption of real-

time embedded operating systems.

All of these study in-order microprocessor cores, which are typical in embedded

systems because of their simplicity, predictability and high energy efficiency. However,

instruction-level power models of out-of-order, superscalar high-performance cores have

not been widely reported in literature. This is presumably because the added unpredictabil-

ity of the architecture, through the addition of re-order buffers and speculative execution,

decouples microarchitectural energetics from the incoming instruction stream.

Russell and Jacome [78], as well as Sinha and Chandrakasan [85] observe that the

power per instruction in embedded processors is a low-variance distribution, suggesting

that differences between energy consumption by different functional units are drowned out

by the activities common to many instructions. This supports the view that a highly

detailed fine-grained power model is only required if microarchitectural parameters within

the processor itself need to be tuned, or if extremely accurate power estimates are needed.

3.3  Power Estimation for Other Components

Power models for various kinds of DRAM are provided in technical notes by Micron

Technologies [67, 68]. These are de facto standard power models used for detailed power

modeling of commercial DRAM components. The fundamental aspects of RAM power are

discussed by Itoh et. al. [52]. Analytical power models of SRAM and caches are studied by

Kamble and Ghose [54]. The CACTI [82], and eCACTI [64] tools also provide accurate
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static power estimates of caches and SRAM, and are thus widely used in both industry and

academia. We use CACTI 4.0 as a low-level static analysis tools for estimating the energy

consumption of various cache operations.

Some work has also been done in modeling peripheral power consumption.

Celebician, Rosing and Mooney [19] present simple analytical power models of system

components including an I/O controller, FLASH memory, audio CODEC and audio output.

Cheng and Pedram [23] present power models of a backlit TFT-LCD display, and how

concurrent brightness-contrast scaling (CBCS) can be used to reduce power consumption

while reducing the associated degradation in image quality. Choi et. al. [27] and Gatti et. al.

[39] discuss system-level strategies for power optimization LCD display schemes. Both of

these use simple power models of the display to underpin their work. Givargis, Vahid and

Henkel [41, 43], present an instruction-based method for modeling peripheral cores, on the

lines of that used for instruction-level microprocessor power modeling, but much simpler.

They validate their results for a UART, a DMA controller and JPEG decode accelerator.

Fornaciari et. al. [34] present a microarchitectural approach based on the TOSCA

hardware-software co-design environment can be applied to a variety of embedded system

components, and even to a full control-oriented ASIC. 

Bus power has also been studied in some detail. Fornaciari et. al. [35] present an

activity-based bus power model and use it to study the effect of bus encoding and cache

size on address and data bus power dissipation. Bona, Zaccaria and Zafalon [13] represent

one of the first attempts at integrating some power estimation into a SystemC design. They

describe how the Siemens’ STBus component was adapted to model bus power in a

SystemC model of a 4-way ARM multiprocessor system. Caldari, Conti et. al. [18]
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describe a similar model for the AMBA AHB on-chip bus, as well as thoughts on how this

could be extended to other on-chip components or systems in general. Givargis and Henkel

[42] present generic mathematical cache and bus power models while Zhang, Irwin et. al.

[103, 104, 105] study on-chip interconnect and its power consumption. This field of

research provides the basis for the power models we use.

3.4  System Power Estimation

In contrast, system-level power simulation has been explored in relatively recently.

Simunic, Benini and De Micheli [83] present analytical power models for components of a

SmartBadge-type embedded system. They use a simplified power model of the ARM

processor, which estimates processor power as a simple function of voltage, frequency and

idle state (to take into accounted lower power consumption during cache misses). They

also describe such analytical power models for a DC/DC converter, on-board bus, caches

and memory, and were able to obtain accuracy within 5% of hardware on Dhrystone

benchmarks. Early work by Benini, Hodgson and Siegel [8] is based on modeling

components as simple state machines. Benini and de Micheli [9] also provide an overview

of software and hardware energy minimization approaches typically used by system

designers.

Bergamaschi and Jiang [10] present a technique that can be used to create a power

state machine for a system, provided that the power model for each component is also a

state machine. Bergamaschi et. al.’s SEAS (System for Early Analysis of SoCs) [11]

addresses power, along with floorplan and area estimates to enable designers to estimate

whether a proposed designs violate area or power budgets. They assume spreadsheet-like

or state-machine power models for the core.
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Lajolo, Raghunandan, Dey and Lavagno [57, 58] argue that the complexity of

model components and software implies that all parts of the system must be simulated

together, and trace-based simulation can introduce inaccuracies. They simulate software

through macro-modeling, where an energy model is created for blocks of software as well

as hardware. High-level instruction set simulators simulate functionality, and low-level

RTL and gate-level simulators are invoked to calculate timing and energy. To speed up the

simulation speed, they use caching and sequence compaction techniques to minimize the

number of times low-level RTL energy estimating simulators have to be called. While they

too aim at simulation-based execution-driven power simulation, they differ from our work

in that they explore ways to tie together different simulators at run-time, while we propose

an integrated SDL-based approach that uses lower-level tools only for characterization.

SoftWatt [46] is a system power estimation tool based on SimOS [77]. It estimates

software power consumption by analyzing SimOS simulation traces and using simple

analytical power models. It can be used to capture the relative power contributions of the

user and kernel code, identify the power-hungry operating system services and characterize

the variance in kernel power profile with respect to workload. 

Givargis and Vahid’s Platune [40] is a hardware-software co-design tool targeted at

tuning SoC design parameters by running small configurable kernels on a number of

different configurations to perform automatic design-space exploration. It is suitable for

finding the optimum parameters in a fixed system configuration with parameterizable

components. 
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Orion [93, 94, 95] addresses the issue of power-performance estimation on an

interconnection network to explore architectural trade-offs using Wattch-like microarchi-

tectural power models [15]. 

More recently, as system power estimation has become a greater issue, approaches

to full-system power estimation have emerged. Beltrame, Palermo, Sciuto, and Silvano [7]

describe a plug-in to the StepNP simulation platform [72] that enables power estimation for

multi-processor systems on a chip, although they do not describe details of simulation

speed or power accuracy achieved. 

Talarico, Rosenblit, Malhotra and Stritter [87] present a framework where a

simulator is instrumented to produce traces that may be post-processed for power

estimation. While this approach is faster than gate-level power modeling, we believe that

the huge traces required and the time taken for post-processing limit its scalability and

speed. Our experiences show that trace post-processing is an inherently slow activity, since

it is almost entirely disk-bound. The results they present have runtimes of a few thousand

clock cycles, which is too little to validate full system-level workloads.
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Another approach is described by Bansal, Lahiri, Raghunanthan and Chakradhar at

NEC Laboratories [5]. They propose a more sophisticated software architecture based on

power monitors, software plug-ins that monitor component activity at runtime to estimate

power. They also allow for different power models for the same component to be swapped

in and out at runtime, to minimize the computational overhead of power modeling. They

simulate a simple sample architecture in order to demonstrate that system power estimation

can be done without significant loss of accuracy. We use a similar software architecture,

albeit with a single power model for each component. However, we extend these power

Figure 2.3. System Power Estimation Framework proposed by Talarico et. al. [87]. 
The system relies heavily on execution traces of all components being studied.
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models to account for temperature-dependent power dissipation, and chip-level thermal

behavior.

 

4.  System-Level Modeling of MEMS and Heterogeneous SoCs

There has been relatively little work so far on modeling the behavior of non-digital SoC

components within standard SystemC frameworks. Bjornsen et. al. [12] describe using

SystemC to model the transient behavior of high-speed analog-to-digital converters. They

found SystemC to be an effective modeling tool, with simulation speeds significantly faster

than HDL. Zhang et. al. [102] compared Verilog, VHDL, C/C++ and SystemC as

candidates for modeling liquid flow in a microfluidic chemical handler, and found

SystemC to be the most suitable, since SystemC processes, events and modules are suitable

building blocks for expressing fluid flow in a manner analogous to dataflow. 

We have published the first SystemC models of a MEMS-based SoC, the first

SystemC models of MEMS thermal behavior, techniques for improving simulation

efficiency, and a detailed case study of the application of this approach to a real heteroge-

Figure 2.4. Power Modeling System Architecture proposed by Bansal at. al. [5].
This strategy is based on runtime power modeling rather than trace analysis.
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neous SoC. The rest of this section provides background information on related work in

literature.

Attempts at generalized modeling of mixed-signal elements for large-scale

hardware design include VHDL-AMS [33] and Verilog-AMS [37], aimed at extending the

VHDL and Verilog language definitions to include analog and mixed-signal regimes.

These have been moderately successful for mixed-domain component modeling; however,

they are designed for implementation and end-of-design verification late in the design

flow, not for system-level design and verification. Effective system-level design involves

representing entire systems at high levels of abstraction and modeling them at high

simulation speeds. These requirements are not adequately met by HDL frameworks that

primarily target component-level design, creating the need for higher-level techniques and

tools that are more efficient at system-level design.

The SystemC 2.0 standard [51, 69] addresses purely digital simulation. However,

increasing on-chip heterogeneity has led to the demand for modeling both digital and non-

digital components within an integrated framework. Ongoing efforts such as SystemC-

AMS [90] and SEAMS [3] propose extensions to the SystemC language definition and

additions to the SystemC kernel to incorporate analog and mixed-signal devices into the

simulation framework. In contrast, the techniques and models presented in this paper use a

standard, unmodified SystemC kernel and library to model non-digital components, and

represent the first application of SystemC design to a MEMS SoC.
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5.  Thermal Issues

With process technologies reaching the nanometer region, chip power density has scaled

exponentially across process generations [80]. This has led to increasing die temperatures

in modern chips. The exponential dependence of subthreshold leakage power dissipation

on temperature aggravates this problem further, potentially affecting correctness of

operation, timing closure (and hence speed), as well as reducing reliability and operational

lifetime. In addition, the increasing demand for mobile systems has increased the need for

low-power designs. 

A system or device reaches steady-state thermal equilibrium when the rate of heat

transfer out of the system equals the system’s net power dissipation. The three key

mechanisms involved in heat transfer are radiation, conduction and convection. Cooling

systems (heat sinks, heat spreaders, fans etc.) all focus on reducing peak temperatures by

increasing the rate of heat transfer. Radiation is the simplest heat transfer mode, involving

just a large exposed surface area for transferring heat to the surroundings, often using fins

on a heat sink to increase this surface area further. Conduction to the ambient surroundings

as well as to cooler nearby components is also achieved by heat sinks, heat spreaders etc. 

Figure 2.5 shows a cross-sectional diagram of the mounting of a chip on a printed

circuit board. Heat transfer directly away from the chip is primarily conductive. A high-

conductivity thermal interface material fills surface imperfections to ensure efficient heat

transfer from the chip to the heat sink. Heat transfer away from the heat sink is primarily

radiative or convective, since air has a very low thermal conductivity (about four orders of

magnitude less than that of aluminum). A secondary heat transfer path also exists

downward through the package backing to the PCB. The PCB is in physical contact with
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the surroundings, and can conduct heat away (for example, to a case). However, the

thermal conductivity along this path is significantly less than that along the primary heat

transfer path to the heat sink [97] because of the comparatively low-conductivity materials

used and the low cross-sectional area presented to lateral heat flow. In embedded systems,

weight/size considerations, as well as the lower dissipated power, neccessitate the use of

simple heat spreader (a simple, fin-less, metal sheet of the appropriate dimensions) to often

be used instead of the more efficient heat sink. 

Conductive and radiative heat transfer can be improved through purely passive heat

transfer systems. However, improving convective-mode transfer usually requires an active

cooling solution, of which the CPU cooling solutions of fans and air vents are a common

example. 

In the past, increasing system power consumption has been address by the use of

“bigger fans” as a downstream fix, but this solution is not scalable as power densities

increase while components occupy smaller and smaller areas. Further, active cooling
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Figure 2.5. Cross-Sectional View of Chip and HeatSink Mounted on a PCB.
The figure shows the typical mounting of a silicon chip and heat sink on a printed circuit board.
The fins on the heat sink increase total surface area for better heat transfer outward, and a
thermal interface material (“thermal grease”) ensures a high thermal contact surface area, and
thus better thermal conductivity, between the chip and the heat sink. 
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solutions are impractical for use in small form-factor mobile devices, such as smartphones

or GPS units. The cost of effective packaging and cooling also increases, since such

packages and cooling systems must be designed to address worst-case power dissipation

and ambient conditions. Dynamic Thermal Management (DTM) techniques [74], reduce

system performance at runtime before excessively high temperatures are reached, allowing

the system as a whole to be designed with lower worst-case parameters in mind. Such

DTM techniques may include “thermal throttling” (first used on the Pentium 4), where all

execution is stopped if the processor nears a thermally unsafe condition. Alternatively, the

Figure 2.6. A Simplified Equivalent Thermal Circuit For The Chip Mount. 
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processor speed may simply be slowed down, or specific functional blocks disabled to

prevent overheating.

The rest of this section is organized as follows. Section 5.1 discusses the impact of

temperature on system design and performance parameters, such as leakage current,

performance characteristics, substrate thermal conductivity, reliability, signal integrity and

power/ground supply integrity. Section 5.2 provides an overview of various thermal and

power management techniques. Section 5.3 discusses various chip-level thermal modeling

techniques, such as thermal simulation, electrothermal simulation, and microarchitecture-

level thermal modeling.

5.1  Thermal Impact on Design and Performance Parameters

5.1.1  Impact of Temperature on Subthreshold Leakage Current

The subthreshold leakage power for a CMOS transistor is given by:

(EQ 2.4)

where 

• µ is the mobility.

• Cox is the oxide capacitance.

• m is the body effect coefficient, and has a value in the range of 1.1 - 1.4. 

• W is the channel width.

• L is the channel length.

• k is the Boltzmann constant.

• T is the temperature (in Kelvin).

• q is the electronic charge.
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• Vg is the gate voltage.

• Vt is the threshold voltage.

• Vds is the drain-source voltage.

The mobility and threshold voltage in the above equation are also temperature-dependent,

and their values are given by:

(EQ 2.5)

(EQ 2.6)

here, T0 is room temperature (300K), and κ is the threshold voltage temperature

coefficient, with a value around 0.7mV/K [56].

The decrease in threshold voltage and the increase in kT/q (on both of which the

current has exponential dependence) dominates the slight decrease in mobility with

temperature, and leads to an overall increase in the subthreshold leakage current that is

close to exponential.

As described earlier in the chapter, a more directly usable approximation is described

by Pedram et. al. [55, 74], based on the BSIM3v3.2 MOSFET model. The subthreshold

leakage of a transistor in the “off” state (Vds = VDD, Vgs = 0) can be expressed as:

(EQ 2.7)

where ktech is a transistor geometry and CMOS technology dependent parameter, W and L

are the transistor width and length, VT denotes the device threshold voltage and S (the

subthreshold swing parameter) is the subthreshold voltage decrease required to increase

Isub by a factor of ten. It is S=2.3nkBT/q where n≥1 is a device-dependent parameter, kB is
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the Boltzmann’s constant, T denotes the temperature in degrees Kelvin, and q is the

electron charge. Typical values of S are 70-90mV/decade for bulk CMOS devices. In

general, the temperature sensitivity of Isub is 8-12x/100ºC [74].

This gives us 

(EQ 2.8)

where s is the temperature sensitivity of subthreshold leakage current mentioned above,

and Tk is temperature rise (not absolute temperature) over which this approximation is

valid. For example, in the above sensitivity values, s is 8-12 and Tk is 100ºC.

