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A DRAM cell requires periodic refresh operations to preserve data in its leaky

capacitor. Previously, the overheads of refresh operations were insignificant. But,

as both the size and speed of DRAM chips have increased significantly in the past

decade, refresh has become a dominating factor of DRAM performance and power

dissipation. The objective of this dissertation is to conduct a comprehensive study

of the issues related to refresh operations in modern DRAM devices and thereafter,

propose techniques to mitigate refresh penalties.

To understand the growing consequences of refresh operations, first we describe

various refresh command scheduling schemes; analyze the refresh modes and timings

in modern commodity DRAM devices; and characterize the variations in DRAM

cells’ retention time. Then, we quantify refresh penalties by varying device speed,

size, timings, and total memory capacity. Furthermore, we also summarize prior

refresh mechanisms and their applicability in future computing systems. Finally,



based on our experiments and observations, we propose techniques to improve refresh

energy efficiency and mitigate refresh scalability problems.

Refresh operations not only introduce performance penalty but also pose en-

ergy overheads. In addition to the energy required for refreshing, the background

energy component, dissipated by DRAM peripheral circuitry and on-die DLL dur-

ing refresh command, will become significant in future devices. We propose a set

of techniques referred collectively as coordinated refresh, in which scheduling of low

power modes and refresh commands are coordinated so that most of the required

refreshes are issued when the DRAM device is in the deepest low power self refresh

(SR) mode. Our approach saves background power because the peripheral circuitry

and clocks are turned off in the SR mode.

Moreover, we observe that as the number of rows in DRAM scales, a large

body of research on refresh reduction using retention time and access awareness will

be rendered ineffective. Because these mechanisms require the memory controller

to have fine-grained control over which regions of the memory are refreshed, while

in JEDEC DDRx devices, a refresh operation is carried out via an auto-refresh

command, which refreshes multiple rows from multiple banks simultaneously. The

internal implementation of auto-refresh is completely opaque outside the DRAM—

all the memory controller can do is tell the DRAM to refresh itself—the DRAM

handles everything else, in particular determining which rows in which banks are

to be refreshed. We propose a modification to the DRAM that extends its existing

control-register access protocol to include the DRAMs internal refresh counter and

also introduce a new dummy refresh command that skips refresh operations and



simply increments the internal counter. We show that these modifications allow a

memory controller to reduce as many refreshes as in prior work, while achieving

significant energy and performance advantages by using auto-refresh most of the

time.
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Chapter 1

Introduction

The growing memory footprints of data intensive applications and the increas-

ing number of cores on multicore processors with higher speed I/O capabilities, have

led to higher bandwidth and capacity requirements for main memories. Most com-

puting systems use Dynamic Random Access Memory (DRAM) as the technology

of choice to implement main memories due to its higher density compared to Static

Random Access Memory (SRAM), and due to its lower latency and higher band-

width compared to nonvolatile memory technologies such as Phase Change Memory

(PCM), Flash, and magnetic disks.

After the introduction of Double Data Rate (DDR) Synchronous DRAM (SDRAM)

commodity devices from Joint Electron Devices Engineering Council (JEDEC) in

late 1990s, the speed and size of devices have continued to increase with each new

technology generation, as shown in Figure 1.1. The current generation DDR4 de-

vices are specified with 32Gb density and 3.2Gbps speed, several orders of mag-

nitude higher as compared to DDR devices of the last decade [1]. These DRAM

scaling trends were propelled by the ever increasing main memory demands and

were achieved with the help of process technology and architectural innovations.
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Figure 1.1: DRAM device trends. Both speed and size increase with
each DDR generation.
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1.1 Motivation

1.1.1 DRAM Refresh Trends

A DRAM cell is composed of an access transistor and a capacitor. Data

is stored in the capacitor as electrical charge, but the charge leaks over time. To

retain the data stored in their leaky capacitive cells, DRAMs require periodic refresh

operations, which incur both performance and energy overheads. As DRAM devices

get denser, three primary refresh penalties increase significantly. The time spent

occupying the command bus with refresh commands increases with the number of

rows to be refreshed; the time during which rows are unavailable because their

storage capacitors are being recharged increases with the number of simultaneous

rows being refreshed (among many other factors); and the power needed to keep the

DRAM system refreshed scales with the number of capacitors in the system.

To demonstrate refresh overheads, Figure 1.2 presents a sample of our full-

system simulation based results as DRAM device density increases. For instance,

when using high-density 32Gb devices, refresh contributes to more than 20% of the

DRAM energy consumption (Figure 1.2(a)), and degrades the system performance

by more than 30% (Figure 1.2(b)). Furthermore, the extra time spent doing re-

fresh operations increases the background energy component. Our results are also

validated by recent work [2] projecting refreshes to account for up to 50% of the

DRAM power while simultaneously degrading memory throughput by 50% in future

64Gb devices. As the prominence of DRAM refresh increases in future computing

3
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systems, this dissertation aims to, first, understand the existing refresh techniques,

timings and challenges; and then, propose mechanisms to mitigate refresh penalties.

1.1.2 Understanding Refresh Issues

Before proposing any solution to the refresh problem, it is important to con-

duct a comprehensive study of the issues related to refresh operations in modern

SDRAM devices and understand the applicability of existing refresh techniques in

future memory systems.

Firstly, several refresh techniques [2–5] relied on an assumption that DRAM

devices support refresh commands at a row-level granularity, which is no longer true.

The current synchronous DRAM devices, which have completely replaced the older

asynchronous interface, only support auto-refresh (AR) command that refreshes

several rows simultaneously. An SDRAM device samples all the control, address

and command signals based on the memory controller’s clock edges [1,6]. Therefore,

earlier refresh categorization, specified in a Micron technical report [7], such as RAS-

only, CAS-before-RAS, and hidden refresh, is not applicable to current SDRAM

devices. This prevailing misconception about the refresh command sequence needs

to be clarified.

Secondly, JEDEC specifies multiple types of commodity DRAM devices, all

based on a common DDR architecture but with distinct features targeting separate

markets. The two dominant categories are general purpose DDRx devices and low

power LPDDRx devices. Refresh timings and command sequences in these devices
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are not exactly the same, and in addition, few refresh optimizations to lower back-

ground power are supported in LPDDRx devices. Hence, it is important to explain

all refresh options and analyze their benefits, as no single option is optimal in all

scenarios, and the trade-offs also change with memory organization parameters such

as ranks, banks and rows. Furthermore, the capacity of a DRAM cell to hold charge,

also called its retention period, exhibits two interesting phenomena [8] [9] [10]. First,

the retention period of a cell can vary over time, and the frequency of the changes

depends on temperature. Second, the retention period, across cells of a DRAM de-

vice, follows a normal distribution where very few cells leak charge fast and the rest

of the cells can hold data for much longer periods. As the retention period directly

affects refresh timings, understanding its characteristic in modern DRAM devices

would help in designing refresh reduction mechanisms.

Thirdly, to quantify the overheads of refresh operations accurately, a faithfully

modeled memory simulator, preferably with a full-system and detailed processor

model, must be used. The simulation infrastructure should easily allow sweeping all

relevant memory organization and device parameters, representing systems of past,

present and future. For instance, to observe refresh energy and timing penalty,

one could vary the following parameters: device speed and size, memory ranks,

refresh timings and command granularity, etc. An exploration study of this kind

provides insights in to some important questions, such as how significant are refresh

penalties? Does refresh impact energy or performance or both? What systems (size,

speed configurations) are more vulnerable to refresh overheads?

Lastly, after studying refresh issues and bottlenecks in great details, it would
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be useful to categorize the existing refresh techniques based on their operating gran-

ularity, the required modifications, the impact on either performance or energy, and

their applicability to current and future memory systems. A survey of the previous

refresh techniques and their shortcomings would provide future research directions.

1.2 Refresh Overheads and Solutions

As shown in Section 1.1.1, refresh operations in near future DRAM devices

will incur significant performance and power penalty. Moreover, as the memory

size and speed increase, the background energy component will become higher in

general purpose DDRs. From our analysis and survey, we observe that the previous

research on background energy and refresh has following two shortcomings. First,

some refresh techniques focus only on mitigating performance impacts of refresh

operations and neglect power effects. Moreover, the existing memory controllers use

separate mechanisms to deal with background power and refresh operations, and

many times the mechanisms are in conflict with each other and often render each

other ineffective. Secondly, most of the previous refresh reduction techniques use

row-level refresh commands which are not readily available in current commodity

DRAM devices. As the DRAM device density scale, these techniques incur signifi-

cant complexity in the memory controller and provide diminishing performance and

energy benefits.

In this section we present two mechanisms, Coordinated Refresh and Flexi-

ble Refresh, to reduce background energy by co-scheduling refresh and low power
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modes; and to enable the auto-refresh command to support finer-granularity refresh

reductions, respectively.

1.2.1 Energy Efficiency

As DRAM devices become faster and denser, they consume more energy, even

when the memory system is not servicing any requests. Increases in device speed lead

to higher background power dissipation by the peripheral circuitry, and increases in

device density result in higher refresh energy. These trends have caused the memory

subsystem to become an important contributor towards the energy efficiency of

current and future computing platforms [11].

Commodity DRAM devices employ low power operating modes to reduce the

background power consumed by the peripheral circuitry. For example, in the deepest

low power Self Refresh (SR) mode, the entire clocked DRAM circuitry is turned off,

resulting in no additional power dissipation beyond the power required to refresh

the DRAM cells. Many previous research studies have proposed intelligent schemes

to utilize these low power modes to save DRAM power [12–17]. The key idea behind

these schemes is to switch a DRAM rank to a lower power mode whenever the rank

stays idle for a time period longer than a pre-determined threshold.

While idle period tracking was originally proposed for leveraging low power

modes, idle periods can also be used for intelligent scheduling of refresh operations.

For instance, to mitigate the impact of DRAM refreshes on performance, a recent

work proposes a technique called Elastic Refresh [18], which postpones up to eight
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refresh commands for a busy DRAM rank and then issues those pending refresh

requests, when that rank becomes idle.

Even though idle period tracking can be leveraged to implement both intelli-

gent low power mode switching and intelligent refresh scheduling, we observe that

these two sets of techniques are in conflict with each other and often render each

other ineffective. For example, if a memory controller using the Elastic scheme

issues a batch of pending refresh commands as soon as the DRAM becomes idle,

then the DRAM would need to be kept in the highest power active mode, until all

the pending refreshes have been completed, thereby limiting the effectiveness of low

power mode switching. Conversely, if the rank is immediately switched to SR mode

upon becoming idle, then the Elastic scheme would be unable to service any pending

refreshes, thereby rendering the Elastic scheme ineffective. The main reason for the

interference between intelligent refresh scheduling and low power mode switching is

that these mechanisms work in isolation with each other.