5.1.2  Impact of Temperature on Performance Characteristics

MOSFET performance parameters are also dependent on temperature. In particular, both

dynamic power dissipation and gate delay depend on the drain current, which is given by

the alpha-power law:

(EQ 2.9)

here K is a technology-specific constant, vsat is the saturation velocity and α is the velocity

saturation index, with a value of 1.0 – 2.0 in the deep submicron region. It is usually

assumed that the saturation region is in effect for almost the entire duration of a transition

[56]. As temperature increases, the saturation velocity decreases slightly, and is given by

(EQ 2.10)
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where η is the saturation velocity temperature coefficient (typically around 120ms-1/K at in

a 70nm process). The saturation velocity dominates the temperature-dependence of drain

current at high supply voltages, and drain current drops as temperature increases. However

as the Vdd supply voltage drops closer to Vt, temperature-dependent changes in the (Vdd-

Vt(T))α term increase in significance to the point where they cancel out the saturate velocity

effects, and weaken the negative temperature sensitivity of drain current. At supply

voltages around 1.0 V, the temperature dependence of the drain current may even become

slightly positive [56].

5.1.3  Impact of Temperature on Thermal Conductivity

For detailed modeling, the impact of temperature on thermal conductivity may also be

taken into account. This is given by [2, 32]:

(EQ 2.11)

This nonlinearity is often accounted for by using Kirchoff transformations [2, 32] to find an

equivalent “apparent temperature”, that can then be solved linearly.

5.1.4  Impact of Temperature on Reliability

At high current densities, electromigration occurs in the metal interconnect. This the

gradual transport of material caused by momentum transfer between conducting electrons

and the metal atoms comprising the interconnect. The high current density can be thought

of as an “electron wind”, blowing metal atoms “downwind” to form “hillock” or “whisker”
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structures, and leaving voids in the “upwind” direction. If unchecked, this can cause greatly

reduce circuit reliability by hastening its failure. The Mean Time To Failure (MTTF) is

given by Black’s equation [74]:

(EQ 2.12)

where:

• A is a process and geometry-dependent constant.

• J is the DC (average) current.

• n is 2 under normal conditions.

• Q is the activation energy for grain-boundary diffusion. Its value is ~0.7eV for Cu-

Al.

• k is the Boltzmann constant.

• T is the metal temperature.

The impact of current density and temperature alone on circuit reliability can then be

expressed as [74, 81]:

(EQ 2.13)

where Jmax(Tspec) is the maximum current density at the specification temperature, and

Jmax(Tjunc) is the updated current density based on the actual junction temperature based on

Equation 2.12 (Black’s equation). As temperature rises, the currents that can be safely

handled by the system grow successively smaller. In an SoC, the spatial and temporal local

maximum of the temperature can easily exceed the specification temperature, which

greatly lowers the limits on allowable current. If this is not taken into account, chip lifetime
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may be significantly reduced. Electromigration considerations are part of the reason why

overclocked chips (chips forced to run at speeds higher than their specifications through

board-level modifications and aggressive cooling) have significantly reduced lifetimes.

5.1.5  Impact of Temperature on Signal Integrity

High thermal gradients are indicative of localized heating, which increases the risk of the

electromigration failure mode discussed above. Thermal gradients also lead to nonuniform

temperatures along the global interconnect. Since resistance is a function of temperature,

this creates a nonuniform spatial distribution of interconnect resistance, which in turn

creates nonuniform wire delays, results in clock and data signal skew. These effects, as well

as interconnect self-heating, need to be taken into account during later design stages (place

and route, layout, and verification) in order to preserve signal integrity, timing and overall

performance.

5.1.6  Impact of Temperature on Power/Ground Supply Integrity

Under ideal conditions, a constant voltage is supplied as power to each standard cell, and

designers take great care to supply clean ripple-free waveforms to the chip power and

ground pins. However, once on the chip, the power supply suffers resistive (IR) drops, both

in the power and ground rails, and in the individual traces along each standard cell row. As

the resistance increases with temperature, these drops become worse, to the point of

impacting circuit performance at higher temperatures. 

Two factors exacerbate this problem even further. One is, interestingly, the use of

low-power techniques such as clock gating or voltage gating, which increase power surges

and temperature gradients as entire functional units go offline and online. While these

techniques lower average chip power dissipation and temperature, the power surges they
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cause lower the worst-case power supply available, impacting timing. The second factor is

the switching noise caused by the inductive voltage drop (Ldi/dt), which again lowers the

worst-case available voltage, lowering the speed at which the system can be guaranteed to

function correctly.

5.2  Thermal and Power Management Strategies

A variety of thermal and power management strategies have been proposed, and are used in

a number of existing products. While low power dissipation in general leads to lower

average temperatures, temperature and power management are not identical. For example,

active thermal management components, such as fans, actually increase total power

dissipation in order to reduce chip temperature. On the other hand, systems that consume

less power are less likely to suffer thermal issues as well, and many power-reduction

techniques reduce temperature in the process.

5.2.1  System-Level Thermal and Power Management

System-level thermal and power management techniques are usually applied to

enclosures, individual boards and packages. 

System-level power management techniques include spinning down idle disk

drives, putting inactive components (monitors, network adapters etc.) into low-power

states, and making power state decisions based on the current power supply (battery or

mains) and other factors.

Static system-level thermal management approaches include heat sinks, heat pipes

(sealed hollow tubes filled with a phase-change material that have a very low effective

thermal resistance), vents on the enclosure, and a physical design that allows for the easy

flow of air through natural convection. 
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Systems dissipating over 5-10W usually require more active thermal management,

such as fans that maintain the board temperature below a certain threshold through forced

convection, heat pumps that employ the Peltier effect or even liquid cooling. These

techniques usually employ feedback-based mechanisms using temperature sensors to

control the degree to which the active thermal control mechanisms are used. If the tempera-

tures are sufficiently low, the active thermal control mechanisms are usually put into low-

power states.

5.2.2  Chip-Level Static Thermal Management

It is possible to apply a number of techniques during floorplanning, layout and other design

stages that can improve the thermal characteristics of the final chip without a dispropor-

tionate impact on its performance, timing or functionality. These techniques include

thermal flattening: placing the functional units based on their average power density so that

the variation in estimated temperatures across the chip is minimized, thus reducing the

appearance of hotspots due to tightly-clustered high-activity functional units. The designs

can be made more robust against voltage drops and thermal effects by reducing the peak

thermal demand sustained over periods of tens of milliseconds [74].

Wider rails, traces and interconnect, as well as appropriate buffer insertion and

sizing, can significantly mitigate the effects of nonuniform heating and IR drops. In

addition, designers must keep in mind that the MOSFETS generating the bulk of the heat

are in the substrate, usually buried under low-conductivity silicon dioxide. Putting dummy

vias in the higher interconnect layers can reduce both interconnect and substrate tempera-

tures by lowering the thermal resistance between the high-conductivity metal lines and the

substrate. This approach, combined with a consideration of the electrothermal and
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packaging parameters, can significantly improve overall thermal behavior, especially if

these techniques are made part of an overall RTL-to-GDSII tool flow.

5.2.3  Dynamic Chip-Level Power and Thermal Management

Traditional thermal solutions attempt to limit the peak temperature by limiting the peak

processor power dissipation (the Thermal Design Power, or TDP), and design the rest of

the system around this value to ensure reliable operation even under worst-case conditions.

However, these worst-case scenarios are rarely observed under realistic operating

conditions. This can be considered a wastage: the system cost, weight and size are based on

a worst-case-tolerant design (large heat sinks, fast fans etc.), but this protection is rarely

being used to its fullest. However, lowering the degree of thermal protection is not feasible

as it would adversely impact system reliability in the case that overheating does occur. 

Dynamic Thermal Management (DTM) attempts to address this situation by initiat-

ing a hardware slowdown, reconfiguration or shutdown at runtime if it senses that the chip

temperature is approaching some predefined limit. While this entails a performance loss

whenever the DTM mechanism is triggered, it allows the rest of the system to be designed

with a TDP that is significantly lower than the worst-case power dissipation.

DTM can use a variety of mechanisms to lower power dissipation. These include

clock throttling, moving computation to auxiliary hardware, register resizing, limiting

processor issue width, clock gating, power gating, dynamic voltage scaling (DVS) or other

dynamic power management (DPM) techniques [74].

While DTM and DPM are closely allied, there is a fundamental distinction between

them. DPM tries to meet a task deadline while minimizing the sum of all energy consump-

tions over time (an entire application run) and space (over all parts of the chip). This is a
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constrained minsum optimization problem. On the other hand, DTM has to prevent the

peak temperature reached by any point on the chip at any point of time from rising above a

specified threshold, regardless of its cost in terms of performance. This is an unconstrained

minmax optimization problem. DTM techniques must take into account localized heating,

and must act within a relatively short timeframe to preempt the local temperature from

exceeding the threshold. On the other hand, DPM approaches, including DVS, try to

exploit workload predictability in order to minimize the total energy required to complete a

task. DPM approaches stay relevant even in many systems where there is little heating,

such as extremely low-power embedded systems, because of the battery-life requirements

that usually apply to such applications.

Studies on DTM have been mostly restricted to microarchitectural studies. Gunther

et. al. [45] describe thermal and power management strategies employed in the design of

the Pentium 4 processor, which relied on global clock gating (“thermal throttling”) as its

primary DTM strategy. Other studies have been conducted using the HotSpot [49] and

Wattch [15] thermal modeling tools, using lumped-RC thermal modeling techniques.

Chiueh et. al. [26] propose a hardware circuit for implement DTM for SoCs, which can

incorporate on-chip DVS as well as control of off-chip multistage fan controllers. 

DTM techniques can be further divided into reactive and preemptive techniques.

Reactive techniques wait for a threshold temperature to be reached before acting, and so

must respond very quickly (within ~100µs[45]). This short timespan limits the kind of

DPM strategies that reactive DTM approaches may use to reduce instantaneous power

dissipation, since DVS and register file resizing may involve a longer time overhead each

time they are invoked. Preemptive (also known as predictive) techniques are not as limited
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in their choice of mechanism, but must be able to predict when intervention is required to

forestall the temperature threshold from being exceeded. In particular, many multimedia

applications are well-suited for this in terms of predictability, and Srinivasan and Adve [86]

present a DTM technique that exploits this effectively.

5.3  Chip-Level Thermal Modeling

Heat generation occurs in both the devices (substrate), and the interconnect layers, with

device heating being the major source [74]. On a micro-scale, joule self-heating in the

interconnect is usually also taken into account since interconnect layers are thermally

isolated from the substrate by insulation layers with a lower thermal conductivity.

However, on a larger scale, interconnect joule heating constitutes a very small fraction of

the overall heat produced.

At the simplest level, the steady-state average chip temperature can be expressed

simply as:

(EQ 2.14)

where 

• Tchip is average junction temperature on the chip.

• Tambient is the temperature of the immediate surroundings (usually taken as 25ºC,

but also often taken as 45ºC as the temperature of the inside of a computer case).

• Rθ is the equivalent thermal resistance of the substrate, package and heat sink (in K/

W).

• Ptotal is the total power dissipation in the chip.

Tchip Tambient RθPtotal+=
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While this linear equation is useful for a first-order approximation of the level of heating

expected, it cannot provide details of the peak (rather than average) chip temperature, the

location of thermal hotspots on the chip, and the impact of hardware and software design

decisions on these. In addition, the power density will itself change in a spatially non-

uniform way as a result of elevated temperatures, and it has been shown that thermal effects

must be taken into account while analyzing power management strategies to correctly

estimate their impact [56].

In general, the heat diffusion equation is used to describe chip-level conductive heat

transfer in order to derive a temperature map (also known as thermal profile) of the chip

[70, 74]. This 3-D equation can be expressed as:

(EQ 2.15)

subject to the thermal boundary condition:

(EQ 2.16)

where:

• ρ is the density of the material.

• Cp is the specific heat of the material.

• T is the temperature (K), with Ta being the ambient temperature.

• t represents time.

• k is the thermal conductivity.

• g is the power density of heat sources.

ρCp
∂T r t,( )

∂t
------------------ k r T,( ) T r t,( )∇( )∇• g r t,( )+=

k r T,( )∂T r t,( )
∂ni

------------------ hi Ta T r t,( )–( )=
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• hi is heat transfer coefficient in direction i on the chip surface. 

hi = 1/(AiRθ,i), where Ai is the effective area normal to the vector i and Rθ,i is the

equivalent thermal resistance.

• ni is the unit vector along the outward direction normal to the boundary surface.

In the special case of homogeneous materials, we obtain:

(EQ 2.17)

which allows us to simplify Equation 2.15 and Equation 2.16 to obtain a second-order

parabolic differential equation:

(EQ 2.18)

The form of this equation is similar to that for the flow of electrical current. There

is, in fact, a well-known duality between the behaviors of electrical and thermal systems,

shown in Table 2.1. An electrical analogue of a thermal system can be constructed by

applying these dualities appropriately, and expressing ambient temperature as an indepen-

dent voltage source (often just taken as ground/reference). The node voltages in the electri-

cal network thus constructed correspond to node temperatures in the thermal network being

studied. 

TABLE 2.1. Dualities Between Thermal and Electrical Behavior

Thermal Parameter Corresponding Electrical Parameter

Heat Flow (W) Current (A)

Thermal Resistance (K/W) Electrical Resistance (Ω)

Temperature Difference (K) Voltage Difference (V)

Thermal Capacity (J/K) Electrical Capacitance (F)

k r T,( ) T r t,( )∇( )∇• k T( )∇2T r t,( )=

ρCp
∂T r t,( )

∂t
------------------ k T( ) ∂2T r t,( )

∂x2
--------------------- ∂2T r t,( )

∂y2
--------------------- ∂2T r t,( )

∂z2
---------------------+ +

⎝ ⎠
⎜ ⎟
⎛ ⎞

g r t,( )+=
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5.3.1  Thermal Simulation

A full-chip thermal model uses a lower-level power model that generates a power density

map, or power profile, which is a tabulation of the power density at each point on the chip.

For convenience, this map may be generated from, or expressed in terms of, the spatial

location, chip area, and net power consumed by each chip component at a given point of

time. 

Several approaches have been proposed to perform thermal analysis. These differ

in the level of detail, the numerical techniques used, the heat sources that are modeled, and

the ability to handle various types of boundary conditions. Thermal modeling techniques

may be roughly classified into two categories [74]. 

The first set of techniques is based on the discretization of differential operators or

field strength. These techniques use numerical methods to solve the chip heat conduction

equations. The numerical methods used include finite difference methods [25, 32], finite

element methods [21, 99] and boundary-element methods [36]. These methods are highly

i C

R

v0

Figure 2.7. The Electrical Analogue Of A Simple Thermal System. 
The heat generated is modeled as a current source. The thermal capacity of the system is
modeled as a capacitor, and thermal resistance to the ambient conditions is modeled as an
electrical resistance. The ambient temperature is treated as a voltage source.
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accurate and can handle a wide range of boundary conditions and heat sources. However,

this accuracy comes from their approach of dividing the system being studied into a very

large number of elements. The resulting thermal circuits are extremely large, resulting in

very slow simulation. Some techniques, such as 3-D thermal ADI [96, 97] and model order

reduction [28, 98] have been designed to overcome this shortcoming and lower the

computational cost of high-accuracy numerical solution.

The second category of thermal modeling techniques is based on Green function

formulation [24, 48, 92], which reduces the 3-D problem to a 2-D problem. These

techniques are less accurate, but are faster and simpler.

Figure 2.8. Full-Chip Thermal Modeling. 
This involves treating the entire chip as a distributed network of heat sources, capacitances and
thermal resistances, formulating the solution as a set of differential equations, and solving for
temperature as a function of time. 
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5.3.2  Electrothermal Simulation

The thermal modeling techniques mentioned above can be extended to electrothermal

simulation, wherein the electrical behavior of the circuit is also modeled, and is used to

derive the power consumption values. Again, there are two major techniques used for

integrated electrothermal simulation.

In the first approach, also known as the direct method, the thermal problem is

directly transformed into the corresponding electrical circuit, and an electrical circuit

solver models both the thermal behavior and the actual electrical behavior. This approach is

used, for example, by Sabry et. al. [79].

The second approach, known as the relaxation method, uses separate electrical and

thermal simulators and iterates repeatedly, updating each simulator with the values from

the other at each iteration. This method is usually preferred, since it allows the use of

existing software packages designed for basic simulations and also allows the thermal and

electrical models for a system to be build independently. Its advantages included its

simplicity, however, it frequently fails to achieve convergence for very strongly coupled

problems, and is also unable to efficiently model changes that occur very rapidly.

The relaxation method and finite difference method are used by Cheng et. al. for

their ILLIADS-T electrothermal timing simulator [25]. Given the chip layout, the

packaging specification, and a periodic input signal pattern, the simulator models each gate

as a heat source to find the on-chip steady-state temperature profile and the resulting circuit

performance and reliability. Digele, Lindenkreuz and Kasper [32] also use this method,

additionally accounting for the temperature-dependence of thermal conductivity. 
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Akturk et. al. [2] propose a method for predicting the temperature profile of

complex ICs at a single-device resolution by mathematically linking full-chip heating with

non-isothermal device operation equations. The technique accounts for the application

specific activity levels by using a using a Monte Carlo methodology. They report the

results for a Pentium III chip, also show how these techniques may be extended to the

modeling of 3-D stacked ICs [1].

5.3.3  Microarchitecture-level Thermal Modeling

The approaches described above are highly accurate, but are not designed for modeling

bidirectional interactions between processor software and on-chip thermal behavior. In

particular, there is a need for designers to be able to predict thermal behavior early in the

design flow, well before layout.

A step in this direction is the increased use of microarchitectural simulators, such as

HotSpot [49]. These use a power dissipation data from microarchitectural power tools such

as Wattch [15] to model heat sources on the granularity of functional unit blocks, with each

functional block assumed to have a uniform power density. 

Such simulators use a microarchitectural power modeling framework (such as

Wattch), which inputs power data into a thermal equation solver. Information from the

thermal equation solver can be fed back into the performance model (for example as data

sensed on a simulated temperature sensor). This allows designers to easily evaluate the

impact of Dynamic Temperature Management (DTM) and Dynamic Power Management

(DPM) approaches. 

The usefulness of a high-level modeling methodology depends largely on its

simulation speed. Microarchitectural models use low spatial and thermal resolutions,
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lumped RC networks, and often also use non-uniform grid sizes in order to reduce the

computational complexity thermal equation solving. The underlying premise is that

compact models early in the design flow are a useful tool, even if they have lower accuracy

than detailed device-level models.

Microarchitecture-level thermal modeling is the most closely related to our work

among the approaches discussed in this chapter. However, the microarchitectural power

modeling approach poses a problem for SoCs, since the microarchitecture of third-party IP

cores is often unknown to the system designer, and since even microarchitecture-level

modeling may be too detailed (and thus slow) for simulation of system-level workloads. 

We leverage system-level, rather than microarchitectural, power and performance

modeling techniques to allow thermal analysis at higher levels of abstraction, provide high

simulation speeds, and to interoperate with the tools and methodologies that are used for

SoC design. In addition, we also quantify the impact of different spatial and temporal

granularities on accuracy and simulation speed. Further, we model additional effects, such

as the impact of temperature on substrate thermal conductivity, that are not addressed by

current microarchitecture-level tools. To do this, we restrict ourselves to a uniform-grid

thermal analysis of SoCs, since variable-grid analysis introduces complications in the

modeling of temperature-dependent substrate conductivity.
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 Chapter 3: High-Speed Power-Performance Co-Simulation 
for XScale-Based SoCs

1.  Introduction

The XScale microprocessor core is an Intel implementation that is compliant with ARM

version 5TE and is the successor to the Intel StrongARM line of embedded microproces-

sors. The XScale is a 7/8 stage superpipelined 32-bit RISC core, with dynamic voltage and

frequency management, a MAC coprocessor for 16-bit SIMD (Single Instruction Multiple

Data) multiplication and a 40-bit accumulator [8]. Later versions of the XScale also

featured an integrated WMMX (Wireless MultiMedia eXtension) SIMD coprocessor [7].

The PXA series of XScale-based SoCs are application processors, widely used in high-end

mobile embedded devices such as smartphones, PDAs and portable media players. Other

XScale variants are used as IO, network or control plane processors in desktop/server

environments.

The PXA271 (Bulverde) studied in this section is an SoC that features an Intel

XScale Core, instruction and data caches, on-chip memory-mapped SRAM, a WMMX

coprocessor unit and a wide variety of on-chip controllers for various peripherals. Figure

3.1 shows the block diagram corresponding to PXA27X series of XScale-based application

processor SoCs.

Energy consumption, which directly impacts battery life, is a major design

constraint in this class of devices, making power models of such devices a valuable tool for

hardware/software co-design, workload analysis and system optimization. In this section

we experimentally characterize instruction-level power dissipation patterns for an XScale-

based PXA271 SoC, identifying many new effects to build the most detailed instruction-
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level power models to date of any ARM-based processor, and also characterizing the

power dissipation patterns the WMMX SIMD co-processor, L1 caches, SDRAM and the

on-board address and data buses. We follow this up by building a generic framework for

fast execution-driven power-performance co-simulation within standard SystemC, and

expressing the experimentally obtained power models within this framework. Lastly, we

validate this approach by running large, realistic benchmarks and a commercial operating

system on an XScale-based test platform and comparing physical measurements of power

Figure 3.1. The Intel PXA27x Processor Block Diagram for a Typical System [7]. 
Note that block sizes do not correspond to actual die area occupied by components.
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dissipation over realistic lengths of time (a complete Windows CE OS boot and application

run over billions of clock cycles) against those predicted by the SystemC simulation. 

To the best of our knowledge, this is the first System Description Language (SDL)-

based approach to validate the accuracy of the power estimates obtained against physical

measurements from a real system. We are also the first to report power-enabled simulation

speeds over 1 million instructions per second (MIPS). The power modeling and character-

ization techniques we use here were applied to a SystemC-based simulation infrastructure

but are applicable to any execution-driven simulation framework. Our results indicate that

the power estimates obtained were accurate within 5% of physical measurements from

hardware, while the simulation speeds achieved consistently exceeded a Million Instruc-

tions Per Second (MIPS).

The contributions of the work presented here include:

• Detailed characterization results and power models of a variety of embedded

system components, including an accurate instruction-level power model of the

XScale processor.

• Realistic validation of a system-level execution-driven power modeling approach

against physical hardware.

• A scalable, efficient and validated methodology for incorporating fast, accurate

power modeling capabilities into system description languages such as SystemC. 

Some of the work presented in this chapter has appeared in the proceedings of SPIE

(SPIE’05)[16] and been accepted for publication in the IEEE Transactions on Embedded

Computing Systems (TECS ‘07) [17].
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2.  Methodology

We divide the methodology into three sections: parameter extraction, in which the

components are characterized, performance modeling, in which a SystemC-based

performance simulation infrastructure is set up, and power modeling, where the

performance modeling framework is augmented with power modeling capabilities.

2.1  Stimulus-Based Parameter Extraction

In this section, we describe how system components can be characterized so that the high-

level power models reflect accurate information. We use short assembly programs (stimuli)

to characterize various components. A stimulus sets up the system into a predefined state

and runs a large number of instances of a short instruction sequence in a loop. For example,

the energy cost of a microprocessor instruction can be calculated by running a number of

instances of the instruction in a loop while measuring average power. To study more

complex effects, a sequence of several instructions can be replicated several times and

looped. The loop should be short enough to fit in the instruction cache (unless out-of-cache

effects are being studied) and long enough for the error due to the branch at the end of the

loop to have negligible impact on measurements [15]. Similarly, stimuli running repeated

cache misses or memory accesses can be used to easily measure the energy cost of each bus

transaction type. Stimuli for each component are based on its ISA or external interface, not

on its detailed microarchitecture, and so are fairly straightforward to create.

Using the method described, we ran various stimuli on hardware to obtain the

parameters for the power models. However, it must be stressed this approach is not limited

to post-silicon characterization, but can be used with any lower-level tool (including RTL

and microarchitectural descriptions) that can map an energy value to each stimulus. A wide
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variety of RTL and micro-architectural power modeling tools exist, and stimuli can be run

on these instead of hardware to extract power model parameters (this approach is taken, for

example, by Givargis et. al. for peripheral cores [5, 6]). It must be noted that such tools are

not completely accurate, and their inaccuracies will be reflected in the final power

estimates when they are used for characterization instead of hardware. We characterize

directly with hardware to quantify how much additional inaccuracy is introduced by our

methodology and we find this to be well within 5%.

2.2  Performance Modeling

The platform we model is based on the XScale [8], a family of Intel microprocessors that

implement the ARM™ ISA, use deep pipelines and microarchitectural optimizations for

high performance, and feature a WMMX (Wireless MMX) SIMD co-processor. We use

Intel’s Xsim, a C-based cycle-count accurate performance simulator for the XScale family.

It models all XScale instructions, the L1 caches and the WMMX coprocessor. The fetch

and retire times of each instruction are computed by tracking dependencies and resource

constraints instead of detailed pipeline modeling. Xsim has been validated to be cycle-

accurate at instruction execution, and accurate within 2% of hardware on memory

accesses. We modified Xsim to enable its re-use as a modular SystemC component. 

We use transaction-level SystemC models of SDRAM, SRAM and other system

modules. We create a transaction- level bus model to reflect the off-chip system bus. The

various memories (SDRAM, SRAM and Flash) are bound to identical address ranges on

the simulated platform and on actual hardware. 

A complete SystemC-based platform simulation consistently reached execution

speeds between 1 and 1.2 MIPS, allowing us to complete a Windows CE boot and applica-
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tion run in under 20 minutes. No appreciable slowdown was observed (at a measurement

accuracy of 2%) when power modeling capabilities were added1. This is to be expected,

since the computational overhead of the kind of high-level power modeling performed in

this case is typically very small (a member function invocation and a counter update each

time a component power model is invoked) compared to the computation involved in

decoding and executing a single processor instruction (which involves multiple nested

switch statements, bit manipulation, a variety of function calls, checks for special

conditions, register file and cache updates, checks for stalls and hazards, updating pipeline

state, managing timing information and possibly TLB and branch predictor lookups). The

overall execution speed is thus determined by the performance modeling, and power

modeling, if done at a sufficiently high level of abstraction, is not a bottleneck.

It must be noted that the high accuracy in terms of power consumption is due to the

detailed nature of the power models used, including the most detailed instruction-level

XScale/ARM power model to date. However, the gains in speed result from the high

transaction-level abstraction at which both power and performance were modeled. 

1. Measured on a 2.8GHz Pentium 4 HT with 1GB of 400MHz DDR RAM. Disabling power modeling at 

compile time changed the average execution time over 10 runs of a 1.25 billion instruction run from 1068 to 

1059 seconds (0.8%). The maximum variation of individual runs from the mean (due to random latencies, 

background processes etc.) was 21 seconds in each case (1.87%).
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2.3  Software Architecture for Power Models

At the most fundamental level, the purpose of a component's power model is to monitor

component activity in order to track its energy consumption. We separate out activity

monitoring, which is highly component-specific, from energy accounting and reporting,

which can be standardized across all power models.

While the implementation of this is not complex, we found that the robustness and

re-use achieved through this approach considerably simplified both the creation of power

models and the top-down data gathering required for power analysis. No changes in the

SystemC kernel were required and the power-enabled components fit directly into the

existing framework. In addition, the fact that the power model of each component exposes

a standard interface to the rest of the system simplifies component-independent power

analysis operations (such as sorting all components by average power consumption,

finding components with the maximum variation in power etc.). We outline some of salient

details that illustrate its general applicability.
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2.3.1  Interfaces

Each performance model uses a component-specific interface (the Component Power

Hooks) to transfer power- specific information to the corresponding power model, which

computes the energy involved based on this information. However, rather than having a

separate energy accounting and reporting scheme for each component, a generic Power

Model Interface provides a standard definition and implementation of these. This is seen in

Figure 3.2.

Component Power Hooks: These are a small set of functions exposed by the

power model and called by the component (the performance model) when it has power-

relevant information (such as information about the current transaction). The XScale

power model exposes functions such as gotInstruction(), gotCacheAccess() etc. The

information needed by the power model is passed as parameters to these functions. For

example, the performance model passes the cache access type and number of bytes

Figure 3.2. Proposed Software Structures for SystemC Power Modeling. 
The hooks for communication between performance and power models are component-
specific, while the Power Model Interface is standardized.
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accessed as parameters to gotCacheAccess(), which causes the power model to calculate

the incremental energy consumed and update its state accordingly. The component power

hooks are tightly coupled to functionality, and each component can have a different set of

these.

Power Model Interface: This is a common interface implemented by all power

models. We implement this as a generic power model class which defines default

implementations of all functions and data structures required. It provides a set of public

functions to allow system-wide power data gathering and analysis (Table 1). In addition, it

also implements a set of protected functions and fields that maintain internal data structures

and energy accounting information. Power models extend this class, and do not have to

duplicate common functionality, thus creating a unified energy accounting structure and

freeing power models from having to implement individual energy accounting schemes.

2.3.2  Internal Data Structure

The total energy consumed by a component can often be further broken down into various

categories. SDRAM energy, for example, comprises read energy, write energy, activate

energy and power down energy. A single lumped “energy” counter would discard the fine

grained information that a power model can provide.

To address this, we broke down each component's energy consumption into various

contributors. Each contributor in a component was identified by a name, and had its own

energy counter. The data for each component's contributors was kept in an internal hash

table for fast lookup by name. The class that implemented the generic power model

interface performed all housekeeping and energy accounting tasks.
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In hierarchical systems, sub-components can be mapped as contributors, and their

power models are queried for energy values when needed. This hierarchical structuring

enables system scalability, since it allows a top-level system power analysis or trace

generation scheme to study the system at various levels of granularity without having to be

aware of the details of each modeled component. Thus, low-level modules can be added,

subtracted or substituted without having to rewrite the top-level power data gathering

procedures (which only need to know about top-level modules). This is contrast to schemes

where each power model for each component in the system under study must be considered

separately since there is no hierarchical structure associated with the power models [2].

TABLE 3.1. Using the Power Model Interface. 
This table illustrates common operations such as obtaining a reference to a
component’s power model, obtaining the total energy consumed, getting the energy
consumed for particular operations, updating the energy consumed, and manipulat-
ing the power models of sub-components, if any.

Get power model of a component. component.getPM()

Get total energy consumed by a 
component.

component.getPM().getEnergy()

Get read energy consumed by 
SDRAM.

sdram.getPM().getEnergy(“read”)

Add 32nJ to SDRAM read energy
(can only be called by a power 
model).

sdram.getPM()
.incrementEnergy(“read”, 32E-9)

Find out if the given contributor is 
a 
sub-component.

mem.getPM().isComponent(“sdram1”)

Get the power model of a sub-com-
ponent

mem.getPM().getPM(“sdram1”)
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All of these are implemented in the generic power model class, which manages

these data structures and exposes only simple function calls to the outside world (Table 1).

Note that in a hierarchical system (such as a memory sub-system), a contributor may itself

be a component and have its own power model.

3.  Power Models

This section describes the power models used for the XScale microprocessor, its WMMX

SIMD co-processor, off-chip address and data buses, caches, SRAM and SDRAM. The

calibration data is also provided where appropriate.

3.1  The XScale Microprocessor

To model the Xscale processor, we used an instruction/event-based processor power model

based on earlier studies of microprocessor power consumption [12, 14, 15, 16]. Our

stimulus programs characterized the following energy effects:

• Leakage Power and Voltage-Frequency Scaling: The XScale processor provides

a large number of voltage/frequency settings. We ran a given stimulus at a fixed

voltage and varied the frequency, obtaining a linear plot, as shown in Figure 3.3.

Static power dissipation, which is largely leakage power, was estimated by

extending this curve to obtain power consumption at zero frequency [14]. Power

was then given by:

(EQ 3.1)

Where Pstatic and Pdynamic are the static and dynamic power consumption respec-

tively. Istatic is the static current consumed. CL is the load capacitance of the sys-

tem, f is the switching frequency, and Vdd is power supply voltage.

P Pstatic Pdynamic= VIstatic
1
2
---CLfVdd

2+ +=
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• Low-Power States: We also characterized power consumption of the processor in

various low-power modes such as idle, deep idle, standby, sleep and deep sleep [8].