We make the novel observation that coordinating the operation of these two

mechanisms can improve both the performance and energy efficiency of the DRAM

subsystem. We propose a new set of techniques, collectively referred to as Coordi-

nated Refresh. The key idea behind these techniques is to coordinate the scheduling

of low power mode transitions and refresh commands in such a way that most of

the required refreshes are scheduled when the DRAM rank is in the lowest power

SR mode.

An illustration of how our proposal works differently compared to earlier re-

fresh schemes is shown in Figure 1.3. Most commonly used refresh scheme, also
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Figure 1.3: An illustartative comparison of (a) prior refresh schemes, De-
mand and Elastic Refresh, with our proposed (b) Coordianted Refresh.
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referred as Demand Refresh, maintains a timing counter which is set to refresh

interval value (tREFI). As soon as the counter expires, an auto-refresh command

is issued while the pending memory requests have to wait until the refresh oper-

ation finishes. On the other hand, Elastic Refresh technique utilizes the available

flexibility in refresh to postpone up to eight auto-refresh commands and service

memory request with higher priority. Certainly, Elastic Refresh scheme mitigates

performance penalty compared to Demand Refresh. But, as shown in Figure 1.3

(a), Elastic Refresh reduces the opportunity to use low power modes.

To address this concern, we propose Coordinated Refresh which also utilizes

the full flexibility of refresh scheduling by postponing refreshes when the memory

is busy and servicing them during periods of idleness. The key difference between

our techniques and Elastic is as follows: instead of the memory controller issuing all

the pending refresh commands, Coordinated Refresh first transitions DRAM to the

SR mode and then services the pending refreshes in the SR mode, thereby saving

background power and mitigating the impact of refreshes on performance at the same

time. To correctly implement Coordinated Refresh, we suggest two variants. First,

called Coordinated FAST refreshes in SR (CO-FAST) as illustrated in Figure 1.3

(b), satisfies the timing constraints for pending refreshes by doubling the refresh rate

during SR mode, whereas second technique, called Coordinated FLUSH refreshes

in SR (CO-FLUSH), simply flushes all the pending refreshes immediately upon

entering the SR mode.
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1.2.2 Scalability of Refresh Reduction Schemes

A large body of refresh research focused on the idea that a large number

of refreshes are unnecessary and therefore can be skipped by utilizing either ac-

cess or retention period awareness. Access awareness exploits knowledge of recent

read/write activity, as refresh operations to a row can be skipped if the row been

accessed recently, or if the data stored in it are no longer required [4, 5]. Retention

awareness exploits knowledge of the characteristics of individual cells. The retention

period of a DRAM cell indicates how frequently it should be refreshed to preserve its

stored charge. Importantly, among all device cells, most have high retention (on the

order of few seconds), while a very few weak cells have low retention that requires

frequent refreshes [9, 19]. For simplicity, in commodity DRAM, the refresh rate for

the entire device is specified by a single retention period (tRET ), representing the

worst-case time of the weakest cells. Consequently, prior retention-aware schemes

characterize and store retention period per-row and then selectively schedule fre-

quent refreshes to only the rows with weak cell, thereby reducing as much as 75%

of the refreshes [2, 3].

The problem facing these schemes is that JEDECs refresh mechanism in DDRx

DRAMs takes away fine-grained control of refresh operations, thereby rendering

row-level refresh-reduction techniques relatively inefficient or, worse, unusable.

Prior refresh reduction schemes, both retention and access aware, rely on a

fine-granularity row-level refresh option to selectively refresh only the required rows.

However, such a row-level refresh command is not supported in JEDEC DDRs. To
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get around this limitation prior implementations explicitly send an activate (ACT)

command followed by a precharge (PRE) command to the desired DRAM row [1,6].

This command sequence brings the desired row to the externally visible banks global

row-buffer and then precharges the row, thereby mimicking a refresh operation.

In comparison, JEDECs Auto-Refresh (AR) command, which refreshes several

rows simultaneously, is typically used for refresh operations in DDRx devices. To

simplify refresh management, the memory controller is given limited responsibility

in the refresh process: it only decides when an AR should be scheduled based on a

pre-specified refresh interval (tREFI). The DRAM device controls what rows to be

refreshed in an AR operation and how refresh is implemented internally. A refresh

counter is maintained by the device itself to track the rows to be refreshed in the next

AR. More importantly, device designers have optimized AR by exploiting knowledge

of how the DRAM bank is internally organized in multiple sub-arrays. Each sub-

array carries out refresh operations independently using only its local row-buffers;

therefore the DRAM can schedule several refreshes in parallel to multiple rows of a

single bank, thereby reducing both the performance and energy penalties of refresh.

Our key observation is that neither mechanism — neither AR by itself nor

prior schemes that are forced to use ACT and PRE to realize row-level refresh —

can be optimal in minimizing the performance and power impact of refresh. Since

the memory controller does not have enough control over refresh with AR, it cannot

skip unnecessary refreshes at all, on the other hand, using ACT/PRE to refresh

individual rows is simply not scalable to future DRAM devices.

For perspective: as shown in Table 1.1, the total number of rows increases from
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Table 1.1: Number of rows and refresh completion time in DDR4 devices. Both
increase with device density.

Device density Num. Banks Per-bank Rows Total Rows tRFC (ηs)

8Gb 16 128K 2M 350

16Gb 16 256K 4M 480

32Gb 16 512K 8M 640

4 million to 8 million as DDR4 device density doubles from 16Gb to 32Gb [1, 20].

Therefore, to accomplish row-level refresh, a 16Gb DDR4 x4 device will require

four million ACT and PRE commands (8M total commands) in each tRET (64ms)

period. If directed to an individual bank, this would require 13ms to complete; if

directed to all banks at once, this would require 25ms to complete 1. In contrast,

in each tRET (64ms) period, auto-refresh requires only 8K AR commands, thereby

occupying three orders of magnitude less time on the command bus compared to the

per-row scheme. Moreover, as shown in Table 1.1 for 16Gb device, an all-bank AR

command completes in tRFC (480ηs) time. Hence, AR satisfies all bank refresh in

3.93ms (8K*480ηs), which is 3.3X and 6.4X less time than required by the row-level

option for single and all banks respectively. Furthermore, the energy consumption of

row-level refresh is also substantially higher than the optimized AR option. Thus,

even if most of the refreshes are skipped, the inherent inefficiencies of row-level

ACT/PRE refresh prevent one from obtaining the desired refresh-reduction benefits.

The purpose of this study, therefore, is to make the already optimized AR

1 ACT on same and different banks must wait for tRC (50ηs) and tRRD (6ηs) respectively. Thus,

row-level refresh consumes 13.1ms (256K*50ηs) to refresh a single bank, and 25.1ms (4M*6ηs) to

refresh all banks.
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mechanism flexible enough so that a memory controller can skip unwanted refreshes

while serving the rest of refreshes efficiently. We therefore propose a simple DRAM

modification to provide external access to the refresh counter register, by extending

the register-access interface already available in the latest commodity DDR4 and

LPDDR3 devices. This interface allows the memory controller to write or read pre-

defined mode registers through Mode Register Set (MRS) or Mode register Read

(MRR or MPR) commands [1, 21]. For instance, in DDR4, the on-die temperature

sensor value can be read by accessing a specific register with an MPR command.

We propose that the refresh counter value be accessed using the same MRS/MPR

mechanism. In addition, we introduce a dummy-refresh command, which increments

the internal refresh counter but does not schedule any refreshes —hence it consumes

one command bus cycle without interrupting any memory requests on any of the

internal banks.

1.3 Contribution and Significance

The main contributions of this dissertation are summarized below:

1. We clarify the refresh command sequence for modern synchronous DRAM

(SDRAM). In particular, since the traditional asynchronous interface is com-

pletely replaced, earlier refresh categorization specified in [7] such as RAS-only,

CAS-before-RAS, and hidden refresh are no longer available in SDRAMs.

2. We summarize currently available refresh modes and refresh timings. We

also review the characteristics of DRAM data retention time. Based on full-
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system simulations, we demonstrate the variation of refresh penalties with

device speed, device size, and total memory size. Moreover, we show that

as the total memory capacity increases, background energy becomes more

significant.

3. We categorize refresh scheduling mechanisms based on command granularity

(i.e., rank, bank, and row). We also survey previously proposed refresh tech-

niques and summarize their applicability to current and future memory sys-

tems. Based on our experiments and observations, we provide general guide-

lines for designing techniques to mitigate refresh penalties.

4. Next, our work addresses the need for coordinating the scheduling of low power

mode transitions and refresh operations during idle DRAM periods. We pro-

pose CO-FAST and CO-FLUSH: a set of novel techniques (together called

Coordinated Refresh), which save DRAM background power by carrying out

most of the refreshes during the lowest power SR mode. Furthermore, we also

propose two novel mechanisms (History-based Memory Activity Prediction

and Advanced Refreshes) to utilize DRAM idle periods in an energy-efficient

manner. Our proposed coordinated solutions improve the DRAM energy effi-

ciency by 10% on average and up to 25%, as compared to the baseline technique

across the entire SPEC CPU 2006 benchmark suite.

5. We quantify and analyze the inefficiencies caused by JEDECs Auto-Refresh

(AR) scheme when row-level refresh techniques are used, and further show

that the prior refresh reduction techniques do not scale in high density DDRs.
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6. Lastly, we propose simple changes in DRAM to access the refresh counter,

which enables the JEDEC AR mechanism to be utilized in refresh-reduction

techniques. We quantify the effects of Flexible Auto-Refresh (REFLEX), serv-

ing most of the required refresh operations through AR, while skipping re-

freshes through dummy-refresh. Note that REFLEX techniques can also uti-

lize low power Self-Refresh to further reduce the refresh energy. We show that,

in 32Gb devices, REFLEX techniques save an average of 25% more memory

energy than row-level refresh when 75% of the refreshes are skipped.

1.4 Organization of Dissertation

This dissertation is organized as follows. Chapter 2 provides a detailed back-

ground on DRAM refresh schemes and related issues. In particular, we discuss

modern memory organization, refresh commands and timings, and variability in

DRAM cells’ retention time. Then in Chapter 3, the impact of refresh operations is

quantified with experimental results using a full-system simulator. This chapter also

discusses several existing refresh schemes and their applicability in future memory

systems. Chapter 4 presents and evaluates our proposed first technique, referred

as Coordinated Refresh, which schedules most of the refreshes in energy efficient

manner. Our second refresh technique, referred as Flexible Refresh, is described in

Chapter 5. In Flexible Refresh, we propose to make DRAM refresh counter visible to

the memory controller, as a results, previously refresh reduction schemes can scale in

high-density devices and become compatible with optimized auto-refresh command.
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Finally, Chapter 6 summarizes this dissertation with concluding remarks.
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Chapter 2

DRAM Refresh Background

Many recently proposed mechanisms have either misinterpreted refresh tim-

ings or utilized refresh commands no longer valid in the current commodity DDR

devices. This chapter clarifies the prevalent confusion on refresh commands and

timing constraints, and further it provides detailed background on DRAM refresh.

2.1 DRAM Memory System Organization

In the mid-1990s, DRAM architecture evolved rapidly from conventional asyn-

chronous DRAM to Fast Page Mode (FPM) DRAM, then Burst Extended Data Out

(BEDO) DRAM, and finally Synchronous DRAM (SDRAM) devices. SDRAM re-

quires commands to be asserted on edges of the clock signal provided by either the

processor or the memory controller. Many of these modes need significant structural

modifications in the DRAM devices to increase throughput, and memory vendors

adopted different paths to reduce memory latency [6]. Subsequently, JEDEC formed

a committee involving major players in the memory ecosystem to unify DRAM ar-

chitecture and standardize its signal interface. As a result of this concerted effort,

19



JEDEC specified the Double Data Rate (DDR) SDRAM architecture, which became

highly successful and was widely adopted in the last decade. Currently, in addition

to specifying newer generations of commodity DRAM devices (DDRx), JEDEC fre-

quently publishes versions of low power (LPDDRx) and high bandwidth graphics

(GDDRx) DRAM standards, all based on the original DDR architecture. The basic

structure of the DRAM cell remains the same since its invention, which consists of

a capacitor-transistor pair, as illustrated in Figure 2.1.

A JEDEC-style SDRAM device is organized into banks, rows, and columns,

as shown in Figure 2.1. Since each bank has dedicated sense amplifiers and periph-

eral circuitry, multiple banks can process memory requests in parallel with some

timing restrictions to avoid contentions on common internal and external buses.

Multiple banks are essential to achieve sustained high bandwidth. According to the

latest DDR4 standard [22], the number of banks in a device is increased by further

partitioning them into bank groups. The banks in a group share some resources,

therefore consecutive accesses to the banks in the same group require longer time.

Internal accesses to DRAM arrays, such as refresh and activation, are functioned

at the row granularity. After an activation command, the entire row is read and

buffered into the sense amplifiers. Subsequent column commands on the row could

therefore use faster accessible buffered data, rather than going to the DRAM array.

Table 2.1 shows the organization parameters of DDRx and LPDDR3 devices.

Furthermore, multiple DRAM chips are wired together to build a memory

rank, with a wider data bus. All the devices in a rank share address, command, and

control signals. They all receive and serve the same requests, but each DRAM device
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Figure 2.1: DRAM memory system organization.

Table 2.1: Specified DDR device organization parameters.

Parameter DDR2 DDR3 DDR4 LPDDR3

Bank groups 1 1 2/4 1

Banks 4/8 8 8/16 8

Rows per bank 4K–64K 4K–64K 16K–256K 16K–32K

Columns per row 512–2K 1K–4K 1K 1K–4K

I/O (bits) 4/8/16 4/8/16 4/8/16 16/32
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owns its own portion of data on the bus. Typically, commodity DRAM chips are

arranged on a Dual Inline Memory Module (DIMM), which could have one or more

ranks. Finally, a memory channel is formed using one or more DIMMs, therefore

potentially having several ranks. The ranks in a channel share all signals except the

chip select signal, which is used to distinguish between multiple ranks.

2.2 Refresh Operation: Preliminaries

In DRAM, as its acronym Dynamic Random Access Memory suggests, the

non-persistent nature of electrical charge stored in its capacitive cells leaks gradually

through the access transistors. Therefore, to maintain data integrity, data values

stored in DRAM cells must be periodically read out and restored to their respective

full voltage level before the stored electrical charge decay to unrecognizable levels.

The refresh operation accomplishes the task of data read-out and restoration in

DRAM devices, and as long as the time interval between refresh operations made

to a given row of a DRAM array is shorter than the worst-case data decay time [6].

The lifetime of the stored data is referred as retention period of a given DRAM cells.

A straightforward refresh policy, for example, could be to issue refresh commands

at a constant rate such that every cell in DRAM is refreshed faster than the worst

case retention time among all the cells.

In accordance with current DRAM organization, shown in Figure 2.1, a refresh

operation can be understood as a row activation followed by a precharge command.

When a row is activated, sense amplifiers drive each bit-line fully to either VDD or
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0V. This causes the activated row’s cell capacitors to either fully charged to VDD

or fully discharged to 0V. Finally, a precharge operation conclude the restoration

process. In commodity DRAMs, the worst case retention period was maintained

constant at 64ms for several generations. Hence, as the number of rows increases

with each generation (Table 2.1 ), total number of refresh operations also gets higher.

To simplify the control complexity associated with the refresh command, most

DRAM devices use a refresh counter (a register storing row address) to keep track

of the address of next row to be refreshed. In this case, the memory controller sends

a single refresh command to the DRAM device, and the device first picks the row

address value from the refresh counter and goes through a refresh cycle for that

row in one or all of the banks. Furthermore, typically in high density devices, one

refresh command refreshes several rows, configured according to DRAM density and

specified refresh interval. In the end, the refresh counter value is incremented to

reflect the starting row address for the next refresh command.

2.3 Refresh in Asynchronous DRAMs vs. Synchronous DRAMs

As described in Section 2.2, refreshing a DRAM row is similar to a read opera-

tion, where the stored data is read to the local sense amplifiers and restored back to

the row. This operation is straightforward. However, as DRAM device architecture

and organizations evolved, in order to manage refresh operations, refresh param-

eters and options became more complex, and therefore it is often misunderstood.

Earlier, to clarify refresh operations, Motorola published a technical report explain-
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ing DRAM refresh modes in 1994 [23], followed by Micron in 1999 [7]. However,

these refresh methods were only applicable to asynchronous devices. We explain

the changes in refresh methods between current SDRAM devices and the earlier

asynchronous devices described in [7].

• Refresh Rate. In traditional “asynchronous” DRAM, there are two types of

devices, one with standard refresh rate (15.6µs), and the other with extended

refresh rate (125µs). In current SDRAM devices, the required refresh rate only

changes with temperature, regardless of device organization. For example, all

DDR3 devices require refresh rate of 7.8µs at normal temperature range (0–

85oC), and 3.9µs rate at extended temperature range (up to 95oC).

• Distributed and Burst Refresh. In traditional “asynchronous” DRAM,

the memory controller could decide to either complete all the required refreshes

in a burst or to distribute evenly the refreshes over the retention time. In

modern DDRx devices, only the distributed refresh option is supported in

order to keep refresh management simple. LPDDRx devices, on the other

hand, also support burst refresh which could be used to meet the deadlines of

real-time applications.

• RAS-Only Refresh. In traditional “asynchronous” DRAM, RAS-only re-

fresh is available, which is performed by asserting the RAS signal with a valid

row address to be refreshed, and the CAS signal remains de-asserted. The con-

troller is responsible for managing the rows to be refreshed. However, there is

no equivalent command in modern SDRAM devices. To accomplish a refresh
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mechanism similar to RAS-only refresh, one could issue an explicit activate

command followed by a pre-charge to the bank. As we show in later sections,

such operations have higher energy and performance penalties. It would also

require higher management burden on the memory controller.

• CAS-Before-RAS (CBR) Refresh. In traditional “asynchronous” DRAM,

CBR refresh would start by first asserting the CAS signal and then asserting

only the RAS signal. There is no requirement of sending a row address, because

a device has an internal counter which increment with each CBR command. In

modern SDRAMs, a variation of CBR is adopted with two important changes.

First, both the RAS and CAS signals are asserted simultaneously on the clock

edge, rather than one before the other. Second, instead of internally refreshing

only one row, SDRAM devices could refresh more rows depending upon the

total number of rows in a device. This command is referred to as auto-refresh

in JEDEC-based SDRAM devices.

• Hidden Refresh. Hidden refresh is referred to as an immediate CBR com-

mand after a read or write operation by keeping the CAS asserted, while the

RAS is de-asserted once and then asserted again. This means the data on the

DQ lines is valid while performing refresh function. There is no timing advan-

tage when compared to a read/write followed by an explicit CBR command.

Hidden refresh is implemented in asynchronous DRAMs but not in SDRAMs.
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2.4 SDRAM Refresh Modes

SDRAM devices use the following two modes to refresh: auto-refresh (AR)

and self-refresh (SR). In general, SR is used when idle for power saving, while AR

is used when in active mode.

2.4.1 Auto-Refresh (AR)

The shift from asynchronous to synchronous DRAM devices has changed the

refresh command interface and protocols. In SDRAM devices, all the command and

address signals are sampled synchronously on the edges of a clock provided by the

memory controller. Figure 2.2 illustrates a typical auto-refresh scenario where the

device is first brought to the idle state by pre-charging all the opened rows, and then

only auto-refresh is issued. When signaling an auto-refresh in DDRx, the memory

controller asserts both row access strobe (RAS) and column access strobe (CAS)

signals, along with selecting that device by chip select (CS) [24].

To simplify the refresh management, each DRAM device has an internal refresh

counter that tracks the rows to be refreshed for the next refresh operation. The

memory controller is responsible for issuing AR commands at a specified rate to

refresh a certain number of rows in all the banks (this is referred to as all-bank

auto-refresh). Normal memory operations can be resumed only after the completion

of an AR.

LPDDRx devices use double data rate architecture even on the command/address

(CA) bus to reduce the number of pins. An AR is initiated when the CA0 and CA1
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Figure 2.2: Auto-refresh command sequence in SDRAM devices. All the
opened rows are pre-charged before issuing an AR command. Subsequent
operations need to wait until tRFC for refresh to complete.

pins are driven LOW while keeping CA2 HIGH on the rising edge of the clock [21].

Unlike DDRx devices, LPDDRs have an additional flexibility of scheduling AR at

the bank granularity (this is referred to as per-bank auto-refresh), which only re-

quires the bank to be refreshed to be idle, while other banks could service memory

requests. Note that per-bank AR can not specify the bank address to be refreshed,

i.e., the DRAM maintains the target bank number internally, and with each com-

mand the target bank number is incremented sequentially starting from bank 0.

Therefore, the memory controller must ensure that its notion of target bank num-

ber is in sync with the LPDDR device’s notion of the target bank number by using

all-bank refresh. It is also worth noting that whether an AR is per-bank or all-bank

can be dynamically decided based on the CA3 signal (LOW for per-bank and HIGH

for all-bank).
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2.4.2 Self-Refresh (SR)

Auto-refresh dissipates substantial power since all the clocked circuitry in an

SDRAM remains active during the entire refresh period. As a result, in addition

to the power required for refresh, background power is consumed due to the delay

locked loop (DLL) and peripheral logic. To save the background power, a DRAM

device has an option to enter the SR mode, in which the device internally generates

refresh pulses using a built-in analog timer. In other words, when a device is in the

SR mode, all the external I/O pins and clocks are disabled, the DLL is turned off,

and the device preserves data without any intervention from the memory controller.

SR is the lowest power mode for a DRAM device without losing the stored data.