The power corresponding to each mode is shown in Table 3.2.

• Instruction Opcode: Based on functionality, we divided the instructions into 11

different types (add, load etc.), in a manner similar to that used by Sinha et. al. [14].

TABLE 3.2. Observed XScale power dissipation in various low-power modes.

Power Mode Average Power Dissipation (mW)

idle (@416MHz) 130.54

deep idle (@13Mhz) 13.91

standby 3.45

sleep 0.15

deep sleep 0.09
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Figure 3.3. Finding Static Power Dissipation and Frequency Scaling Factor for the XScale. 
A large number of “add” instructions were run in a loop at a fixed voltage of 1.3V, and the
frequency was varied linearly to obtain a power-frequency plot. The y intercept (72.36mW)
reflects static power dissipation, which is mostly due to leakage power. The slope of the graph
was then used to calculate CL.
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Each energy cost was measured using straightforward stimuli running the same

instruction repeatedly with zero operands. The average power dissipation measured

while running a large number of identical instructions repeatedly in a loop ranged

from 304mW to 402mW, and is shown in Figure 3.4.

• Operand Value: The value of the operands affected the energy consumed to

execute an instruction. Energy was observed to increase roughly linearly with the

operand value and the number of “1”s in the operand [3, 13]. The additional energy

cost at 403MHz was observed to be approximately1mW for each bit set.

• Bypass Paths: A rather interesting pattern of bypass path behavior was observed,

with three different cases:
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Figure 3.4. Relative Base Energy Costs of Various Instructions.
These are shown in terms of average power dissipation at 403MHz.
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(i) The base case is when there are no inter-instruction dependencies and all source 

operands are obtained through register file reads.

(ii) When all source registers for an instruction are the destination registers for a 

previous instruction, the source operands are obtained from bypass paths and 4% 

less energy than the base case is used.

(iii) When both the bypass paths and the register file are used to get source oper-

ands, 5% more energy than the base case is used.

To the best of our knowledge, we are the first to characterize this effect.

• Sign Update and Conditional Flags: Instructions which updated or used the

conditional flags consumed more energy than instructions which did not. This

increase was under 0.5% and so it has not been made part of the power model.
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Figure 3.5. Impact of Register Switching on Average Power Dissipation.
Average Power Dissipation observed using stimuli is shown as a function of the number of
registers switched for the five of the most common instruction types. A monotonic increase in
power dissipation is observed as the number of switched registers increases. All values are
measured at 403MHz.
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• Register Switching: When two consecutive instructions use different source or

destination registers, an energy overhead is incurred depending upon the number of

registers switched. As seen in Figure 3.5, this can exceed 10% of the total instruc-

tion energy and can be expected to be incurred often. To the best of our knowledge,

we are the first to characterize this effect.

• Cache Accesses: Caches are modeled as on-chip SRAM. From the instruction-set

point of view, the energy cost of a load or store depends on the number of bytes

accessed. We characterize and model this. The difference between loads and stores

is included in the opcode energy cost mentioned earlier, and change in energy with

data cache access size shown in Figure 3.6 is included in the power model used.

• Shifts: The ARM instruction set allows the last operand of an instruction to be bit-

shifted by an immediate or a register value. This shift causes an additional result
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Figure 3.6. The Average Power Dissipation of Various Types of Data Cache Accesses. 
Larger accesses, such as double-word accesses, use slightly more energy. The y-axis
plots the average power dissipation of a large number of such accesses run
continuously (in a loop) at 403MHz.
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latency of one cycle. Incremental energy costs for all shift types were modeled.

These costs, averaged over all instruction types, are summarized in Table 3.3.

• Stalls: Stalls can be divided into instruction stalls, which are due to inter-instruction

data dependencies, event stalls, such as stalls on a double-word load, branch stalls,

or the pipeline flush penalty, and memory stalls on accesses to external memory.

Energy costs of all stall types were characterized and modeled. The observed costs

of various stall types are listed in Table 3.4.

TABLE 3.3. Additional Power Dissipation due to shifts, using stimuli at 403MHz. 
These are values averaged over all instruction types.

Shift Type Average Additional Power Dissipation (mW)

shift by immediate value 15.82

shift by register value 63.33

Rotate Right Extended (RRX) 43.29

TABLE 3.4. Power dissipation during various stall types, shown here in terms of 
additional mW of power dissipated at 403 MHz.

Stall Type Power Dissipation (mW)

data dependency 360

event stall 452

branch stall 369

stall on external memory 330
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3.2  The WMMX Co-Processor

The XScale processor family has an on-die ISA-mapped Wireless MMX coprocessor [11]

for fast SIMD processing. We divided the WMMX instructions into 17 types based on

functionality, in a manner similar to that for the main processor. Base costs for WMMX

instructions were characterized separately and built into the power model. The base costs

for each instruction type are shown in Figure 3.7. Additional effects for WMMX instruc-

tions were not characterized, since most workloads studied did not use a high number of

dynamic WMMX instructions.

3.3  Address and Data Buses

An off-chip system bus connected the processor to Flash ROM, SDRAM and various

peripherals on the platform. We characterized the power requirements of both the address

and data bus by using stimuli to drive specific sequences of values onto them. Bus energy

consumption in the nth bus clock cycle can be expressed as:
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Figure 3.7. Average Power Dissipation for various WMMX instruction types.
The Core Frequency used is 403MHz.
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(EQ 3.2)

Where C1 is a constant depending on bus capacitance, C0 is the energy cost of turning on

the bus driver I/O circuits, D is the data on the bus (including control bits) and H represents

the Hamming Distance between two binary numbers.

For each type of memory transaction (write, burst write, read line etc.), the exact

sequence of low-level operations involved is defined by the memory protocol and the

memory controller configuration. For example, for an 8-word read from a particular

memory address (a typical cache miss), the exact timings of row address and column

address strobe assertions as well as the row address, column address, activation time etc.

are known. The SystemC bus power model simply calculated these and assigned an energy

consumption to each incoming transaction rather than running a cycle-by-cycle simulation,

which would drastically affect simulation speed.

Note that the bus was driven by multiple power sources: the processor drove both

address and data buses, while the SDRAM consumed I/O power when it drove data onto

the data bus. We accounted for these appropriately. 

We observed that the 3.3V (I/O) power supply consumed 62mW as a base cost. In

addition, each bit flipped on the address bus costed 291pJ, and each bit flipped on the data

bus costed 219pJ.

3.4  Caches and SRAM

We used an SRAM power model similar to that used in some previous work [1, 4, 9] to

model caches and on-chip memory-mapped SRAM. Energy consumption was modeled as:

(EQ 3.3)

En C1 H Dn Dn 1–,( )× C0+=

E NreadEread NwriteEwrite NidleEidle+ +=
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Where N is the number of times each operation was performed and E is the energy cost of

that operation. The cache energy consumption was modeled in the XScale instruction-level

power model, with each kind of cache access (load or store, byte, half-word, word or

double-word) characterized and modeled separately. The cache energy consumption is

illustrated in Figure 3.6. 

3.5  SDRAM

SDRAM power consumption can be divided into core power consumption (for the memory

elements) [10], and I/O power consumption (for driving data onto the data bus). We

characterized these using stimuli. We used the data bus power model to calculate SDRAM

I/O power consumption. The main elements of SDRAM core power are:

• Base Power Consumption (Pb): The average power consumed by SDRAM when

not accessed is the sum of the standby and average refresh power.

• Activation Power (Pact): The average power consumed when an SDRAM page is

active.

• Read or Write Power (Prw): The power consumed during each SDRAM read/

write operation. The values of read and write current for SDRAM are equal [10].

The observed values of these are noted in Table 3.5. SDRAM power was modeled in a

manner similar to the bus transactions. The low-level operations in each transaction are

defined by the bus protocol and memory controller. The SDRAM power model simply

used these to calculate the energy cost of each incoming transaction without having to run a

cycle-by-cycle simulation. For a given transaction, energy consumption is given by: 

(EQ 3.4)Etransaction PbTb PactTact PrwTrw+ +=
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Representing the power model at the transaction level, rather than at the cycle level, lowers

the computational overhead of power modeling, and contributes to simulation speedup.

4.  Experimental Setup

For validation, we used a reference platform (Figure 3.8) featuring an XScale-based

PXA271 SoC that implemented an XScale processor, its WMMX coprocessor, L1 instruc-

tion and data caches (32KB each) and other system components [8]. The platform had

64MB on-board SDRAM, 32MB synchronous Flash and a variety of peripherals. The main

board was instrumented with 100mΩ resistors in series with the power supply on each

module, which enabled power measurements of individual components at a granularity

similar to that at which power is modeled. 

We measured the power consumption over multiple channels simultaneously using

an NI-DaQ data acquisition card, sampling at up to 20KHz with a post-calibration accuracy

of µV. The voltage drop across each resistor was of the order of millivolts to tens of

millivolts. The instrumentation resistors used were 1% accurate. Post-processing of

acquired data was done using LabView virtual instruments.

TABLE 3.5. Observed SDRAM Power Parameters (at a memory bus speed of 
91MHz)

Parameter Value (mW)

Pb 20

Pact 82

Prw 53

5±
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The major contributors to power consumption were the XScale-based PXA271

SoC, the SDRAM memory, and the off-chip buses. The three power domains we measured

for validation are: 

• Core Power: The 1.3V main power supply to the XScale- based PXA271 SoC. In

our configuration, it powers the XScale microprocessor core, L1 caches, WMMX

unit, clocks and on-chip interconnect.

• I/O Power: The 3.3V supply to the PXA271. It powers the on-chip memory

controller and I/O pads, including all off-chip buses. It also provides standby power

for on-chip components.

Figure 3.8. The Reference Platform Used for Physical Experiments. 
The XScale processor, the WMMX unit and the L1 caches are on the PXA271 SoC. The Logic
Analyzer connections allow bus signals and timing to be observed, while an array of power
instrumentation resistors allows the power supply of each component to be studied separately.
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• SDRAM Power: The 3.3V power supply common to the SDRAM (both SDRAM

core and I/O pads). 

We compared the predicted and measured power for each domain separately. Processor

frequency was varied, while the memory controller ran the off-chip bus at 91MHz. 

5.  Results

For validation, we measured average power over long benchmark runs and compared it

with the power estimates obtained from simulation. We used Windows CE as the operating

system, and ran identical benchmarks on the hardware and the simulator. The simulator ran

a complete OS boot routine followed by the application. Each benchmark was run in a

loop, with average power measured physically on hardware over a period of one second

and compared with the estimate obtained from the simulator.

To validate our results, we used the following benchmarks:

• Autocorrelation and Huffman Decoding benchmarks from the EEMBC

benchmark suite.

•  The Motion Estimation kernel from an h.264 video encoder.

•  A video filter (vidsp) from an h.264 video decoder. We evaluated three versions of

this filter: plain C, hand- optimized assembly, and hand-optimized assembly with

additional WMMX optimizations.

•  FFT (for 10,000 samples), JPEG Forward DCT (JFDCT) and Matrix Multiply

(MatMul) benchmarks from SNU-RT benchmark suite from Seoul National

University. 

Figure 3.9 (a) shows microprocessor core power consumption. We saw excellent

agreement between the measured and estimated power, with a worst-case error of 3.9% (for
77



vidsp C). As in earlier studies [12, 14], we observed a low variation in processor power at

a constant speed.

The power consumed by the I/O power supply is illustrated in Figure 3.9 (b). The

base power consumption when there was no I/O activity was 62mW. Activity such as bus

transactions consumed additional power. Large benchmarks with frequent memory

accesses, such as Huffman Decoding or FFT, stress the memory hierarchy, leading to

increased bus power consumption. Of the other benchmarks, only MatMul was cache-

bound. However, the large (32KB) cache size ensured that benchmarks with sufficient

cache locality displayed very sporadic bus traffic, hence consuming little bus power. For

example, the Motion Estimation benchmark uses an 800KB data set. However, it performs

significant computation on each block before fetching the next one, thus having low

average bus power dissipation. Figure 3.9(c) shows the power consumed by the on-board

SDRAM. The patterns observed were similar to those observed for XScale I/O, since the

bulk of bus transactions map to an SDRAM access. The SDRAM standby power was

28mW which corresponded closely to the sum of power-down active standby power and

average self-refresh power calculated from the component datasheet (31mW). 

It is interesting to note that while physical hardware measurements can only reveal

the total power consumed by each component, detailed power modeling can expose a much

finer degree of detail. For example, Figure 3.10 shows the various components of core

power while running Huffman Decoding and FFT at 403MHz. Direct physical measure-

ments cannot resolve net power into these components.

We also studied power variation with core frequency. Figure 3.11 shows system

power consumption while running Huffman Decoding and FFT at various core speeds,
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with bus frequency kept at 91MHz. Note that nonlinearities in I/O and SDRAM power are

correctly tracked (Figure 3.11(a)). These nonlinearities arise because Huffman Decoding

generates a very large amount of memory traffic. At high core speeds, the traffic is so high

that the SDRAM clock on the bus almost always on. As core speed falls, the bus traffic falls

linearly. Below a certain point, the time between transactions is sufficient for the SDRAM

clock on the bus to be turned off for significant amounts of time, leading to the further

lowering of power consumption at 91MHz. FFT (Figure 3.11(b)) does not display such

Figure 3.10. Contributors to Core Power Consumption.
The values are for simulation runs of various benchmarks at 403MHz. In contrast to the fine
detail visible here, hardware measurements can only measure the total power consumption. 
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high memory traffic, leading to a more linear plot. For other benchmarks, the bus traffic is

low and power consumption is mostly the base power consumption, which does not

decrease significantly as core speed is lowered.

For all benchmarks, the power estimates obtained were in excellent agreement with

physical measurements. While power consumption for each component varied by over a

Figure 3.11. System Power Consumption at Various Core Frequencies. 
Bus frequency is kept constant at 91MHz. Note that nonlinearities in I/O and SDRAM power
for Huffman Decoding are correctly modeled. 
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factor of two over this frequency range, we tracked this accurately and obtained average

errors under 5% and worst-case errors under 10% for each component at all speeds.

6.  Conclusion

Modeling at high levels of abstraction enables component re-use, top-down design and

rapid design space exploration. While languages such as SystemC provide valuable and

widely-accepted tools for high-speed high-level system performance modeling, there still

exists no standard strategy for high-speed system power modeling. In this study, we

defined a simulation-based methodology for extending system performance modeling

frameworks to also include power modeling. We demonstrated the use of this methodology

with a case study of a real, complex embedded system, comprising the Intel XScale

embedded microprocessor, its WMMX SIMD co-processor, L1 caches, SDRAM and the

on-board address and data buses. We described detailed power models for each of these

components and validated the system power estimates against physical measurements from

hardware, demonstrating that such frameworks enable designers to model both power and

performance at high speeds without sacrificing accuracy. 

The power-enabled system simulator predicted power accurately across a variety of

applications, with the worst-case difference between estimated and measured power being

under 10%, and average error under 5%. Since the power models are implemented at a high

level of abstraction, they are extremely lightweight in terms of computation, and adding

them to existing performance models did appreciably affect simulation speed. The

simulation proceeded at speeds in excess of 1 MIPS, enabling us to run complete applica-

tions on a real-world operating system. 
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 Chapter 4: Modeling Heterogeneous SoCs with SystemC:
A Digital/MEMS Case Study

1.  Introduction

Modern SoCs can incorporate not only digital but also analog and MEMS components on

the same silicon substrate. Extensive research has been done on analog and MEMS fabrica-

tion techniques, with the result that many such components can now be fabricated using

processes compatible with standard digital CMOS process technologies [4]. This gives

designers a new capability but raises a number of important questions. How are these non-

digital components to be modeled in system simulation? How is the software driving

heterogeneous components to be written, tested, debugged and optimized? To exploit the

wide range of components and perform hardware-software co-design and validation, the

high-level models used must accurately represent all SoC components.

In practice, the requirement to model all SoC components faithfully can be relaxed

under certain circumstances — for example, if the communication between a non-digital

and a digital component is predominantly unidirectional or deterministic. During high-

level modeling, components such as pad drivers or clock generators can be abstracted away

conveniently and without significant loss of accuracy because they do not usually impact

high-level system behavior in complex ways. 

However, this approach — abstracting away non-digital behavior entirely —

becomes invalid when there is feedback in the system, such as in the case of microproces-

sors running control programs that interact with analog or MEMS sensors and actuators.

Components with complex time-dependent behavior cannot be abstracted away because

the behavior of the digital system can depend on both time and the state of the non-digital
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component. Unfortunately, current high-level SoC design tools, such as SystemC, are

design to model only digital components.

There is thus a gap between the high-level event-driven simulation methodology

used by the SoC designer and the FEM, SPICE or MATLAB-based differential-equation-

solving approach used for design and analysis of non-digital components. Accurate

modeling of feedback systems containing heterogeneous components requires bridging

this gap. The alternative — waiting for a hardware prototype before performing software

development and verification — is undesirable for reasons of cost, complexity and time-to-

market. Current design flows demand that the complete system be modeled, tested,

debugged and verified well before the expensive fabrication stage, where design modifica-

tion costs become prohibitive.

This chapter presents an approach for modeling the functionality, performance,

power, and thermal behavior of a complex class of non-digital components — MEMS

microhotplate-based gas sensors — within a SystemC design framework. The components

modeled include both the digital components (such as microprocessors, busses and

memory) and the MEMS devices comprising a gas sensor SoC.

The contributions made in this work include the first SystemC models of a MEMS-

based SoC and the first SystemC models of MEMS thermal behavior, as well as techniques

for significantly improving simulation speed. Towards demonstrating the effectiveness of

these techniques, a detailed case study of the application of the proposed approach to a real

heterogeneous SoC is also presented, providing some insights on how device-level design

decisions can have system-level impact, and how such issues can be studied and addressed

through integrated full-system modeling.
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The rest of this chapter is organized as follows: Section 2 describes the operation

and architecture of the MEMS Gas Sensor SoC, Section 3 discusses the methodology used

for the characterization and modeling of system components, Section 4 illustrates some of

the results and insights that can be obtained using integrated SoC simulation, and section

Section 5 presents conclusions and directions for future work.

Some of the work presented in this chapter was also published in CASES’06 [10].

2.  The MEMS Gas Sensor SoC

A microhotplate-based gas sensor exploits temperature-dependent conductivity variations

in certain thin films to facilitate the detection of trace gases in the ambient atmosphere. The

MEMS gas sensor SoC presented here integrates an array of such sensors with on-chip

digital circuitry to enable programmable control and data gathering. This SoC incorporates

a wide range of components: a MEMS microhotplate-based gas sensor array, an 8051

microcontroller, and on-chip interconnect and peripherals. In such a system, one of the

design challenges is posed by the heterogeneity of the components involved: issues

regarding analog, digital and MEMS design all need to be understood and taken into

account. The following sections describe SoC design and operation, with Section 2.1

presenting the structure and operation of microhotplate-based gas sensors, and Section 2.2

describing overall SoC topology and system architecture.

2.1  The MEMS Microhotplate-Based Gas Sensor

The conductance of certain metal oxide films varies with the temperature, concentration,

and type of gas molecules adsorbed into the film. Conductance-type gas microsensors use a

MEMS microhotplate device to vary the temperature of the thin film to facilitate the
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detection of trace gases in the environment. Monolithic integrated gas sensors have

numerous possible applications such as detecting food product freshness, detecting toxin

leakage in chemical facilities, or identifying hazardous chemical agents in public places.

A microhotplate is a MEMS device used to obtain high temperatures over a

localized area on a silicon chip. Bulk micromachining techniques [4] can physically and

thermally isolate the heating elements from the underlying silicon substrate, allowing

surface temperatures as high as 450ºC to be reached. Such structures feature low power

dissipation, low fabrication cost, and scalability to different process technologies, making

them suitable for use in chemical microsensors [3] or as microscopic infrared sources [8]. 

Recent advances in MEMS fabrication have allowed these to be scalably

implemented with standard CMOS-compatible foundry processes, enabling designers to

integrate MEMS gas sensors, analog components, and digital components into a single

SoC [3, 4]. The microhotplate’s small size facilitates building the on-chip sensor arrays

needed for gas classification in complex sensing environments. 

Structural Components A microhotplate-based gas sensor consists of a central

platform supported at each corner by a cantilever joining it to the substrate, as illustrated in

Figure 4.1(a). The material immediately below and around the platform is etched away in a

single postprocessing step, which physically and thermally isolates it from the substrate.

The central structure of the microhotplate is physically suspended over empty space, with

only the cantilevers at the corners providing mechanical support.

Electrical Components Electrically, a microhotplate-based gas sensor comprises

three major components, shown in Figure (a): a polysilicon heater, a temperature sensor,

and a thin film gas sensor. The cross-section of the microhotplate in Figure 4.1(b)
86



Figure 4.1. The Design of a MEMS Microhotplate based Gas Sensor.
(a) Scanning Electron Microscope (SEM) micrograph of a microhotplate, showing it suspended
above the underlying substrate. 
Cantilever supports at the corners provide structural support and electrical pathways. The gold
electrodes, between which the thin sensor film is deposited, are also visible. The microhotplate is
fabricated with a standard digital CMOS foundry process, followed by an etching step to suspend
the microstructure and chemical vapor deposition of the metal oxide thin film.

(b) Cross-section of the suspended microhotplate. 
The figure shows the polysilicon heater, the Al temperature sensor, the metal oxide sensing film
and the insulating SiO2 layers. Cantilever supports are not shown.

(b)

(a)
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illustrates their physical implementation as conductive layers separated by insulating

silicon oxide layers. A description of each component follows:

• Polysilicon Heater: Implemented as a serpentine resistor, this generates heat to

raise microhotplate temperature. The heater current or voltage may be controlled.

Note that the electrical resistance of a polysilicon heater is not constant and changes

linearly with temperature within the range of operation.

• Temperature Sensor: Implemented in an Aluminum or Polysilicon layer with a

known temperature coefficient of resistance (TCR). A small constant current is

passed through this, and the voltage drop across it is used to measure microhotplate

surface temperature.

• Gas Sensor Film: A thin film of tin or titanium oxide (SnO2 or TiO2) is deposited

between two gold electrodes onto the top surface of the microhotplate, exposed to

the external atmosphere. The thin film conductivity changes when specific

molecules are adsorbed into it. The observed conductivity patterns depend on the

temperature, concentration and type of adsorbed molecules, giving molecules a

signature pattern that facilitates chemical detection. Since different thin films

interact differently with gas molecules [4], individual elements in a microhotplate

array may differ in the type of sensor film used to improve sensing ability. 

A microsensor array can be encapsulated behind a digital-only interface as illustrated in

Figure (b), facilitating integration into high-level digital SoC designs. A digital-to-analog

converter (DAC) drives the polysilicon heater current and an ADC senses the voltage drop
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(b)

Figure 4.2. MEMS Microhotplate Gas Sensor Schematics.

(a) Schematic showing the electrical components of the microhotplate-based gas sensor.

(b) Schematic illustrating digital encapsulation of a sensor array using an ADC/DAC array and
multiplexing. A Digital Gain Control (DGC) register may be used to improve accuracy and
dynamic range.
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across the temperature sensor. Multiplexing circuitry enables the use of a single ADC, thus

reducing the chip area required for implementation. The ADC and DAC are connected to

registers that can be memory-mapped to a system bus via control circuitry. 

2.2  System Architecture 

The system topology for the integrated MEMS gas sensor SoC is illustrated in Figure 4.3. It

consists of a microhotplate array, an 8051 microcontroller, and on-chip interconnect. The

8051 supports a single-master on-chip Special Function Register (SFR) bus, to which the

gas sensor array is connected, allowing programs to access the microhotplate array via

memory-mapped I/O.

A high-speed cycle-accurate SystemC model of the microcontroller was created to

facilitate hardware-software development and testing. The HDL implementation of the

Figure 4.3. System Topology For The Integrated Gas Sensor SoC. 
A gas sensor array is connected to ADC/DAC and multiplexing circuitry, which
communicates with the microcontroller over an on-chip bus.
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microcontroller was synthesized from a commercially available 8051 IP core. The primary

functions of the microcontroller software include controlling each microhotplate,

maintaining the appropriate surface temperature, and collecting gas sensor data. A control

algorithm monitors the temperature sensor reading and varies the heater current to

converge rapidly and stabilize at the required surface temperature. Gas sensor conductivity

readings are quickly taken at each temperature. This last activity is simple timed data-

gathering, with no feedback loop involved. The gathered data may be processed on-chip or

transmitted by the SoC to a central location for remote analysis.

3.  Methodology

There were many challenges inherent in the integrated modeling of a heterogeneous SoC.

First, microhotplate behavior is dependent not just on electrical parameters but also on the

heating and cooling of the microstructure. This was addressed by setting up a lumped

parameter model that correctly models the coupling between power dissipation, heating,

and the electrical resistance of the heater. Even when this was done, a problem was posed

by the fact that the behavior of analog and MEMS components is best represented by

differential equations, not by the discrete-time event-based state machines used for digital

simulation in SystemC. This was solved by expressing microhotplate behavior in discrete

time, so that numerical methods could be applied, and then integrating this efficiently into

SystemC’s network-of-communicating-processes model of computation. In addition, the

values of the various simulation parameters must be known to enable accurate system

modeling. 

There are thus four major issues that need to be addressed: modeling the MEMS

microhotplates, integrating these models with SystemC, improving simulation efficiency,
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and obtaining the values of various component parameters. The remainder of this section

discusses each of these in detail.

3.1  Electrical And Thermal Modeling Of MEMS Microhotplates

The work presented in this dissertation focuses on modeling the electrothermal aspects of

the microhotplate, not the electrochemical gas-sensing aspects of the metal oxide thin film.

A MEMS microhotplate can be modeled using a lumped analytical model incorporating the

following state variables:

• Polysilicon heater power dissipation (P).

• Microhotplate surface temperature (T), measured using temperature 

sensor resistance.

• Ambient temperature (T0).

• Microhotplate thermal resistance (Rth).

• Microhotplate thermal capacitance (Cth)

• Polysilicon heater current (I), controlled by writing to a DAC register.

• Polysilicon heater electrical resistance (Re).

• Polysilicon heater temperature coefficient of resistance (TCR or α).

Of these Rth, Cth and α are treated as constant for a given microhotplate structure. System

behavior can be expressed as a set of differential equations in these variables. Second-order

effects in microhotplate behavior, such as the slight (less than 5%) variation of Rth with

temperature, are not currently modeled.

The thermal equation governing heat flow is:

(EQ 4.1)P
T T0–( )

Rth
-------------------- Cth

d T T0–( )
dt

-----------------------+=
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Where t represents time. The heater electrical power dissipation can be written simply as:

(EQ 4.2)

And the heater electrical resistance varies with temperature as:

(EQ 4.3)

Taking T' = T - T0, we use the above equations to obtain:

(EQ 4.4)

which is a first-order Ordinary Differential Equation (ODE). 

Systems of differential equations are most commonly solved using numerical

methods, which have a wide range of applicability. However, the above equation is simple

enough to have an exact analytical solution. More complex systems, such as a collection of

distributed heat sources on a chip [5, 6], typically require numerical analysis. For this

study, we used the exact solution but, for purposes of completeness, also ran on the model

with the numerical solution to measure the effect on runtime. The two mechanisms produce

equivalent results, with the exact solution requiring less computation. Their impact on

simulation speed is discussed in Section 3.3. 

The Euler Forward Method for numerically solving such ODEs involves using a

discrete-time representation of Equation 4.4 being used to derive microhotplate surface

temperature at time-step n+1 from the state variables at time-step n.

(EQ 4.5)

P I2Re=

Re Re0 1 α T T0–( )+( )=

dT′
dt

--------
I2Re0 1 αT′+( ) T′ Rth⁄( )–

Cth
----------------------------------------------------------------=

T′n 1+ T′n

I2Re0 1 αT′n+( ) T′n Rth⁄–
Cth

----------------------------------------------------------------
⎝ ⎠
⎜ ⎟
⎛ ⎞

δt

+=
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This computation can be performed at runtime with the microhotplate implemented as a

SystemC module with the parameters defined at instantiation. A SystemC process

calculates and updates the state variables at each time-step. Since a microhotplate has a

separate SystemC process, its time-step size can be varied independently of the time-step

size used for other system components. In this case, the microcontroller runs on a 10ns

time-step (a 100 MHz core clock frequency), while microhotplate simulation reaches

convergence at a 100µs or smaller time-step. This is because the thermal time constant of

the microhotplate (τ = RthCth) is typically of the order of milliseconds, and time-steps of τ/

10 or smaller tend to converge. Note that the time-step chosen must be sufficiently small to

ensure that the numerical solutions obtained are stable and convergent (the error increases

with the square of the time-step in Euler Forward Iteration), yet not so small that too much

simulation time is spent modeling the MEMS component, impeding system simulation. 

An exact analytical solution to Equation 4.4 (in terms of Tn and tn) is given by:

(EQ 4.6)

This computation is performed in a similar manner at runtime. However, since this is an

exact solution, each time-step may be arbitrarily large without significant loss of accuracy.

The rest of this paper uses the exact solution unless otherwise specified.

T′n 1+ T′ne
a tn 1+ tn–( ) b e

a tn 1+ tn–( )
1–( )

a
-----------------------------------------

a

+

αIn
2Re0 1 Rth⁄–

Cth
----------------------------------------     b;

In
2Re0
Cth

---------------

=
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3.2  Integration with SystemC

A SystemC simulation consists of a hierarchical network of parallel processes that

exchange messages and concurrently update signal and variable values under the control of

a simulation kernel. Signal assignment statements do not affect the target signals

immediately, and the new values become effective only in the next simulation cycle. As

shown in Figure 4.4, the kernel resumes when all the processes become suspended, either

by executing a wait statement or upon reaching the last process statement. On resuming,

the kernel updates the signals and variables and suspends itself again while scheduled

processes resume execution. If the time of the next scheduled event is the current

simulation time, the processes execute a delta cycle, in which signal and variable values are

updated without incrementing the current time [7].

The microhotplate is modeled as a standard SystemC module. It does not require

any changes to the SystemC kernel or library, and it obeys standard SystemC simulation

semantics, running as a user-defined process. Each time it is invoked, the microhotplate

simulation process calculates the amount of time elapsed since the last update, solves the

system state equations accordingly, updates the state variables to reflect the new device

state and finally suspends execution until it is invoked again by the kernel.

Each microhotplate has standard SystemC port/channel connections to the rest of

the system. It communicates with actual microcontroller C programs compiled and loaded

into the SystemC model of the microcontroller, rather than with mathematical idealizations

of program behavior. In particular, system interrupts, computation time, microcontroller

CPU states, and the busses are all cycle-accurate representations of the hardware being

designed, validated against HDL simulations.
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3.3  Simulation Efficiency

Effective design-space exploration depends on high simulation speeds, making simulation

efficiency a key design issue. This section explores three avenues for improving simulation

efficiency: using more efficient SystemC processes, reducing SystemC kernel synchroni-

zation overheads, and using exact solutions to reduce the computational overheads

involved in MEMS modeling. These provide a combined speedup of over 70x compared to

simulation done without these techniques.

SystemC provides two kinds of processes: SC_METHODS and SC_THREADS

[7]. The main difference in terms of simulation semantics is that an SC_THREAD’s state is

stored each time it is suspended and is restored each time it resumes, allowing local

Figure 4.4. The Execution Semantics Of Systemc. 
A number of interacting processes run until they end or execute a wait statement. Once all
processes have run, the kernel updates all signals and variables before running ready
processes again. The user can define specific conditions under which simulation should stop.