Figure 2.2(b) shows the entry and exit timing diagram of SR for DDR4 de-

vices [22]. First, same as in the case of AR, all the banks should be pre-charged

before entering SR. The device enters SR mode when the clock enable (CKE) signal

is sampled low while the command is decoded as refresh (RAS=LOW, CAS=LOW,

WE=HIGH, and CS=LOW). Additionally, commands on the previous and the

next clock cycle should be deselected (CS=HIGH). Furthermore, the DRAM de-

vice should remain in SR mode for at least a time period specified by tCKESR. The

device should also internally schedule a refresh command within tCKE period upon

entering SR mode. Once the device is in SR mode for tCKSRE, external clocks can

be disabled.

When exiting SR, a specified time is required to ensure the ongoing refresh

command is finished and the DLL is locked properly. The specified time is the
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Source: JEDEC DDR4 Standard Spcifications

Figure 2.3: Self-Refresh entry/exit timings for DDR4 [22]. Before enter-
ing SR, the DRAM device should be idle. Immediately before and after
SR entry, the memory controller issues the deselect command (DES).
After entering SR, DRAM internally issues one refresh command within
tCKE, and the CKE signal should remain low for at least tCKESR pe-
riod. DRAM exits SR when CKE is set to high. After tXS FAST (tXS

in DDR3), commands not requiring locked DLL can be issued, but com-
mands which require locked DLL need to wait for tXSDLL. DDR4 de-
vices can be programmed to abort the ongoing refresh and exit SR at
tXS ABORT . Finally, before entering SR again, at least one refresh com-
mand should be issued by the memory controller.
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maximum of the following two timing parameters: (i) tRFC , the time required to

service a refresh command, and (ii) tXSDLL, the DLL lock period. It is worth noting

that DDR4 devices support an option to abort an ongoing refresh command, making

exiting SR faster (tXS FAST and tXS ABORT ). Nonetheless, subsequent commands

that require locked DLL still need to wait until tXSDLL is complete. Since LPDDRx

devices do not have DLL, the time to exit SR only depends on tRFC . Finally, before

re-entering SR mode, at least one auto-refresh must be issued.

LPDDRx devices dedicate more resources to reduce the background power

during SR. Specifically, two important techniques are used in LPDDRs: (i) tem-

perature compensated refresh rate guided by on-chip temperature sensors, and (ii)

the partial array self-refresh (PASR) option, where the controller can program the

device to refresh only a certain portion of the memory. These techniques could

substantially reduce the energy consumption while in the SR mode. For example,

Figure 2.4 shows how the current drawn during SR changes with temperature and

by enabling PASR in LPDDR2 devices [25].

2.5 Refresh Timings

Modern DRAM devices contain built-in refresh counters, therefore the only

responsibility of the memory controller for managing refresh is to issue refresh com-

mands at appropriate timings. The fundamental requirement is that each DRAM

cell should be refreshed or accessed at least once within its retention time. Most of

the commodity DRAM devices have either 32ms or 64ms retention time, also called
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Source: Micron LPDDR2 2Gb datasheet Temperature (oC) 
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Figure 2.4: Refresh power reduction in LPDDRx when employing tem-
perature compensation and partial array self-refresh (PASR) [25]. As
the temperature increases, the refresh current (IDD62) becomes higher,
and PASR shows more benefits.
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the refresh window (tREFW ). The retention time usually decreases with increasing

temperature. Additionally, on an average one AR command should be issued within

a refresh interval time (tREFI). Therefore, the memory controller should issue at

least tREFW

tREFI
number of AR commands within a refresh window to ensure that every

DRAM cell is refreshed before the retention time expires.

Each AR command refreshes a certain number of rows in each bank depending

on the total number of rows in the DRAM device. For instance, a DDR3 device

has a tREFI of 7.8µs and a tREFW of 64ms. Therefore, 8192 refresh commands are

issued in a tREFW period. For a 512Mb x8 device, there are 8192 rows per bank,

and hence each AR needs to refresh only one row in each bank, and the internal

refresh counter is only incremented by one. However, for a 4Gb x8 device, there

are 65536 rows per bank, therefore one AR command should refresh 8 rows in each

bank and then increment the internal counter by eight. As the number of rows to

be refreshed by a single AR increases, the refresh completion time also increases.

The time taken for a refresh command is known as the refresh cycle (tRFC).

In general purpose DDRx devices, the available refresh flexibility allows up to

eight AR commands to either be postponed or issued in advance, as shown in Fig-

ure 2.5(a). The JEDEC standard allows for a debit scheme to be used, in which up

to eight refreshes are postponed during the high memory activity phase, and later on

in the idle period these extra AR commands could be issued. Alternatively, a credit

scheme can be devised by first issuing extra refreshes and then later on skipping

these many refreshes. However, the rate of refresh should meet two constraints: (i)

at least one AR must be issued in 9*tREFI time period, and (ii) no more than 16
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AR commands are issued in 2*tREFI interval.

LPDDRx devices provide more flexibility in scheduling AR, as shown in Fig-

ure 2.5(b). These devices support both distributed and burst refresh mode, and

anything in between. The requirement is that in a running window of tREFW , 8192

number of all-bank-AR should be issued. Moreover, a maximum of 8 refreshes could

be issued in a burst window called tREFBW , which has a duration of 32*tRFC .

DDR2 and DDR3 devices are specified to keep tREFI constant (7.8µs), but with

different tRFC period according to the device density. Because of this reason, tRFC

becomes prohibitively long for high density devices. In response to the growing tRFC ,

DDR4 standard has introduced a fine granularity refresh mode that allows tREFI

to be programmed [22]. In this fine granularity mode, users can have the option to

enable 2x or 4x mode, where tREFI is divided by 2 or 4, respectively. Consequently,

the number of rows refreshed for a single refresh command is decreased by 2x or

4x, which in turn shortens tRFC . With the on-the-fly setting, one could change the

refresh rate dynamically to suit the memory demand.

Table 2.2 shows the tREFI and tRFC timing values for several DRAM genera-

tions and several device sizes. It is worth noting that for a given DRAM architecture

(e.g., DDR3), tRFC is not constant and can vary significantly.

2.6 DRAM Retention Time

Due to junction leakage, gate-induced drain leakage, off-leakage, field transistor

leakage, and capacitor dielectric leakage, a DRAM cell loses charge over time [26].
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(a)

(b)

Figure 2.5: Available refresh scheduling flexibility in (a) DDRx and (b)
LPDDRx devices. (a) In DDRx, up to eight AR commands can be
postponed and later on need to be compensated by issuing extra AR.
Similarly, up to eight AR can be launched in advance and later on those
many AR can be skipped. (b) In LPDDRx, the refresh scheduling flex-
ibility is higher: from distributed refresh scheme where only one AR is
scheduled every tREFI , to a burst refresh mode where all the required
AR are completed in a burst in the beginning of a refresh window.
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Table 2.2: Refresh timing parameter values for different DDR device generations.
DDR4 has an optional feature to shorten tREFI , either by 2x or by 4x. LPDDR3
has per-bank (pb) and all-bank (ab) auto-refresh commands, while DDRx has only
all-bank refresh.

Device Timing Parameter 1Gb 2Gb 4Gb 8Gb 16Gb

DDR2 (tREFI=7.8µs) tRFC (ηs) 127.5 197.5 327.5 — —

DDR3 (tREFI=7.8µs) tRFC (ηs) 110 160 300 350 —

DDR4 1x (tREFI=7.8µs) tRFC (ηs) — 160 260 350 480

DDR4 2x (tREFI=3.9µs) tRFC (ηs) — 110 160 260 350

DDR4 4x (tREFI=1.95µs) tRFC (ηs) — 90 110 160 260

LPDDR3 (tREFI=3.9µs, tRFCab (ηs) — — 130 210 TBD
tREFW =32ms) tRFCpb (ηs) — — 60 90 TBD

Therefore, the cells storing useful data need to be refreshed periodically to preserve

data integrity. The primary timing parameter for refresh is retention time, which is

the time between storing data and the first erroneous readout. Note that in a DRAM

device, cells do not have the same retention time because of process variations. This

phenomenon is referred to as “inter-cell” distributed retention time. The cells could

be broadly divided into two categories: leaky and normal cells. The leaky cells

draw order of magnitude higher leakage currents than the normal cells. As shown in

Figure 2.6(a), most of the cells are normal cells, which have retention time more than

1 second [8] [9]. However, to accommodate the worst case scenario, the retention

time of a DRAM device is usually determined by the retention time of the leakiest

cell.

Another phenomenon worth noting regarding retention time variation is “intra-

cell” variable retention time. Variable retention time corresponds to two or multiple

meta-states in which a DRAM cell can stay [10]. Since each state has different

leakage characteristics, the retention time of a DRAM cell varies from state to state.
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Source: K.Kim et al., 2009 

(a)

Source: D.S.Yaney et al., 1987 

(b)

Figure 2.6: DRAM retention time characteristics [9] [10]. (a) Inter-cell
retention time distribution. Most of the cells have higher retention time,
while very few cells are leaky and therefore exhibit low retention time.
(b) Intra-cell variable retention time. The retention time of a single cell
vary with temperature as well as time.
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Additionally, the switching frequency between different states increases at higher

temperature. For instance, a DRAM retention time state can switch as frequently

as 15 times in an hour at 85oC. Figure 2.6(b) shows an example of variable retention

time.

Finally, retention time has high sensitivity to temperature. As the temperature

increases, leakage also increases, and therefore shortens the retention time. As a

result, at extended temperatures (i.e., 85–95oC), DDRx devices have to increase the

refresh rate. LPDDRx devices also have on-device temperature sensors which adjust

the refresh rate according to the temperature.

2.7 Summary

This chapter details the issues related to refresh operations in modern DRAMs,

including refresh modes and timings, refresh granularity, refresh flexibility, and vari-

ations in DRAM cell retention period. Furthermore, this chapter summarizes and

evaluates existing refresh techniques in the context of future memory systems.
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Chapter 3

Refresh Trends and Existing Solutions

In order to quantify the growing penalty of refresh, first, this chapter presents

simulation study by sweeping various DRAM device and memory system configura-

tions. Then, trade-offs in refresh options at rank, bank and row level are analyzed.

Furthermore, the chapter summarizes the previous research on refresh and finds

that the existing techniques have following three shortcomings. First, some refresh

techniques focus only on mitigating performance impacts of refresh operations. Sec-

ondly, most of the refresh mechanisms use row selective refresh commands which

are not readily available in the current commodity DRAM devices. Therefore, these

techniques do not scale with DRAM density and incur significant complexity in the

memory controller. Thirdly, most of the existing memory controllers use separate

mechanisms to deal with background power and refresh operations. The chapter

concludes that the refresh improvements are possible if refresh rates can be reduced

by using scalable refresh reduction mechanisms or by employing finer-grained/per-

bank refresh options.
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3.1 Experimental Setup

In this study, we use DRAMSim2 [27], a cycle accurate memory system sim-

ulator. DRAMSim2 is integrated with MARSSx86 [28], a full-system x86 simulator

based on QEMU [29] and an out-of-order superscalar multicore processor model [30].

Table 3.1 shows the baseline system configuration. We also model accurate timings

for low power mode switching overheads and refresh constraints, compliant with the

DDR3 standard. The DRAM parameters used in our simulations are taken from

vendor datasheets [31]. For the device sizes and speed grades not currently available,

we extrapolate them from existing DDR3 devices based on recent scaling trends. We

calculate DRAM energy from the device’s IDD numbers, using the methodology de-

scribed in [32]. In all our experiments, the memory controller closes an open row

if the queue for that rank is empty or after four accesses to that row, as suggested

in [33]. The address mapping configuration used by the memory controller ensures

that each channel and rank receives uniform memory traffic. A rank switches to

slow exit power down mode immediately after the request queue for that rank be-

comes empty, as proposed in [34]. Our workloads are constructed from the SPEC

CPU2006 benchmark suite [36], as shown in Table 3.2. For each benchmark, first

we determine its region of interest using SimPoint 3.0 [37]. We simulate a total of

1 billion instructions, where each program starts from its region of interest. The

workloads we consider are categorized into LOW, MEDIUM and HIGH, depending

on their memory bandwidth requirements.
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Execution time and memory latency impact of refresh operations  

with increasing DRAM speed,  8Gb devices 
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Figure 3.1: Refresh penalty vs. device speed. The device speed increases
from 1.87ηs (1066Mbps) to 0.625ηs (3200Mbps). The background energy
increases due to faster switching peripherals. The performance penalty
due to refresh operations in HIGH bandwidth workloads is substantial,
but does not change much with speed.
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Table 3.1: Processor and memory configurations.

Processor 4 cores, 2 GHz, out-of-order, 4-issue per core

L1 Cache Private, 128 KB, 8-way associativity, 64B block size, 2 cycle latency

L2 Cache Shared, 8MB, 8-way associativity, 64B block size, 8 cycle latency

Memory controller Open page, FR-FCFS [35], 64-entry queue, 1 channel,
”RW:BK:RK:CH:CL” address mapping

Total memory size 8GB–64GB (default: 8GB)

DRAM device Size 1Gb–32Gb (default: 8Gb);
speed 1066Mbps–3200Mbps (default: 1333Mbps)

Table 3.2: Workload composition.

Memory Bandwidth Workloads (4 copies of same program or mixed instances)

LOW hmmer; namd; mix1 (games, namd, hmmer, povray)

MEDIUM milc; gromacs; GemsFDTD

HIGH libquantum; mcf; mix2 (mcf, libquantum, milc, GemsFDTD)
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Figure 3.2: Refresh penalty vs. device speed. Plotting absolute values
of energy components in mJ.
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3.2 Refresh Penalty vs. Device Speed

Figure 3.1 shows the impact of refresh on memory energy consumption and

performance with various device speeds ( Figure 3.2 shows the absolute values of

different energy components in mJ). In the LOW bandwidth workloads, the back-

ground and refresh energy increases with the device speed, due to fast switching of

peripheral circuits in DRAM device. However, in the HIGH bandwidth workloads,

higher speeds result in better performance and therefore less overall energy con-

sumption. The performance penalty of refresh in the HIGH bandwidth workloads

is substantial and results in up to 11.4% performance loss. With varying device

speed, there is not much change in the performance loss; however, the penalty on

average DRAM latency increases with device speed. Moreover, latency degradation

in LOW bandwidth programs varies the most with speed (e.g., from 13% to 23.5%).

This is because these programs have few memory requests, thus magnifying refresh

penalty.

3.3 Refresh Penalty vs. Device Density

Figure 3.3 shows the effect of refresh when DRAM device density increases (

Figure 3.4 shows the absolute values of different energy components in mJ ). Both

the refresh and background energy increase substantially with device density. For

instance, refresh contributes 25-30% of DRAM energy for 32Gb device in LOW

bandwidth programs. In HIGH bandwidth workloads, most of the energy consump-
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Figure 3.3: Refresh penalty vs. device density. The memory subsystem
is configured as one channel, one rank. The device size increases from
1Gb to 32Gb. The refresh energy component increases with size, more
substantial in LOW bandwidth workloads. The background energy also
increases because of two reasons: (i) more peripherals as size increases;
(ii) longer active mode refresh commands.
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Figure 3.4: Refresh penalty vs. device density. Plotting absolute values
of energy components in mJ.

tion is due to memory accesses. Furthermore, the performance penalty is severe

in high density devices for HIGH bandwidth programs. For example, when using

32Gb devices, the performance degradation due to refresh becomes more than 30%

for the libquantum and mcf workloads.

The importance of energy efficiency gets higher as the device density increases.

For instance, more than half of the energy in 32Gb devices, irrespective of workload

category, is consumed doing maintenance work (either refreshing or keeping periph-

erals/DLL alive). The severity of the problem increases when the memory access are

infrequent, a common scenario in big memory systems serving several independent

tasks with unpredictable access patterns. The advent of cloud computing and big

data analytic paradigms puts greater pressure on memory systems to be energy effi-

cient, so that these services can be provided at affordable cost of ownership (power
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usage contributes significantly to the cost).

3.4 Refresh Penalty vs. System Memory Size

We analyze the effect of increasing the total memory size from 8GB to 64GB,

while keeping the device size and speed constant at 8Gb and 1333Mbps, respectively.

Note that the number of ranks in a channel increases with increasing memory ca-

pacity, i.e., 1, 2, 4 and 8 ranks for 8GB, 16Gb, 32GB and 64GB memory.

Figure 3.5 shows the energy breakdown and performance penalty as the system

memory size increases ( Figure 3.6 shows the absolute values of different energy

components in mJ ). Systems with larger total memory capacity dissipate more

background power because more 8Gb devices are utilized. For a system with 64GB

memory, refresh and background power are the major sources of DRAM energy

consumption, even when running HIGH bandwidth programs. Finally, we observe

that refresh has greater performance impact on HIGH bandwidth programs, while

affecting average latency more on LOW bandwidth workloads.

3.5 Refresh Granularity

In this section, we first categorize refresh options based on the command granu-

larity: rank, bank, and row level. Furthermore, we survey various refresh techniques

and discuss their applicability in modern DRAM systems.
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Figure 3.5: Refresh penalty vs. system memory size. The total memory
size increases from 8GB to 64GB, while keeping single channel configu-
ration and increasing the number of ranks from 1 to 8. Both refresh and
background energy increases with larger total memory capacity.
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Figure 3.6: Refresh penalty vs. system memory size. Plotting absolute
values of energy components in mJ.

3.5.1 Rank-Level

All-Rank (Simultaneous) and Per-Rank (Independent) Refresh. At

the system level, either the memory controller can schedule AR to all the ranks

simultaneously (simultaneous refresh) or it can schedule its AR commands to each

rank independently (independent refresh). In the case of simultaneous refresh, the

entire system is unavailable during the refresh completion period, while in the inde-

pendent refresh case, some ranks in a multi-rank memory system are still available

to service memory requests. Depending upon the number of processes and their

address mappings, either simultaneous or independent refresh could result in better

performance.

In Figure 3.7, we compare the effects of choosing either simultaneous or inde-

pendent refresh options when changing the number of ranks from 1 to 8 with 8Gb

DRAM devices. In most of the cases, there is not much difference between simul-
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Figure 3.7: All-rank (simultaneous) refresh vs. per-rank (independent)
refresh. The X-axis shows the total system memory capacity varying
from 8GB to 64GB, and increasing the number of ranks on a channel.
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taneous or independent refresh options. However, some HIGH memory programs

show slightly better performance in the case of simultaneous refresh option as the

number of ranks increases due to the overall reduced refresh down time. However,

the obvious disadvantage of simultaneous refresh comes from its limited flexibility in

scheduling refresh commands for each rank, as each rank may receive very different

memory request access patterns. For example, schemes described in Section 3.6.3

will either be ineffective or show meager advantage with simultaneous refresh option.

3.5.2 Bank-Level

All-Bank and Per-Bank Refresh. General purpose DDRx devices only

have the AR commands at the granularity of the entire device (i.e., all the banks in

the device are unavailable when an AR command is issued). Therefore, an AR is

given to all the devices in a rank, and none of the banks is allowed to service any

request until refresh is complete. This command is referred to as all-bank refresh.

On the other hand, in addition to all-bank AR commands, LPDDRx devices have

the option of per-bank AR, where only one bank is down when an AR is issued,

while other banks could still serve normal memory requests [21]. Eight such per-

bank sequential refreshes are equivalent to one all-bank refresh, assuming there are

eight banks.

For comparison between per-bank and all-bank refresh options, Figure 3.8

and Figure 3.9 show the involved trade-offs. In both the figures, execution time of a
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Figure 3.8: All-bank refresh vs. per-rank refresh, per-bank performs
better. The X-axis shows the number of DRAM cycles in Millions and
Y-axis shows serviced memory bandwidth in GB/s. Workloads shown
are (a) mcf and (b) milc from SPEC2006 suite.
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Figure 3.9: All-bank refresh vs. per-rank refresh, all-bank performs
better. The X-axis shows the number of DRAM cycles in Millions and
Y-axis shows serviced memory bandwidth in GB/s. Workloads shown
are (a) bt and (b) ft from NAS benchmarks suite.

51



workload is shown on X-axis in units of million DRAM cycles while Y-axis contains

variation of serviced memory bandwidth in GB/s with execution time. In SPEC

workloads, mcf and milc in Figure 3.8, per-bank refresh option performs better

than all-bank refresh option. Therefore, per-bank option services higher bandwidth

and consequently finishes faster in time. This is because, the memory access pattern

in these workloads happens to favor more bank-parallelism. On the other hand, NAS

benchmarks, bt and ft in Figure 3.9, show that all-bank refresh option is better than

per-bank refresh. In these workloads, memory requests serviced on different banks

exhibit more dependency and hence when one bank is in refresh mode, requests on

other banks also have to wait. But, it would be interesting to see the comparison

if future DRAMs can provide more flexibility in the scheduling of per-bank refresh

commands.

3.5.3 Row-Level

A refresh operation at the row granularity can be accomplished by either

adding a new command that refreshes a certain row in a given bank, or by explicitly

activating a row and then pre-charging it. The former requires changes to the

SDRAM devices; the latter does not require any changes but requires more command

bandwidth.