Simulation Start

Initialization

Process nProcess 1

All Processes Suspended
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variable values to be preserved. A process resumes from the exact state it left on

suspension. Storing and restoring state across invocations has obvious simulation

overheads. SC_METHODs, on the other hand, are similar to function calls and restart from

the beginning each time they are invoked. No local state is preserved across invocations.

We found that storing required state as class data fields to allow the use of SC_METHODs

instead of SC_THREADs raised simulation speed from 56 KIPS (thousand instructions per

second) to 281 KIPS1.

Code profiling indicated that synchronization of the main CPU process with the

SystemC kernel at each suspend-resume was the performance bottleneck, since the

processor module incremented the elapsed time after each executed instruction in order to

be cycle-accurate. To eliminate this bottleneck, we used free-running simulation, where the

CPU continuously fetches and executes instructions while using an internal counter to keep

track of elapsed cycles. This continues until an event that requires synchronization with the

system occurs; events that trigger synchronization include interrupts, communication with

system components that have separate processes, and reaching a user-defined limit on the

maximum number of free-running cycles. When a synchronization event occurs, the

processor informs the SystemC kernel of the time elapsed since the last synchronization

(based on the internal counter that tracks elapsed cycles), updates any state required to

ensure complete synchronization, resets the internal counter, and continues execution.

1. All measurements of simulation speed were performed with a 1.6GHz Pentium M processor with 2MB of 

L2 cache and 768MB of PC2700 DDR SDRAM. Compilation was done using gcc 3.4.4 with 

-O2 compile-time flags.
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A processor usually spends much of its time fetching and executing instructions

rather than communicating with other system components, so free-running simulation

provides an elegant method for reducing overheads while maintaining cycle-accuracy. An

upper bound can be put on the number of consecutive free-running cycles, causing regular

synchronization regardless of other activity. We found that allowing up to 100 free-running

cycles further sped up simulation from 281 KIPS to 2.89 MIPS. Allowing up to 4000 free-

running cycles further boosted simulation speed to 4.17 MIPS, after which further

increases led to no additional speedup. Profiling indicated that, after this optimization, the

simulator was spending time in instruction processing and microhotplate modeling, not in

synchronization.

Lastly, solving the differential equations governing microhotplate behavior also has

a computational overhead. For a microhotplate with nominal time constant of 1ms,

accurate modeling requires a time-step size smaller than 100µs while using the Euler

Forward Method. Other, more sophisticated, numerical methods may be used that allow

larger time-steps. Simulation efficiency is significantly higher when the exact analytic

solution to the system of equations is used, since it allows the use of arbitrarily large time-

steps without significant loss of accuracy. In practical terms, the microhotplate state only

needs to be updated when the processor writes to it to change the DAC input or reads from

it to find out the temperature, leading to lowered computational overheads. In the

simulation framework presented here, system modeling proceeds at 4.17 MIPS using the

exact solution and 3.71MIPS using the numerical solution (See section Section 3.1 for

details on the two approaches).
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3.4  Component Characterization

For characterization, the 8051 microcontroller IP core was synthesized to TSMC 0.25µm

CMOS technology using Synopsys Design Compiler. Gate-level power simulation, with

SAIF back-annotation [9] of activity was performed using Synopsys Power Compiler.

Layout and back-annotation of delays and capacitance were performed using Tanner L-

Edit. The microcontroller has a simple two-state power model, consuming 4.4mW when

active (at 100MHz) and 0.25mW when idle. This state-machine based power model was

observed to be accurate within 5% of gate-level power simulation for all programs run. 

The values of the critical thermal and electrical parameters for the microhotplate —

electrical resistance, temperature coefficient of resistance, thermal resistance and thermal

capacitance — were the nominal design parameters and were verified experimentally on

standalone hotplates fabricated through MOSIS, using the standard techniques described

by Afridi et. al. [2, 3, 4].

TABLE 4.1. Techniques for enhancing simulation efficiency, and their impact on 
performance. The exact analytical model for the microhotplates is used unless 
otherwise specified.

Technique
Simulation speed 
(MIPS)

SC_THREAD only 0.056

SC_METHOD only 0.281

SC_METHOD with up to 100 free-running cycles 2.89

SC_METHOD with up to 4000 free-running cycles 4.17

SC_METHOD with up to 4000 free-running cycles (Numer-
ical model)

3.71
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4.  Results

The ability to model the complete system in detail enables designers to find answers easily

and quickly to questions about overall system behavior. Such questions can range from

how a microhotplate responds to a given input to finding out whether a given piece of code

running on a microcontroller can meet desired performance parameters while controlling

one or more MEMS devices. This section first presents a validation of the SystemC

microhotplate model by comparing expected and observed behavior to a simple input.

Further, this section discusses the observed results when a given temperature controller

program is used to run a microhotplate and illustrates the kind of detailed observations that

can be drawn from this. Lastly, it provides an example of how full-system simulation can

help detect undesirable effects caused by valid low-level decisions that are suboptimal at

the system level.

4.1  Model Validation

Validation of the microhotplate model was performed by using a function generator to apply

a step voltage across a stand-alone microhotplate (implemented through MOSIS) and

comparing the experimental data obtained against the SystemC model of such a device.

Figure 4.5 shows such a comparison, and the high degree of correlation between simulation

and experimental behavior is clearly seen. The simulated peak temperature is about 3%

lower due to a small difference (caused by the slight temperature-dependence of thermal

resistance) between the simulated and observed values of Rth. Figure 4.5 also shows a

thermomicrograph sequence of a MEMS microhotplate heating up, illustrating the high

surface temperatures that can be attained over a localized area.
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Figure 4.5. A Comparison Between Experimental And Simulated Microhotplate Behavior. 
A 2V voltage pulse is applied between 4 and 14ms. The observed changes in surface temperature
are compared against those predicted by simulation. The plot on the top is “noisier” and less
sharp simply because of the small, but unavoidable, experimental noise. The bottom strip shows
a thermomicrograph sequence of a microhotplate structure heating up [1].

ºC
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4.2  Simulation With a Controller Program

The above test provides crucial experimental validation for the microhotplate models used;

however, system designers need to know how the system as a whole behaves when

configured with a given topology and loaded with specific software. The results from

SystemC simulation enable total SoC power dissipation and microhotplate behavior to be

modeled in an integrated environment. This enables designers to observe the time-domain

behavior of the entire system when running specific software. 

To illustrate this, a test C program implementing a simple proportional controller

was implemented, to control surface temperature in a single-microhotplate system. It was

given a setpoint of 380ºC for 20ms followed by a setpoint of 200ºC for a further 20ms, after

which the program turned the microhotplate off. This simplified program was chosen for

illustration here because it is representative of the control aspects of the software stack used

for microhotplate-based gas sensor applications.

Figure 4.6 illustrates the output of the simulation. The X axis represents system

time in milliseconds, while microhotplate temperature, power, and current, as well as

microcontroller power dissipation, are suitably scaled to be shown on the Y axis. The

results shown here are based on a SystemC simulation incorporating both the cycle-

accurate behavior of the microcontroller and the electrothermal behavior of the microhot-

plate. A discussion of the behavior of the four variables plotted follows.

The microhotplate heater current, directly controlled by the microcontroller,

changes step-wise, since it is incremented in discrete steps through a DAC. The microhot-

plate power dissipation changes step-wise when current changes and smoothly at other

times. It does not change in fixed size steps, since a) It is proportional to the square of the
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current and b) It depends on the electrical resistance of the polysilicon heater, which

increases linearly with surface temperature. For example, between 3ms and 5ms, heater

current is constant, yet microhotplate power dissipation rises smoothly in a classic

asymptotic exponential curve. This is because the steadily increasing temperature raises

the electrical resistance of the polysilicon heater (Equation 4.3), leading to an increase in

power dissipation at a constant current. Note that the large change in microhotplate power

dissipation around 22ms corresponds to only a small variation in heater current, since they

are quadratically related.

Figure 4.6. An Example Illustrating The Use Of Integrated Functional, Power And Thermal
Modeling In A Heterogeneous System. 
The X axis represents system time in milliseconds, while other variables are suitably scaled to
be shown on the Y axis. A feedback loop, in the form of a proportional controller program, is
loaded into the SystemC simulator and given a surface temperature setpoint of 380ºC for 20ms,
followed by a setpoint of 200ºC for another 20ms, and finally turns the microhotplate off at
t=40ms. 
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The microhotplate surface temperature changes smoothly, since the thermal

capacitance of the microhotplate causes the temperature to be continuous in time, always

varying smoothly. Around t=5 ms, the surface temperature first overshoots and then

undershoots the setpoint of 380ºC before settling at it. This overshoot-and-stabilize

behavior is typical of the proportional controller algorithm used. The same is true of the

undershoot at t=25 ms. At t=40ms, the controller sets the heater current to 0, immediately

dropping microhotplate power to 0. However, surface temperature follows a decaying

exponential as it cools off, finally stabilizing at 30ºC, since that was set as the ambient

room temperature in the simulation. 

The “jagged” nature of the CPU power plot is due to the CPU waking up periodi-

cally in response to a timer interrupt, performing the computation required to run the

controller, sending control signals to the microhotplate DACs, and then going into a low-

power mode. The tiny “blips” in CPU power dissipation after t=40ms are due to interrupts

being processed, but in these instances no feedback control computations are performed,

leading to a much shorter active CPU duty cycle.

4.3  System-Level Effects of Low-Level Design Decisions

At the microhotplate design level, using a controlled-current or a controlled-voltage source

to drive the heater is an implementation detail, with circuit-level concerns typically

deciding the choice of one over the other. However, we found that such decisions could

significantly impact system-level behavior, with integrated SystemC modeling of the

MEMS device helping both to detect such behavior and to ensure optimal design. 

In the previous example, a controlled current source was used to drive the

microhotplate heater. However, exploring the design space using SystemC indicated that
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the behavior would be very different, exhibiting much less overshoot-undershoot behavior,

if the hotplates heaters were driven by a controlled voltage source rather than a controlled

current source. At first glance, this seems counter-intuitive, but it is borne out by the

SystemC simulation (see Figure 4.7). 

The reason that this seemingly minor device-level design decision has broader

impact is that heater resistance increases with temperature, so power dissipation increases

with temperature at constant current; but at constant voltage, microhotplate power dissipa-

tion falls with increasing temperature (since P = I2R = V2/R). A current-driven microhot-

plate thus has a small implicit positive feedback effect: higher power dissipation drives

temperature up, which tends to cause a rise in power dissipation. A voltage-driven

microhotplate, on the other hand, has a small implicit negative feedback effect: higher

temperature causes higher heater resistance, which tends to reduce power dissipation.

These loops interact with the overriding feedback loop implemented in software. 

Figure 4.7 shows system behavior for the same control program when heater

voltage, and not current, is directly controlled. The negative feedback loop leads to signifi-

cantly more stable behavior, with considerably smaller and fewer overshoots. Also note

that power decreases when voltage is constant and temperature is rising (around 7ms). This

is because the rising temperature raises microhotplate resistance, and the power dissipated

is inversely proportional to this resistance. The increased feedback stability was an easily-

overlooked factor that can now be used to guide system-level, component-level, and

software-level decisions for the SoC presented here. Unanticipated feedback behavior is a

serious issue, since, depending upon severity, it can lead to suboptimal performance or
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oscillatory behavior and may neccessitate software fixes or even require the system to be

modified and re-fabricated. 

Integrated simulation of both digital and MEMS components proved to be an

extremely useful tool in the hardware-software co-design for this SoC:

• Full-system simulation results were among the inputs in the decision to use voltage-

driven, rather than current-driven, microhotplates. 

• Integrated simulations were used to assess system robustness while facing process

variations in device parameters.

• Running the software stack under realistic conditions enables more thorough

testing, leading to better defect detection before the system is fabricated.

Figure 4.7. Systemc Power And Thermal Modeling Of A Microhotplate Driven By Controlled-
Voltage Source.
A controlled-voltage source is used here, rather than a controlled-current source. This introduces
a small inherent negative feedback loop, resulting in much more stable behavior, with much
smaller overshoots and a faster settling time (compare with the overshoot-undershoot behavior in
Figure 4.6).
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• Interrupt routines, timer settings, operating frequency, I/O and control algorithm

parameters can be better optimized when realistic simulation results are available.

In the absence of these, designers need to allow larger margins of error to account

for the uncertainty in the final performance of the system.

Complex system-level interactions, such as those illustrated above, need to be taken into

account by system, software, and component designers, and integrated modeling of both

microcontroller and MEMS device behavior in SystemC enabled precisely that.

5.  Conclusion

This chapter describes an approach for modeling the functionality, power, performance and

thermal behavior of a complex class of MEMS components — MEMS microhotplate-

based gas sensors — within a standard SystemC design framework. The system

components modeled include both standard digital components (microprocessors, busses

and memory) and MEMS devices. 

The contributions made in this work include the first SystemC models of a MEMS-

based SoC, the first modeling of MEMS thermal behavior in SystemC, techniques for

attaining significant (over 70x) improvement in simulation speed and a detailed case study

of the application of the proposed models and techniques to a real system. It also provides

insights on how device-level design decisions can have system-level impact, which can be

captured and addressed through accurate modeling of the entire system, including non-

digital components.

Future work will include more detailed hotplate models that include second-order

effects, analytical studies of microhotplate feedback behavior and application of the

presented techniques to other components of heterogeneous SoCs.
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 Chapter 5: Thermal Modeling
1.  Introduction

In previous chapters, we discussed techniques for modeling power consumption within

SystemC simulation frameworks, and how a differential equation solver could be

implemented within standard SystemC. In this chapter, we apply these techniques on a

much larger scale to solve the harder problem of full-chip thermal analysis for an SoC,

which necessitates the simultaneous solution of the thousands of differential equations that

govern chip-level heat flow. Here again, we make extensive use of numerical methods to

obtain solutions.

In this chapter, we describe a full-chip thermal modeling strategy for IP-core based

SoCs, validate it by comparing its output against lower-level tools and widely-published

datasets, design a large, complex SoC, and apply our integrated performance, power and

thermal modeling strategy to it in order to demonstrate the kind of powerful insights and

analysis such to tool facilitates.

We use an integrated execution-driven approach rather than a trace-driven one for

the following reasons:

• Execution traces generated by performance simulators are large, often many

gigabytes for each second of real time, which tends to make disk I/O and string

processing dominate simulation time, making overall simulation slow. Specialized

techniques are required to mitigate these overheads, such as dumping entire

structures to binary traces to avoid string parsing overheads, and precisely control-

ling the trace output to ensure that no unnecessary information is dumped. Direct
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execution-driven simulation eliminates these overheads by processing all informa-

tion at runtime.

• Feedback behavior cannot be easily modeled in a trace-based simulation. A

performance or power trace is useless if the operating system is sensing chip

temperature and changing behavior based on the value sensed. In a traditional

trace-driven flow, functional information (CPU speed, cache miss rate etc.),

decides power dissipation, which in turn is an input to the thermal model. This

unidirectional flow of information cannot model feedback behavior, in cases such

as software-based thermal throttling. In execution-driven simulation, on the other

hand, the output of a thermal model can easily be made available to performance

and power models.

The rest of this chapter is organized as follows. Section 2 provides an overview of the

software structure used to facilitate efficient co-simulation. Section 3 describes the grid-

based thermal modeling strategy used. Section 4 presents a limit study on how spatial and

temporal granularity affect simulation speed and accuracy. Section 5 validates the thermal

modeling approach presented against widely-published lower-level thermal modeling

tools. Finally, Section 6 illustrates the power of the approach presented by applying it to an

example SoC, and demonstrating its use to evaluate the power, performance and thermal

impact of various implicit thermal feedback paths.
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Figure 5.1. Overall Software Structure for Integrated Power, Performance and Thermal Co-
Simulation.
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2.  Software Structure

We used a three-tiered software structure, illustrated in Figure 5.1, to facilitate integrated

power, performance and thermal co-simulation. The first part is a standard SystemC

performance model of the system. This model is binary-compatible with hardware and can

run the entire system software stack and model timing. A traditional simulator is usually

restricted to this type of performance modeling. 