The advantage of row-level refresh is that the memory controller can skip re-

dundant refresh operations based on the status of each row. For example, if a row

has longer retention time (e.g., 128ms), using the normal refresh rate (e.g., based
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Figure 3.10: Row-level refresh vs. auto-refresh. (a) The minimum time
to satisfy refresh requirement in a bank vs. device density. The percent-
age skip corresponds to the number of rows which need not be refreshed
in a tREFW . (b) Command bandwidth consumed by refresh operations
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Figure 3.11: Timing constraints and the number of row-level refreshes
(sets of activate/pre-charge commands) required to accomplish refresh
operation equivalent to an AR. In this example, an AR command re-
freshes two rows in each of the 8 banks (corresponds to 1Gb device).
Timing parameters are taken from DDR3 specifications [24] (tRC=50ηs,

tRRD=6ηs, tFAW=30ηs, and tRFC=110ηs).

on 64ms retention time) results in redundant refreshes. Another scenario is that,

if a row is read or written more frequently than the refresh rate, then refreshes

to the row become redundant. However, as shown in Figure 3.10(a), for higher

density devices, the time required for refresh operations using row-level refreshes

gets longer as compared to AR. For instance, even if the controller can skip 70% of

the rows to be refreshed in a refresh window, the time to operate refresh becomes

comparable to AR. The main reason for this performance difference is that DRAM

vendors have optimized AR to refresh rows in the same bank in parallel. Besides,

AR internally utilizes aggressive bank level parallelism by activating row faster than

the tRRD (row-to-row activation delay) and the tFAW (four-bank activation window)

constraints, since device organizations and power surge are exactly known and op-

timized for an AR operation. However, external activate commands required for

row-level refresh need to follow tRRD and tFAW to meet DRAM power constraints,
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as shown in Figure 3.11..

Moreover, issuing explicitly activate/pre-charge commands to refresh each row

consumes substantial amount of command bandwidth when using high density de-

vices. As shown in Figure 3.10(b), the overall command bandwidth for refresh

commands in a 4 rank system approaches 100% of the total bandwidth (assum-

ing 64ms refresh window). The high command bandwidth for row-level refresh not

only potentially degrades performance, but also eliminates many opportunities for

switching to power down modes. Finally, switching to SR mode for row-level refresh

poses a difficulty since the device internal refresh counters need to be synchronized

to the appropriate rows before entering SR.

3.6 Refresh Schemes

3.6.1 Based on Row-Level Refresh

Ohsawa et al. [3] analyzed the increasing impact of refresh operations on sys-

tem energy and performance in merged DRAM/logic chips. The study proposed two

DRAM refresh architectures which eliminate unnecessary refresh operations. One

of the techniques, Selective Refresh Architecture (SRA), allows refresh operations

to be performed at finer granularity and can either select or skip refresh to a row.

In particular, SRA can effectively reduce refreshes if the controller has knowledge of

whether the data stored in the rows are going to be used in the future. To implement

SRA, one option is to add per-row flags in DRAM to indicate whether a row should

be refreshed or not. These flags can be programmed by the memory controller us-
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ing customized commands. The required changes in DRAM devices are shown in

Figure 3.12(a). Another option to realize SRA is to implement row-level refresh

command, which the memory controller can selectively issue. The former option re-

quires extra flags for each row in a DRAM device, while the latter option introduces

refresh scheduling complexity and storage overhead to the memory controller. As

the number of rows increase, both options create substantial overheads.

Smart Refresh [4] also adopts the selective row refresh mechanism: refresh

operations are skipped for rows that were accessed in the last refresh period, and

the memory controller sends row-level refresh commands to the remaining rows.

The memory controller in Smart Refresh requires a large SRAM array to store

the state information of each row for the entire memory system. Although they

proposed schemes based on CBR and RAS-only, modern DDRx SDRAM devices do

not support per-row refresh commands. The option for RAS-only scheme is to send

an explicit activate command followed by a pre-charge command for each row, as

opposed to using the AR command. Since AR is usually optimized for performance

as well as energy by DRAM vendors, some of the benefits of Smart Refresh will be

nullified in high density devices.

In ESKIMO [5], the authors proposed semantic refresh, which also utilizes the

concept from the row selective approach to avoid refreshing the rows storing data

that have been freed. They proposed to use SRA so that fine-grained row-level flags

are used to skip some of the unwanted refreshes.
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Figure 3.12: Selective and variable refresh architectures proposed in [3].
SRA scheme (a) adds flag to each row to indicate whether to refresh or
skip the row. The controller can read and update these flags by issuing
separate provisioned commands. VRA (b) technique adds row level re-
tention aware refresh values. Based on these refresh values stored in the
interval tables, the controller can decide an optimal refresh frequency.
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3.6.2 Using Retention Time Awareness

The second technique proposed in [3] is Variable Refresh Period Architecture

(VRA), wherein refresh interval for each row is chosen from multiple refresh peri-

ods. Since most of the DRAM cells exhibit higher retention times, only a few rows

require the worst case refresh rate. Therefore, VRA reduces a significant number

of refresh operations by setting appropriate refresh period for each row. However,

the hardware overhead for maintaining refresh interval tables in DRAM devices (as

shown in Figure 3.12(b)) or in the controller becomes significant as the number of

rows has increased rapidly in current devices.

Flikker [38] and RAPID [39] use the information about the distribution of

DRAM cell retention periods to reduce the number of refresh operations. Flikker

requires the application to partition data into critical and non-critical sections, then

it uses the sections with regular refresh rate for critical data and the sections with

slow refresh rate for non-critical data. This means that the non-critical regions can

tolerate some degree of data loss. In RAPID, the operating system (OS) is aware

of the retention time of the pages, and therefore prefers to use pages with longer

retention time. This allows RAPID to choose the shortest-retention period among

only the populated pages, rather than all memory pages. This mechanism involves

only software, which requires the OS to be aware of the retention period of each

page.

Liu et al. proposed RAIDR [2], which optimizes the refresh rate based on the

retention time distribution of DRAM cells. Each DRAM rows are first categorized
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into different bins based on the retention time of its leakiest DRAM cell. Since leaky

cells occur infrequently, most of the rows require lower refresh rates. In addition,

they used bloom filters to encode the required refresh rates for each bin. RAIDR

does not use auto-refresh but send explicit activate and pre-charge sequence to each

row.

Recently, experimental refresh studies [40, 41] are conducted to characterize

retention periods, and their results confirm the normal distribution of retention pe-

riod in modern DRAMs. However, profiling and accounting for retention period

variability still remains an unsettled topic. In addition to retention period charac-

terization, Baek et al. [41] propose two software based schemes to account for weak

cells, either discard them through OS based memory management or skip unused re-

fresh regions under the control of system software. Both the schemes need RAS-only

refresh command support from DRAM device.

3.6.3 Using Refresh Scheduling Flexibility

Many recent studies have proposed mechanisms to mitigate the impact of long

refresh periods on performance. Stuecheli et al. [42] proposed Elastic Refresh which

relies on re-scheduling the refresh commands so that they overlap with periods of

DRAM inactivity. Elastic Refresh postpones up to eight refresh commands in high-

memory request phases of programs, and then issues the pending refreshes during

idle memory phases at a faster rate to maintain the average refresh rate. Based on

the number of pending refreshes and the memory request patterns, the thresholds
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for refresh scheduling in a rank are dynamically changed. However, all the refresh

commands are issued in the active power mode, which consumes more background

power. The increase in energy consumption due to long refresh period in high

density DRAM devices was not evaluated. Another recent technique, referred to as

Adaptive Refresh, uses finer-granularity refresh modes introduced in DDR4 [22] to

reduce refresh performance penalty. Adaptive Refresh decides appropriate refresh

granularity ( between normal 1x and finer-graned 4x) by a simple heuristic based

on dynamically monitoring the serviced memory bandwidth.

Refresh pausing [43] is also proposed to reduce refresh penalty on performance.

This technique uses the memory controller to pause or resume an AR command at a

row boundary. Once refresh is paused, the memory controller can schedule normal

memory read/write requests, and later on resume the AR command to refresh the

next refresh-pending row. The study shows that by adding a few logic gates in

DDR3 devices, an average performance improvement of 5% can be obtained by

pausing AR commands at appropriate time intervals. The authors assumed that for

all-bank AR, the rows in all the banks start and finish refresh altogether in tRC time

period. However, the tRRD and tFAW timing constraints generally mean that the

row activations on different banks should be spaced and staggered. For instance,

in DDR4 devices, when using x2 or x4 refresh option, tRFC is not proportionally

reduced by two or by four [22]. This suggests that a definite refresh finish-line of one

row in all banks is not present in current DRAM devices. Hence, given the practical

timings, refresh pausing may not provide much performance improvements.

On the other hand, Coordinated Refresh [44] focuses on both performance and
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energy consumption of refresh operations. This mechanism rely on the ability to

re-schedule refresh commands to overlap with periods of DRAM inactivity while uti-

lizing full-flexibility of refresh commands as in Elastic Refresh. Coordinated Refresh

techniques co-schedule the refresh commands and the low power mode switching

such that most of the refreshes are energy efficiently issued in SR mode.

3.6.4 For DRAM-Based Caches

DRAM devices are also used as caches for the main memory, for example the

IBM Power7 uses eDRAM as its last-level cache [45], and hybrid memory systems

use small DRAMs to cache the non-volatile main memory [46]. It is worth noting

that the data retention time for eDRAMs is much shorter than commodity DRAMs.

It is also worth noting that DRAM caches are usually not required to follow the

protocols for DRAM main memory, therefore there is more flexibility in designing

refresh reduction mechanisms.

For on-chip DRAM-based caches, one effective refresh reduction technique

is the use of error correcting codes (ECC) [47] [48] [49]. This approach reduces

the refresh rate by disassociating failure rate from single effects of the leakiest cells.

Another promising approach is by exploiting memory access behaviors. For instance,

if a cache line is intensively read or written, refresh operations to that cache line

can be postponed [50] [51] [52]. On the other hand, if a cache line holds useless data

(i.e., dead cache blocks), refresh operations can be bypassed [53].

For off-chip DRAM caches, the OS can be effective in assisting refresh reduc-
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Table 3.3: Applicability matrix of refresh schemes discussed. Symbol meaning: X
→ Yes; × → No; ? → Difficult to say Yes or No.

Category Scheme
Benefits Refresh granularity Modifications

SR Scal- Rel-

Energy Perf. Row Bank Rank Device Controller Software support able iable

Row
SRA [3] X × X × × X X × ? × X

Selective Smart Ref. [4] X × X × × X X × × × X

ESKIMO [5] X × X × × X X X × × X

Retention

RAIDR [2] X X X × × × X × × ? X

VRA [3] X X X × × X X × × × X

Aware Flikker [38] X ? × × X × X X X X ×

RAPID [39] X ? × × X × × X X X ?

Refresh

Elastic [42] × X × × X × X × X X X

Pausing [43] × ? × × X X X × X X X

scheduling Adaptive [20] × X × × X × X × X X X

Coordinated [44] X X × × X × X × X X X

DRAM

Accesses [47,50] X × X × × N/A X × N/A X X
[51–53]

as cache ECC-based X × X × × N/A X × N/A X ?
[47–49]

OS-control [54] X × × X × X X X × × X

tion. For instance, Moshnyaga et al. [54] proposed to reduce the refresh energy

based on the OS’s knowledge in DRAM/Flash memory systems. They divide the

active and non-refreshed banks based on the access patterns of data present in these

banks. The refresh operations to a bank are disabled if the bank is not referenced

in a given time-window and contains only unmodified pages. Since the OS has the

knowledge of which pages are being referenced, it can decide which banks to disable.

Dirty pages in non-referenced banks are put into the swap cache, which then write

back to the Flash.
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3.7 Applicability Matrix

Table 3.3 summarizes the refresh techniques we have discussed in this section.

The table shows the following: first, we characterize the power and performance

improvements achieved by using these schemes. Second, we categorize the schemes

according to their refresh command granularity, so that we can understand their

feasibility in general purpose DRAM devices. Third, the modifications required to

implement the schemes are considered. This is important because of the difficulties

in changing at the device level is higher than modifying the memory controller,

whereas software level changes are relatively easier to accept than hardware level

modifications. Furthermore, we evaluate which scheme would be difficult to co-exist

with the SR mode, since SR is very important for energy efficiency. We also consider

how well these schemes will be able to scale in future large memory systems built

with high-density devices. Finally, since some techniques allow data in portions of

the memory to get corrupted, we evaluate memory system reliability.

3.8 Potential Refresh Improvements

3.8.1 Exploiting Retention Awareness

We experimented various data retention times and compared them against

ideal memory without refresh. Figure 3.13 and Figure 3.14 shows the energy and

performance impact when changing the refresh timing parameters, in 8Gb and 16Gb

devices respectively. Our results illustrate the potential refresh improvement one
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Improvements in execution time and memory latency by varying refresh timings. Positive better. 8Gb devices 
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Figure 3.13: Refresh penalty vs. refresh timings in 8Gb devices. We
investigate the followings: (i) tREFIs values decreased by (1x, 2x, 4x);
(ii) various retention times (64ms, 128ms, 256ms, 512ms).

64



0

0.2

0.4

0.6

0.8

1

1.2

1.4

6
4
m
s_
1
x

6
4
m
s_
2
x

6
4
m
s_
4
x

1
2
8
m
s_
1
x

2
5
6
m
s_
1
x

5
1
2
m
s_
1
x

w
o
re
f

6
4
m
s_
1
x

6
4
m
s_
2
x

6
4
m
s_
4
x

1
2
8
m
s_
1
x

2
5
6
m
s_
1
x

5
1
2
m
s_
1
x

w
o
re
f

6
4
m
s_
1
x

6
4
m
s_
2
x

6
4
m
s_
4
x

1
2
8
m
s_
1
x

2
5
6
m
s_
1
x

5
1
2
m
s_
1
x

w
o
re
f

6
4
m
s_
1
x

6
4
m
s_
2
x

6
4
m
s_
4
x

1
2
8
m
s_
1
x

2
5
6
m
s_
1
x

5
1
2
m
s_
1
x

w
o
re
f

6
4
m
s_
1
x

6
4
m
s_
2
x

6
4
m
s_
4
x

1
2
8
m
s_
1
x

2
5
6
m
s_
1
x

5
1
2
m
s_
1
x

w
o
re
f

6
4
m
s_
1
x

6
4
m
s_
2
x

6
4
m
s_
4
x

1
2
8
m
s_
1
x

2
5
6
m
s_
1
x

5
1
2
m
s_
1
x

w
o
re
f

6
4
m
s_
1
x

6
4
m
s_
2
x

6
4
m
s_
4
x

1
2
8
m
s_
1
x

2
5
6
m
s_
1
x

5
1
2
m
s_
1
x

w
o
re
f

6
4
m
s_
1
x

6
4
m
s_
2
x

6
4
m
s_
4
x

1
2
8
m
s_
1
x

2
5
6
m
s_
1
x

5
1
2
m
s_
1
x

w
o
re
f

6
4
m
s_
1
x

6
4
m
s_
2
x

6
4
m
s_
4
x

1
2
8
m
s_
1
x

2
5
6
m
s_
1
x

5
1
2
m
s_
1
x

w
o
re
f

hmmer namd milc gromacs GemsFDTD libquantum mcf mix1 mix2

Energy contribution with changing the refresh timings. 16Gb devices 
ref rd/wr act/pre bg

(a)

-20%

-10%

0%

10%

20%

30%

40%

50%

6
4

m
s_

1
x

6
4

m
s_

2
x

6
4

m
s_

4
x

1
2

8
m

s_
1

x

2
5

6
m

s_
1

x

5
1

2
m

s_
1

x

w
o

re
f

6
4

m
s_

1
x

6
4

m
s_

2
x

6
4

m
s_

4
x

1
2

8
m

s_
1

x

2
5

6
m

s_
1

x

5
1

2
m

s_
1

x

w
o

re
f

6
4

m
s_

1
x

6
4

m
s_

2
x

6
4

m
s_

4
x

1
2

8
m

s_
1

x

2
5

6
m

s_
1

x

5
1

2
m

s_
1

x

w
o

re
f

6
4

m
s_

1
x

6
4

m
s_

2
x

6
4

m
s_

4
x

1
2

8
m

s_
1

x

2
5

6
m

s_
1

x

5
1

2
m

s_
1

x

w
o

re
f

6
4

m
s_

1
x

6
4

m
s_

2
x

6
4

m
s_

4
x

1
2

8
m

s_
1

x

2
5

6
m

s_
1

x

5
1

2
m

s_
1

x

w
o

re
f

6
4

m
s_

1
x

6
4

m
s_

2
x

6
4

m
s_

4
x

1
2

8
m

s_
1

x

2
5

6
m

s_
1

x

5
1

2
m

s_
1

x

w
o

re
f

6
4

m
s_

1
x

6
4

m
s_

2
x

6
4

m
s_

4
x

1
2

8
m

s_
1

x

2
5

6
m

s_
1

x

5
1

2
m

s_
1

x

w
o

re
f

6
4

m
s_

1
x

6
4

m
s_

2
x

6
4

m
s_

4
x

1
2

8
m

s_
1

x

2
5

6
m

s_
1

x

5
1

2
m

s_
1

x

w
o

re
f

6
4

m
s_

1
x

6
4

m
s_

2
x

6
4

m
s_

4
x

1
2

8
m

s_
1

x

2
5

6
m

s_
1

x

5
1

2
m

s_
1

x

w
o

re
f

hmmer namd milc gromacs GemsFDTD libquantum mcf mix1 mix2

%
 D

e
cr

e
as

e
 in

 E
xe

c.
 T

im
e

 a
n

d
 M

e
m

o
ry

 L
at

e
n

cy
 

Improvements in execution time and memory latency by varying refresh timings. Positive better.  16Gb devices 
Exec. Time

Avg. Lat

(b)

Figure 3.14: Refresh penalty vs. refresh timings in 16Gb devices. We
investigate the followings: (i) tREFIs values decreased by (1x, 2x, 4x);
(ii) various retention times (64ms, 128ms, 256ms, 512ms).
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Figure 3.15: Refresh penalty vs. refresh timings in 16Gb devices. Plot-
ting absolute values of energy components in mJ.

can achieve when utilizing refresh reduction mechanisms like retention or access

awareness. We expect refresh reduction to be even more effective when applied on

future high density devices, but to fully utilize its potential, trade-offs such as the

scalability of row-level commands should be considered.

3.8.2 Utilizing Finer Granularity Options

Figure 3.13 and Figure 3.14 also show the effects of decreasing the normal AR

interval by 2x and 4x finer granularities, i.e, tREFI is decreased from 7.8µs to 3.9µs

and 1.95µs, in 8Gb and 16Gb devices respectively. Figure 3.15 shows the absolute

values of different energy components in mJ for 16Gb devices. The corresponding

tRFC values are chosen from the DDR4 specification, as shown in Table 2.2. For most

of the workloads, the finer grained options increase energy and degrade performance.

However, for the milc benchmark, using 4x granularity improves performance. This

indicates that finer granularity can potentially mitigate refresh penalties, but rather
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than constantly employing these options, one should use them intelligently.

Another potential finer-granularity option is to enable general purpose DDR

device with per-bank refresh command. Our simulation results in Chapter 5 show

that per-bank refresh command provides better usage of bank-level parallelism and is

also more effective in refresh reduction mechanisms. Moreover, we recommend that

per-bank refresh should have more flexibility in scheduling, like commands can be

issued out-of-order to banks. Therefore, ideally an automated scheduling algorithm

can be designed to decide between all-bank, finer-granularity and per-bank refresh

commands for each rank.

3.9 Summary

Full-system simulation results and analysis in this Chapter clearly show that

refresh operations in near future DRAM devices will incur significant penalty both

in terms of performance and energy. Furthermore, we summarize and conclude

that the previous research on refresh and background power optimization has sev-

eral shortcomings. In particular, in following Chapters, we address two problems.

First, many refresh techniques focus only on mitigating performance impacts of re-

fresh operations. Second, most of the refresh mechanisms use row selective refresh

commands which are not readily available in current commodity DRAM devices.

Therefore, these techniques do not scale with DRAM density and incur significant

complexity in the memory controller.
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Chapter 4

Coordinated Refresh: An Energy Efficient Technique

As describe in previous chapters, with each new technology generation, speed

and density of DRAM devices have increased to meet the performance and capacity

requirements of main memory. These trends have resulted in two main scalabil-

ity concerns relating to the energy efficiency of future DRAM subsystems: First,

the increase in device speed increases the background power consumed by DRAM

peripheral circuitry. Second, the increase in device density increases the penalty

of refreshing DRAMs leaking capacitive cells. Prior work has proposed separate

mechanisms to deal with these two problems: (i) switching idle DRAM ranks to

low power modes for saving background power, (ii) servicing most of the required

refreshes during periods of DRAM idleness to hide the performance penalty of re-

freshes. While both of these mechanisms leverage the same phenomenon, DRAM

idle periods; they work in isolation with each other, often interfering in a destructive

manner.

In this Chapter, we propose techniques referred collectively as Coordinated

Refresh, in which scheduling of low power modes and refresh commands are coordi-

nated so that most of the required refreshes are issued when the DRAM device is
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in the deepest low power Self Refresh (SR) mode. Our approach saves background

power because the peripheral circuitry and clocks are turned off in the SR mode.

Our proposed solutions improve the DRAM energy efficiency by 10% as compared

to the baseline technique, averaged across all the SPEC CPU 2006 benchmarks.

4.1 Overview

Commodity DRAM devices employ low power operating modes to reduce the

background power consumed by the peripheral circuitry. For example, in the deepest

low power Self Refresh (SR) mode, the entire clocked DRAM circuitry is turned off,

resulting in no additional power dissipation beyond the power required to refresh

the DRAM cells. Many previous studies have proposed intelligent schemes to utilize

these low power modes to save DRAM power [12–17]. The key idea behind these

schemes is to switch a DRAM rank to a lower power mode, whenever the rank stays

idle for a time period longer than a pre-determined threshold.