We attached a power model to the performance model of each component, monitor-

ing activity and updating statistics on total energy consumed, average power etc., as

described in earlier chapters. The performance models communicate high-level activity

information to the power models, such as number of cache reads and writes, current CPU

frequency, number of stalls etc. These power models collectively form the power modeling

layer, which can be overlaid on top of the existing performance modeling layer, and

receives data unidirectionally from it.

The output of the power models, most notably the average power dissipations of

each component, are collected by a Thermal Monitor that orchestrates the activity of the

Thermal Modeling Layer. The Thermal Monitor is a full-fledged SystemC process, and

thus runs in parallel to the performance and power monitoring activity. It can be run at a

user-defined periodicity. At each invocation, it gathers power modeling information,

matches it against the chip floorplan to create a spatial power distribution (or power

profile) using the average power dissipation over one period, updates the Thermal Grid

ODE Solver with this power distribution, and runs the solver for one period, using a user-

defined timestep. Since lumped power models are used, each component is modeled as a
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region of constant power density. Similar approaches are also used by lower-level thermal

modeling tools [1, 2, 6, 15, 16].

The Thermal Grid Solver solves the Ordinary Differential Equations (ODEs)

governing chip-level thermal diffusion based on the spatial power distribution, and

generates a spatial temperature distribution, mapping the present temperature of each point

on the grid. It also uses the floorplan to calculate the average temperature of each

component marked on the floorplan.

A major advantage of using a vertically-integrated execution-driven (rather than

trace-driven) approach is that we can now use this information to model the thermal

feedback in the system. There are two principal feedback paths in the system:

• Power Sensitivity to Temperature: The power dissipation characteristics of each

component in the system are assumed to be known in the discussion above.

However, many aspects of the power dissipation, notably leakage power dissipated

in caches, is a function of temperature. This represents a feedback relationship,

with power and temperature directly influencing each other. We model this

feedback path by calculating the temperature of each component, and keeping its

power model updated with this information.

• Temperature-based Changes in Functional Behavior: Dynamic Thermal

Management (DTM) techniques implemented in the system require input from a

on-chip temperature sensors. These may cause the system to drastically change its

behavior if the temperature has crossed some predetermined threshold, or if such a

condition is imminent, in order to prevent the temperature from exceeding the

maximum specified value. Since the spatial distribution of temperature for the
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entire chip is known at the thermal modeling layer, this information can easily be

fed back to the simulated temperature sensors in the performance modeling layer.

This allows designers to evaluate the efficacy of different DTM strategies, the

impact of temperature sensor placement, and the impact of temperature sensors that

may differ in accuracy, time delay and so forth.

3.  Grid-Based Thermal Modeling

For modeling the thermal behavior, we divide the chip into a uniform grid. Each square on

the grid is modeled as a lumped element, with a heat source at its centre and thermal

resistances connecting it to its neighbors, as well as to the top and bottom of the chip, as

shown in Figure .

The resulting circuit can be expressed equivalently as a large set of differential

equations. We use numerical methods similar to those described by Akturk et. al. [1, 2],

Figure 5.2. Using A Uniform Mesh To Define Thermal Grid Elements. 
The chip is overlaid with a uniform mesh of predefined spatial granularity, which divides the chip
into identical elements. A lumped thermal model of each element is then created, and joined to its
neighbors. The solution to the overall resulting system of ODEs is used to calculate the thermal
behavior, including the temperature of each grid element.

Silicon wafer with grid overlay

Individual grid element 
with equivalent circuit
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Wang et. al. [15, 16] and Huang et. al. [6], but adapt them to the higher levels of abstraction

and speed associated with SoC simulation. 

Simulation efficiency demands that the number of discrete timesteps taken and the

number of points on the chip considered for numerical analysis be kept as low as possible.

However, standard techniques such as second or forth-order Runge-Kutta methods

(common known as RK2 and RK4) require tight control of the step size, and may diverge if

the step sizes used are too large [12]. To avoid such problems, we trade off accuracy for

stability and use Euler Backward Iteration (EBI) [12], an implicit numerical method for

solving Ordinary Differential Equations (ODEs). While not as accurate as the RK2 or RK4

methods mentioned above at small step sizes, it has the advantage of being unconditionally

stable, and thus converging to the final value even at very large timesteps. In addition, the

specific systems we’re looking tend to exponentially converge to stable steady-state

temperature values except when there are large fluctuations in power dissipation. This

allows numerical errors to be bounded, further adding to the usability of the EBI method.

To implement EBI, we keep track of two temperature matrices (Tt(x, y) and Tt-1(x,

y)). These represent the temperature at each grid point at time steps t and t-1, respectively.

As an initial value boundary condition, all points on Tt-1are set to some predefined

temperature, typically the ambient temperature. At each subsequent timestep t, the value of

the temperature at each grid point at time t can be calculated from the temperatures of the

grid point itself, and of its neighbors, at time t-1, which is known. Additionally, the thermal

resistance between adjacent grid points is also known, as is the heat capacity of any given

grid point. At each timestep t, the updated temperature at each grid point can be expressed

as:
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(EQ 5.1)

where:

• Tt(x, y) and Tt-1(x, y) are the temperatures in Kelvin at point (x, y) on the grid at time

steps t and t-1 respectively, as mentioned above.

• h is the length of each timestep, in seconds.

• C is the heat capacity of each grid point.

• pt-1(x, y) is the power dissipated by grid point (x, y) at time t-1 (in Watts).

• Tt-1, i is the temperature of the ith neighbor of the grid point (x, y) at time t-1. Each

grid point has six neighbors: four lateral neighbors that at grid points on the chip,

and two vertical neighbors that are the top and bottom chip surfaces. 

• Ri,x,y is the thermal resistance between the grid point (x, y) and its ith neighbor.

Note that the temperature-dependence of thermal resistance can be easily taken into

account at runtime, because the substrate thermal conductivity at each grid point can be

easily updated at runtime based on its temperature at that point of time.

4.  A Limit Study on Spatial and Temporal Granularity

Decomposing the chip into a uniform two-dimensional grid and incrementing the time in

discrete steps is a necessary step for the kind of numerical analysis mentioned above. The

values chosen for the spatial and temporal granularity (the size of each grid point and the
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duration of each time step) can obviously have a large impact on both accuracy and

simulation speed. Rather than arbitrarily pick “acceptable” values, we perform a limit

study of the impact of spatial and temporal granularity on accuracy and speed.

To do this, we modeled a simple 130nm chip consisting of an OpenRISC processor

core and 4-way set-associative L1 instruction and data caches, with a die size of 2mm x

2mm. As the software stack, we ran the µC/OS-II embedded real-time operating system,

and a pair of AES encryption/decryption tasks. The peak frequency was chosen as 400MHz

and Dynamic Voltage Scaling was implemented and enabled in the OS to reduce the power

consumption when the processor was idle. The ambient temperature was taken as 30ºC,

and so was the initial chip temperature. For simplicity, only square grid points (equal x and

y spatial granularity) were used. The spatial granularity was varied from 10µm to 250µm,

and the temporal granularity from 0.5µs to 500µs. For each combination of spatial and

temporal granularity, the peak chip temperature was noted at 100ms (when temperatures

were still rising sharply) and 200ms (when temperatures were getting closer to steady

state), and compared against the corresponding temperature obtained from a highly

detailed simulation run, with spatial and temporal granularities of 1µm and 0.001µs. The

error in the simulation versus the control was thus obtained for every combination of

spatial and temporal granularity. 

Figure 5.3 and Figure 5.4 show the errors in peak chip temperature as the spatial

and temporal granularity were varied. As can be seen, the error increases as the temporal

granularity gets larger for any given spatial granularity (the top figures). This is to be

expected: larger timesteps are less precise in any numerical method. 
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Figure 5.3. Error In Peak Temperature Estimated At 100ms At Various Spatial And Temporal
Granularities. 
The top figure shows the errors at each spatial granularity as temporal granularity is varied,
while the bottom figure shows the same data, now plotted at different temporal granularities as
the spatial granularity is varied.
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Figure 5.4. Error In Peak Temperature Estimated At 200ms At Various Spatial And Temporal
Granularities. 
The top figure shows the errors at each spatial granularity as temporal granularity is varied,
while the bottom figure shows the same data, now plotted at different temporal granularities as
the spatial granularity is varied.
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Another interesting trend is that the opposite behavior is observed with spatial

granularity. As the size the grid points increases grows larger, the error at any given

temporal granularity decreases. At first glance, this is counterintuitive: one would expect

errors to decrease as more and more points on the grid are considered. 

The reason for this behavior is that the error depends strongly on h/τ, the ratio of the

temporal granularity to the thermal time constant for each grid element. At very low values

of this ratio, the temporal granularity is effectively infinitesimal compared to the time

constant, leading to low errors. As the time step used grows larger, h/τ is no longer small,

and higher-order effects introduce error. However, τ itself is the product of the effective

thermal resistance connected to the grid element and its heat capacity. The former term is

dominated by a constant, and the latter grows as the square of the size of the grid element.

Thus, larger spatial granularities lead to larger τ for each grid element, which lowers the

error introduced due to larger time steps. Of course, this cannot be taken beyond a point, as

other errors creep in at large spatial granularities. As seen in Figure 5.3, spatial granulari-

ties over 100µm can lead to errors that do not diminish even at very small temporal

granularities. Another factor that must be kept in mind is that large granularities may

converge to the correct value of final temperature eventually, but do not accurately model

the transients when temperature is quickly rising or falling. This can be seen by juxtaposing

Figure 5.3 and Figure 5.4: large granularity values lead to much larger errors at 100ms,

when temperatures are still climbing, than at 200ms, when the system is closer to equilib-

rium. Accurate transients are important, especially for reactive DTM approaches, and

designers must be careful not to use excessively large granularities in order to reduce

computation complexity. 
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It is also interesting to perform a study of the simulation speed at various spatial and

temporal granularities, to see how they affect it. Figure 5.5 shows that simulation speed

increases roughly linearly with temporal granularity, and roughly quadratically with spatial

granularity. This is to be expected: the number of timesteps is the total simulation time

divided by the temporal granularity, and the number of grid points is the total chip area

divided by the square of the spatial granularity. The simulation speed was 1.57MHz when

thermal and power modeling were completely disabled, and this represents the upper limit

of simulation speed at very high granularities, when the computational overheads of

thermal and power modeling are negligible, and performance modeling speed is the main

factor determining simulation speed. These simulation speeds were obtained on a dual-

processor 2.4GHz AMD Opteron system with an 800MHz Front Side Bus and 4GB of

RAM.

5.  Validation

5.1  Comparison with Device-Level Thermal Modeling Tools

We also validate the SystemC thermal modeling engine against low-level, high-accuracy

thermal modeling tools to ensure correctness. To do this, we use the power density data for

a chip of dimensions 11.3x14.4 mm, described by Wang and Chen[15, 16], and also

described by Akturk, Goldsman and Metze [1, 2]. 

Akturk et. al. [1, 2] use the layout used by Wang and Chen [15, 16], but group some

of the functional blocks and assign a single power density of each new block based on the

functional blocks enclosed by it to reproduce the temperature map given for that chip. They

then use the layout, geometry, and power profile illustrated in Figure 5.6 in conjunction

with vertical (including package) and lateral resistances to obtain time-dependant tempera-
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Figure 5.5. Simulation Speed As A Function Of Spatial And Temporal Granularity.
Simulation speed was measured in millions of cycles simulated per second. The top figure shows
the speed at each spatial granularity as temporal granularity is varied, while the bottom figure
shows the same data, now plotted at different temporal granularities as the spatial granularity
is varied. The simulation speed with power and thermal modeling disabled is 1.57MHz.
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ture maps of the chip surface. The values of these thermal resistances 8E+4 W/m2K and

7E+3 W/m2K respectively. They use their simulator to obtain the temperature map shown

in Figure 5.7(a), using a grid with approximately 55.5 million points to derive the results.

Wang and Chen [15, 16] also independently obtained a similar temperature map from their

power distribution profile. 

We use a power density map identical to that used by Akturk et. al., and the same

values of thermal resistance. However, we restrict ourselves to a thermal modeling grid

with a mesh size of 100µm, thus using only 13E+3 points rather than the 55 million points

used by Akturk et. al. The resulting temperature map can be seen in Figure 5.7 (b). The

fewer grid points used lead to some loss of accuracy, with an average deviation of about

7.4ºC, and a worst-case deviation of 12.1ºC from that predicted by the low-level models,

over a total temperature variation of over 120ºC. This small loss of accuracy is expected to

be a reasonable trade-off for the significant reduction in computational complexity, which

allows faster high-level simulation.

5.2  Validation Against Microarchitectural Power Modeling Tools

As additional validation, we run a similar comparison against the output from the

HotSpot microarchitectural thermal modeling tool[13]. Here again, we use the same power

density profile used by HotSpot to model the Alpha 21364 chip, and compare the HotSpot-

generated thermal map with the results obtained with our simulation infrastructure. These

maps are shown in Figure 5.8. Note that even though the spatial granularity was reduced to

speed up simulation, the thermal maps have the same main hotspot location, and its

temperature is correctly calculated to within 5.3ºC (with an average error of 3.7ºC).
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Figure 5.6. Layout And Power Map Used In Reference Chip. 

Image courtesy A. Akturk.
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(a)

(b)

Figure 5.7. Comparison With Device-level Thermal Models. 

(a) Thermal map obtained from methods used by Akturk et. al. [1, 2].

(b) Thermal map obtained from SystemC-based thermal equation solver.

Note that while the number of grid points has been reduced from 55E+6to 13E+3, the there is only
a slight reduction in the accuracy. The average difference in temperature between the two maps is
7.4ºC, and the worst-case difference is 12.1ºC.

Temperature (K)
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Figure 5.8. Validation Against The Hotspot Microarchitectural Thermal Modeling Tool.
(a) The thermal map generated by HotSpot for an Alpha 21364 chip [13].
(b) The thermal map generated by using an 80x80 grid using the proposed methods.
(c) Die Photo of the 21364 Core.

(a)

(b)

(c)
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6.  Vertically Integrated Modeling of a Example SoC

This section illustrates some possible uses of the integrated power, performance and

thermal modeling. and well as underscores the power of this approach by running some

experimental on detailed SoC designs. We use HDL implementations of freely available IP

cores, characterize their power and performance metrics from HDL, build efficient

SystemC power models for them, integrate these into configurable, parameterizable SoC

models, and simulate the behavior of a wide variety of benchmarks running on these SoCs.

6.1  SoC Components

The components we model are:

• OpenRISC CPU: The OpenRISC microprocessor/DSP is a freely available, open-

source 32-bit RISC CPU design by OpenCores.org. The design is implemented in

the Verilog hardware description language. It has a Harvard microarchitecture, a 5

stage integer pipeline, virtual memory support (MMU) and basic DSP capabilities.

It has been manufactured successfully as an ASIC, and has also been hosted in

FPGA environments. The GNU toolchain has been ported to OpenRISC to support

development in several languages and the Linux, µClinux and µCOS-II operating

systems have been ported to the processor. We created a detailed SystemC power

and performance model of the OpenRISC, and included shared-memory

multiprocessor support.

• L1 Instruction and Data Caches: We build detailed and accurate SystemC

performance models of L1 caches, and use the CACTI 4.2 [14, 10] cache power

estimation tool to obtain the values of the cache leakage power dissipation, read

energy, write energy and die area. CACTI is a static integrated tool for modeling
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cache timing, power, and area. It is widely used for estimating cache area and

power costs, and allows detailed specification of various cache parameters.

• On-chip SRAM: On-die memory-mapped SRAM is modeled in SystemC, and its

power parameters are obtained from Cacti 4.2, similar to way caches are modeled.

For this, we used Cacti’s “SRAM-only” option, which omits the modeling of cache-

specific chip structures, such as tags, indices, valid bits, tag-matching circuitry etc.

• Peripherals: We used a number of on-die hardware peripherals, based on freely-

available IP cores from OpenCores.org. These include an AES cryptographic

acceleration unit, an RS232 UART, an AC97 audio codec, a simple DRAM

memory controller (for external DRAM accesses) and a DMA controller to speed

up data transfer. Except the DRAM controller, these are assumed to be on idle/

standby except when applications specifically access them. The idle, standby and

running power for each of these, as well as die area used, was characterized by

synthesizing each of these to a gate-level netlist and using activity back-annotation

to get accurate power estimates and taking them through preliminary layout/

floorplanning for an area estimate. The clock speed of each of these is one-fourth of

the top CPU speed for the SoC, unless specified otherwise.

6.2  The Reference SoC

The SystemC integrated power, performance and thermal modeling infrastructure takes a

simple XML file as a configuration specification. This specifies the global parameters such

as chip thickness, chip size and package thermal parameters. In addition, it also specifies

location and size of each IP core (as a set of two x-y coordinates), the configuration of each

core (such as cache size and associativity, SRAM memory size etc.), and the power
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parameters for each core (leakage power dissipation, power dissipation when fully active

etc.). We design a 90nm 750MHz dual-core OpenRISC-based SoC as a standard platform

for our studies, and use it for our studies where possible. This is the reference SoC used,

except where otherwise specified. The SoC layout is illustrated in Figure 5.9.

6.3  Benchmarks

We use embedded systems benchmarks from the MiBench [5], MediaBench [9], and

MediaBench II video [3] embedded systems benchmark suites. Each of these represents a

suite of relatively portable C-code benchmarks of various types to represent the workloads

typically executed on various classes of embedded systems. MiBench concentrates on as

diverse a set of benchmarks as possible, defining six major categories: Automotive and

Industrial Control, Consumer Devices, Office Automation, Networking, Security, and

Figure 5.9. Layout Of Reference SoC Used. Showing Components And Their Locations On The
Chip.
This is a dual-core SoC, with two OpenRISC processors with separate 16K/8-way L1 instruction
and data caches, 64K on-die, memory-mapped shared SRAM, and various peripheral components.
The figure shows an color thermal overlay based on chip temperatures at 3000ms when AES
benchmarks were running on both CPUs. The ambient temperature for this simulation was 60ºC.

Tech:90nm
App :AES
Die :2400x2500µm
128



Telecommunications. MediaBench and MediaBench II concentrate on multimedia and

telecommunications applications, since these are frequently the most computation-

intensive tasks run on mobile embedded systems.

The benchmarks we use are:

• mp3: This is a high-quality MPEG Audio Decoder (“mad”) from the MiBench

consumer benchmark suite, based on the libmad mp3 library. It supports MPEG-1

and the MPEG-2 extension to lower sampling frequencies. All three audio layers

(Layer I, Layer II, and Layer III, also known as MP3) are fully implemented. This

benchmark can use small or large MP3s for its data inputs. We use the large inputs

except where specified otherwise.

• h.264: This is an h.264/MPEG 4 part 10/AVC video codec from the MediaBench II

video benchmark suite. The h.264 standard is particularly notable for its high

compression rates, providing good video quality at bit rates that are substantially

lower (typically half or less) than what previous standards, such as MPEG-2,

H.263, or MPEG-4 Part 2, would need. 

• AES: The Advanced Encryption Standard (AES), chosen by the National Institute

of Standards and Technology (NIST) and adopted by the US government, is a

symmetric-key block cipher. We use the Rijndael benchmark from MiBench

security suite. The keys and blocks used may be 128, 192, or 256-bits long. It has

been widely analyzed, and is one of the most secure publicly-known symmetric-

key encryption algorithms and has been approved by the US Government for the

encryption of top security information. Unless otherwise specified, an encryption

and a decryption task are run in parallel.
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• GSM: The Global Standard for Mobile (GSM) communications benchmark is taken

from the MiBench telecommunication benchmark suite. A large speech sample is

taken as input, and we run an encoding and a decoding task in parallel unless

otherwise specified.

• ADPCM: Adaptive Differential Pulse Code Modulation (ADPCM) is a variation of

the well-known standard Pulse Code Modulation (PCM). A common implementa-

tion takes 16-bit linear PCM samples and converts them to 4-bit samples, yielding a

compression rate of 4:1. The input data are large speech samples. This benchmark

is taken from the MiBench telecommunication benchmark suite.

6.4  Modeling the Temperature-Dependence of Leakage Power

The leakage power reported by many standard synthesis/layout tools is often given as a

constant independent of temperature. However, this approach ignores the exponential

dependence of subthreshold leakage power dissipation on the temperature [11]. There is, in

fact, a feedback relationship between temperature and leakage power, with an increase in

one driving increases in the other until an elevated steady-state temperature is reached. The

dynamic integrated co-simulation-based approach presented above readily takes this effect

into account, allowing the impact of elevated temperatures on power dissipation to be taken

into account. 

Embedded systems do not usually exhibit high power dissipation, but the high

thermal resistances to embedded-system packages and enclosures, coupled with the high

operating temperature ratings for embedded systems1, mean that thermal issues are

increasing in importance for embedded systems as well. Figure 5.10 shows the peak chip

temperatures observed for various benchmarks at ambient temperatures ranging from 35ºC
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to 75ºC. The power dissipation and peak temperatures are first calculated by simply taking

the leakage power dissipation predicted by the lower-level tools (Cacti for the caches/

SRAM and Synopsys Design Compiler for other components). Then a second simulation

run is executed, this time with the temperature-dependence of leakage power dissipation

taken into account. As can be seen from the figure, the increased leakage power dissipation

at elevated temperatures plays a significant role: sometimes leading to a potentially

dangerous increase of an additional 10ºC. 

6.5  Modeling the Impact of Dynamic Thermal Management Techniques

Packages and cooling systems must be designed to address worst-case power dissipation

and ambient conditions. The worst-case combination of factors rarely occurs, and this

represents an opportunity for cost savings. The constraints on packaging and cooling may

be relaxed somewhat if undesirable thermal behavior is detected and addressed at runtime,

making the system run in a lower thermal envelope. Dynamic Thermal Management

(DTM) techniques [11], reduce system performance at runtime before excessively high

temperatures are reached, allowing the system as a whole to be designed with lower worst-

case parameters in mind. Such DTM techniques may include “thermal throttling” (first

used on the Pentium 4), where all execution is stopped if the processor nears a thermally

unsafe condition. Alternatively, the processor speed may simply be slowed down, or

specific functional blocks disabled to prevent overheating.

1.Desktop processors are usually designed for environmental temperatures under

45ºC[8, 4], while embedded systems may need to operate at temperatures as high as 85ºC

[7]).
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Figure 5.10. The Effect of including Temperature-Dependent Leakage Power on peak chip
temperature. 
The figure shows the peak chip temperature on a dual-core OpenRISC-based SoC for the
various benchmarks, at ambient temperatures ranging from 35ºC to 75ºC. As seen, assuming a
constant leakage power rather than a dynamically-calculated temperature-dependent leakage
power can cause the peak chip temperature to be underestimated by a significant amount,
especially at higher ambient temperatures, which make this effect more pronounced. All
observations correspond to a simulation time of 3000ms. Running longer simulations led to
similar results because the temperature had stabilized at this point.
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Essentially, DTM strategies avert catastrophic system failure at high temperatures

at the cost of possible performance degradation. To ascertain whether a given DTM

strategy is suitable, designers must be able to quantify its impact on performance. This

represents one of the feedback relationships mentioned earlier: the temperature is sensed

through a temperature sensor and directly causes a change in performance (stopping the

cores), which is reflected as a lowering in temperature. An integrated performance, power

and thermal modeling strategy is thus a useful tool in quantifying the impact of DTM

strategies. 

To illustrate this usage mode, we modeled the dual-core OpenRISC reference SoC

described in Section 6.2. We placed a simulated temperature sensor at the midpoint of the

boundary between the two OpenRISC cores in the reference layout shown in Section 5.9,

which is close to highest-temperature point in the SoC. We used an interrupt-driven

strategy, where all chip functionality other than on-chip timers was disabled via clock

gating as soon as the sensor detected that a predetermined threshold temperature (105ºC)

has been exceeded. This forced all on-chip components into a low-power mode where

leakage power dissipation was the primary power dissipation mode. Normal execution

resumed as soon as the sensor temperature dropped below 102.5ºC. We assumed that the

temperature sensor had an associated lag time of 100µs, and that it takes an additional

100µs to make the transition to or from the low-power state. These response time values

are similar to those reported for thermal throttling response times in contemporary

microprocessors [4].

Once this was set up, we ran simulations for each benchmark (run symmetrically on

each core) at various values of ambient temperature. As can be seen in Figure 5.11, there
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was little loss of performance at relatively cool ambient temperatures, but performance

falls off rapidly as ambient temperatures exceed 65ºC since thermal throttling is invoked

much more frequently at higher steady-state chip temperatures.

7.  Conclusion

In this chapter, we presented a technique for integrated execution-driven power,

performance and thermal co-simulation. We demonstrated how the use of an execution-

driven (rather than trace-driven) approach allows designers to explore important feedback

relationships that have a very significant impact on system design. Such relationships

Figure 5.11. Evaluating The Degradation Of Performance With Thermal Throttling. 
The graph shows the normalized performance (against unthrottled execution) of each
benchmark at various values of ambient temperature. Thermal throttling is used as a Dynamic
Thermal Management (DTM) strategy. A thermal threshold of 105ºC is chosen, and the clock to
all on-chip components other than timers is stopped when the temperature at an on-chip sensor
exceeds this threshold. Chip functionality is restored when the temperature drops below
102.5ºC. Each of these transitions is assumed to take 100µs, with an additional 100µs lag
associated with the temperature sensing process. The temperature sensor used is placed at the
midpoint of the boundary between the two OpenRISC cores in the reference layout shown in
Figure 5.9. 
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include the impact of temperature on subthreshold leakage power dissipation and the

impact of temperature on chip performance in a thermally-throttled SoC. In addition, we

explored the impact of spatial and temporal granularity chosen for discrete thermal analysis

on the accuracy of the estimates obtained. We also validated the thermal modeling

techniques by giving known inputs to the thermal modeling layer from widely-published

data sets and comparing the output against that from highly detailed lower-level simulation

tools.
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 Chapter 6: Conclusion
Power, performance, and thermal issues present a host of inter-related problems to SoC

designers. This dissertation has been an attempt to address these problems in a holistic

manner, and to explore the creation of tools that enable SoC designers to model these issues

in order to address them effectively

This dissertation consists of three major inter-related studies. First, we performed a

detailed study of the power consumption patterns of the Intel XScale embedded micropro-

cessor and built the most detailed instruction-level power model of such a processor to

date. We then showed how an instruction-level power modeling framework can be overlaid

on existing SystemC performance modeling frameworks, allowing both fast simulation

speeds (over 1 Million Instructions Per Second, or MIPS), as well as accurate power

modeling, of the microprocessor, its SIMD co-processor, caches, off-chip bus and on-board

SDRAM. We showed that while high-level system modeling languages do not currently

model power, they can do so. We explored SystemC extensions and software architectures

that enable power modeling and means of obtaining these power models for IP modules so

that accurate simulation-based power estimates can be made available to system designers

as early as possible. The central problem was that low-level system descriptions can be

analyzed for power, but run too slowly to be really useful, while high-level high-speed

system descriptions provide no power modeling capabilities. We developed a system

design methodology that bridges this gap, providing both high simulation speed and

accurate power estimation capabilities. The contributions of this study included:
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• Detailed characterization results and power models of a variety of embedded

system components, including an accurate instruction-level power model of the

XScale processor.

• Realistic validation of a system-level execution-driven power modeling approach

against physical hardware. The power estimates made were found to be within 5%

on average, and within 10% in the worst case.

• A scalable, efficient and validated methodology for incorporating fast, accurate

power modeling capabilities into system description languages such as SystemC. 

In the second study, we showed that such a methodology need not be restricted to pure-

digital systems, and we investigated the means to extend it to devices whose behavior is

governed entirely by continuous-time differential equations, which cannot currently be

handled by SystemC. To do this, we used SystemC to model an heterogeneous SoC that

includes a MEMS microhotplate structure developed at NIST. We demonstrated how

equation solvers may be implemented in SystemC, what some of the trade-offs are, and

how high simulation speeds may be maintained in the integrated modeling of such devices.

We also showed how the integrated modeling of such devices allows implicit feedback

behaviors to be modeled at design time. Overlooking such feedback phenomena can

frequently lead to suboptimal system designs. The contributions made in this study

include:

• The first SystemC models of a MEMS-based SoC and the first SystemC models of

MEMS thermal behavior. 

• Techniques for significantly improving simulation speed. 
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• A detailed case study of the application of the proposed approach to a real heteroge-

neous SoC, providing insights on how device-level design decisions can have

system-level impact, and how such issues can be studied and addressed through

integrated full-system modeling.

Third, we used the experience gained from the power modeling and mixed-mode modeling

study above to extend our SystemC-based modeling infrastructure to the next level: solving

the system of tens of thousands of differential equations that govern chip-level thermal

behavior. We found that we were able to do so efficiently, while maintaining high

simulation speeds, and reasonably accurate temperate estimates. Further, we showed how a

vertically-integrated unified modeling tool could model various forms of feedback

behavior that is important for accurate thermal modeling, and for estimating the efficacy

and performance cost of thermal management techniques. The contributions made in this

study include:

• The first SoC-level power, performance and thermal co-simulation techniques.

• A study of the sensitivity of these techniques to the spatial and temporal granularity

chosen.

• A validation of these techniques against widely-published tools and data sets.

• Example studies illustrating how these techniques may be used to answer complex

SoC design questions.
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Taken together, these studies address many of the major problems current problems in SoC

design and modeling, as well as the inter-relations between these issues. The tools and

techniques presented in this dissertation should enable a variety of useful studies and

design space explorations, and well as lay the foundation for further research in the field on

sophisticated co-simulation of complex, heterogeneous systems.
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Appendices
1.  Power and Thermal Characteristics of Contemporary Application 

Processors

• Intel PXA26x datasheet gives thermal resistance as TBD (To Be Decided) and

TABLE 7.1. Thermal Characteristics of Certain Common Embedded Application 
Processors

Processor Package

Max 
Clock 
(MHz)

Junction-
to-Air 
Thermal 
Resistance 
(ºC/W)

Max 
Power 
(mW)

Typical 
Power 
(mW)

Pkg. 
Dimens
ions 
(mm)

Atmel AT91 
[4]

100-lead 
TQFP

82 40 68 68 14x14

Analog 
Devices 
ADSP-
TS201S
TigerSharc
[2],[3]

576-ball
BGA_ED

600 19.6 
(without 
heat sink)

3000 2000 25x25

Intel 
PXA255
[6]

256-lead 
mBGA

400 33 1400 500 17x17

AMCC
Power PC 
440GR 
Embedded 
Processor 
[1]

E-PBGA 667 20 3200 2500 35x35

Freescale
MCF52223
ColdFire [5]

100LQFP, 
64QFN

80 53 - 68 
(1-layer 
PCB),
24 - 43 
(4-layer 
PCB)

- -
(blank in 
official 
datashee
t)

12x12
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updates do not specify the exact values.

• Intel PXA270 datasheet has junction-to-case (not air) thermal resistance of 2ºC/W.

• For comparison, the Intel Pentium 4 (in a 775-land package) shows a net thermal

resistance of only 0.29ºC/W [7].

2.  Physical and Thermal Properties of Some Materials 

TABLE 7.2. Physical and Thermal Properties of Some Materials at 350K

Thermal 
Conductivity
(W/(m.K))

Electrical 
Conductivity
(m.Ω)

Specific Heat 
(J/Kg.K)

Density 
(Kg/m3)

Silicon 148 25.2E-3 700 2330

Aluminum 237 37.7E+6 900 2700

Copper 401 59.6E+6 380 8920

Air (dry)

0.024 — 1003 (at con-
stant pres-

sure)

1.202

SiO2 
(as bulk glass)

~1.4 — 
(<1E-16)

1000 2200
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