While idle period tracking was originally proposed for leveraging low power

modes, idle periods can also be used for intelligent scheduling of refresh operations.

For instance, to mitigate the impact of DRAM refreshes on performance, a recent

work proposes a technique called Elastic Refresh [18], which postpones up to eight

refresh commands for a busy DRAM rank and then issues those pending refresh

requests, when that rank becomes idle.

Even though idle period tracking can be leveraged to implement both intelli-

gent low power mode switching and intelligent refresh scheduling, we observe that
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these two sets of techniques are in conflict with each other and often render each

other ineffective. For example, if a memory controller using the Elastic scheme

issues a batch of pending refresh commands as soon as the DRAM becomes idle,

then the DRAM would need to be kept in the highest power active mode, until all

the pending refreshes have been completed, thereby limiting the effectiveness of low

power mode switching. Conversely, if the rank is immediately switched to SR mode

upon becoming idle, then the Elastic scheme would be unable to service any pending

refreshes, thereby rendering the Elastic scheme ineffective. The main reason for the

interference between intelligent refresh scheduling and low power mode switching is

that these mechanisms work in isolation with each other.

In this work, we make the novel observation that coordinating the operation

of these two mechanisms can improve both the performance and energy efficiency of

the DRAM subsystem. We propose a new set of techniques, collectively referred to

as Coordinated Refresh. The key idea behind these techniques is to coordinate the

scheduling of low power mode transitions and refresh commands in such a way that

most of the required refreshes are scheduled when the DRAM rank is in the lowest

power SR mode.

Our two techniques, called Coordinated FAST refreshes in SR (CO-FAST)

and Coordinated FLUSH refreshes in SR (CO-FLUSH) utilize the full flexibility of

refresh scheduling by postponing refreshes when the memory is busy and servicing

them during periods of idleness. The key difference between our techniques and

Elastic is as follows: instead of the memory controller issuing all the pending refresh

commands, the coordinated techniques first transition DRAM to the SR mode and
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then service the pending refreshes in the SR mode, thereby saving background power

and mitigating the impact of refreshes on performance at the same time. CO-

FAST satisfies the timing constraints for pending refreshes by doubling the refresh

rate during SR mode, whereas CO-FLUSH simply flushes all the pending refreshes

immediately upon entering the SR mode.

While operating in SR mode saves DRAM background power, there is a perfor-

mance cost associated with the latency of switching back to active mode. Therefore,

frequent transitions between SR and active modes could degrade performance and

energy efficiency. Thus, the effective use of SR mode requires accurate and quick

detection of long idle periods as well as the capability to issue more refreshes in

SR mode. To that end, we propose two additional mechanisms to utilize DRAM

idle periods in an energy-efficient manner. First, we propose History-based Mem-

ory Activity Prediction (HMAP), which tracks the length of previous idle periods

to accurately predict the length of current idle period. We use this prediction to

guide the thresholds for switching to low power modes in our coordinated refresh

techniques. Second, we propose Advance Refreshes (AR), which issues multiple re-

fresh operations ahead of time during an idle period, so that the latency penalty

of these refreshes during the subsequent active period is avoided. We enhance the

effectiveness of CO-FAST and CO-FLUSH by using AR, in addition to the pending

refreshes used in Elastic scheme.

The key contributions of this work are as follows:

1. This is the first study, which addresses the need for coordinating the schedul-
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ing of low power mode transitions and refresh operations during idle DRAM

periods

2. We propose CO-FAST and CO-FLUSH: a set of novel techniques (together

called Coordinated Refresh), which save DRAM background power by carrying

out most of the refreshes during the lowest power SR mode.

3. We also propose two novel mechanisms (History-based Memory Activity Pre-

diction and Advanced Refreshes) to utilize DRAM idle periods in an energy-

efficient manner.

4. Our proposed solutions improve the DRAM energy efficiency by 10% on av-

erage and up to 25%, as compared to the baseline technique across the entire

SPEC CPU 2006 benchmark suite.

4.2 Background and Motivation

In order to meet the increasing demand of main memory density and band-

width, a standardization body called JEDEC specifies newer versions of DRAM

devices. The current DRAM version available in market is Dual Data Rate 3

(DDR3), and JEDEC has published the next version (DDR4) specifications re-

cently [1]. JEDEC initially specified DDR3 speeds up to 1600Mbps, and a later

revision was made to support device speeds up to 2133 Mbps. DDR4 memory chips

are expected to operate in the speed range of 1600Mbps-3200Mbps [1]. In addition

to speed, DRAM density has also increased with each generation: 256Mb-4Gb in
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DDR2, 512Mb-8Gb in DDR3, and beyond 8Gb per chip (expected) in DDR4.

In a typical main memory deployment, the individual DRAM devices are

ganged together to form a rank, such that all the devices in a rank receive the same

commands, but individual DRAM devices contribute to separate portions within a

data word. Since all the DRAM devices in a rank stay in identical power states,

memory controller tracks the state of a rank instead of individual devices.

4.2.1 DRAM Power Consumption

DRAM power consumption can be divided into three categories (1) active

power, (2) background power, and (3) refresh power. Active power represents the

energy required to activate and pre-charge the rows and to service read and write

requests, including I/O transfers. Active power consumption depends on the DRAM

traffic in the system. Active power is consumed only when the DRAM is servicing

memory requests. Background power, on the other hand, consists of the static

energy consumed by the peripheral circuitry, irrespective of whether the DRAM is

servicing requests or is sitting idle. Finally, since DRAM cells lose charge over time,

they are required to be refreshed periodically. This gives rise to the third power

component, called refresh power.

When servicing a memory request, the addressed DRAM rank is in full power

mode and consumes both active and background power. Background power con-

sumption reduces substantially by switching to a low power mode. As depicted in

Figure 4.1, current DRAM devices have the following three operational modes: (1)
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Figure 4.1: Simplified DRAM power down and other modes transitions
state machine.

Active, (2) Power-Down (PD), and (3) Self Refresh (SR). Active mode is the nor-

mal operating mode in which the rank can immediately service requests. In the PD

mode, some I/O signals and peripheral logic is disabled, resulting in lower power

consumption. To exit from a PD mode, the disabled circuitry needs to be restored

to the full power level, thereby requiring multiple cycles before a request can be

serviced. There are two types of PD modes: slow exit and fast exit, where slow

exit consumes less power than fast exit, but requires more cycles to return to active

mode. In SR mode, the entire DRAM clocked circuitry and the DLL is turned off.

Therefore, no power is consumed except by refreshes, which are triggered internally

by a built-in timer. DDR3 switching time from SR to active mode is specified as

the maximum of the following two parameters: (i) tRFC : time required to service

a refresh command, (ii) tDLLK : DLL lock period. tRFC is specified in nanoseconds,
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which increases with the size of the DRAM device; whereas tDLLK remains constant

(e.g. 512 clock cycles in DDR3 devices) irrespective of device size and speed. It is

projected that faster DDR4 devices with densities of 8Gbit and higher will require

more cycles to satisfy tRFC timing than tDLLK. Hence, the penalty of switching

from SR mode to active mode will be similar to that of a refresh operation.

4.2.2 Increasing Refresh Penalty

In DDR devices, scheduling of refresh operations is dictated by two timing

parameters. The first parameter, tRFC , represents the time required to complete

one refresh operation, and the second parameter, tREFI , specifies the average time

period between two refresh operations. The value of tRFC depends upon the number

of rows refreshed with one refresh operation, whereas tREFI depends on tRFC and

the total number of rows to be refreshed. As device density increases, we either have

to refresh more rows per refresh operation (increase tRFC) or service refreshes more

frequently (decrease tREFI). DDR3 devices are specified to keep tREFI constant at

7.8mus. Consequently, tRFC increases with increase in device density.

When the memory controller issues a refresh command (also called Auto-

refresh) to a rank, each device in that rank simultaneously starts to refresh; therefore

the entire rank becomes unavailable to service any memory requests for tRFC period.

Furthermore, Auto-refresh commands can be issued only when the rank is in active

mode. If the rank happens to be in PD mode, the memory controller must first

transition it to the active mode, and then schedule an Auto-refresh command. Con-
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sequently, while servicing Auto-refreshes, DRAM devices not only consume refresh

power but also large amounts of background power.

As the size of DRAM devices increases, the performance and energy overheads

of refreshes are becoming more significant. For instance, the RAIDR study [2]

estimates that future 64Gb DRAM devices will have tRFC values of more than 1700

ns. Consequently, refresh operations alone would cost 50% throughput loss and

would contribute to 50% of total DRAM energy. As a response to this trend, the

recently published DDR4 standard has added two new finer-grained refresh modes,

which decrease tREFI by 2x and 4x. However, the accompanying reductions in tRFC

are not entirely proportional. For example, according to the DDR4 specification [1],

a 2x decrease in tREFI reduces tRFC by 25% (instead of 50%). Moreover, some the

peripheral circuitry used in refresh operations is activated more frequently for the

finer-grained refresh modes, further increasing the energy overhead of refreshes.

4.2.3 Prior Art

The most prevalent refresh approach in current-day memory controllers is

Demand Refresh (DR), in which an Auto-refresh command is issued immediately

after every tREFI time period (shown in Figure 4.2(a)). Some previous works have

proposed mechanisms to hide the impact of long refresh periods on performance.

These mechanisms rely on re-scheduling the refresh commands so that they overlap

with periods of DRAM inactivity. The recently proposed Elastic Refresh [18] scheme

(heretofore, referred to as Elastic) postpones up to eight refresh commands during
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a high memory activity phase, and then compensates by servicing those pending

refreshes during a subsequent idle memory phase (shown in Figure 4.2(b)). To

satisfy the average refresh rate constraint specified by tREFI , pending refreshes have

to be issued at a rate faster than 1/tREFI . The Elastic memory controller satisfies

this constraint by adjusting the Auto-refresh command issue rate based on the

number of pending refreshes. If the number of pending refreshes is high, Auto-refresh

commands are issued at a faster rate and vice versa. Therefore, by scheduling most

of the refreshes during idle periods, Elastic can mitigate the performance impact

of refreshes. However, since Auto-refresh commands require the DRAM to stay in

active mode, which consumes more background power, Elastic mitigates only the

performance impact of refreshes and does not have any impact on the background

power consumed during refresh operations.

4.2.4 Taking Advantage of Self-Refresh (SR) Mode

When a DRAM rank is in the SR mode, the memory controller does not need

to issue any external Auto-refresh commands as the device internally issues refreshes.

Since all the clocked circuitry during the SR mode is turned off, background power

reduces when refresh is issued internally in SR mode. Table 4.1 shows the currents

drawn due to refresh operation when DRAM is in active mode versus in the SR

mode for Microns 4Gb DDR3 devices running at different speed grades [55]. The

last row in the table is for 3200 Mbps bandwidth devices, which corresponds to

upcoming DDR4 generation devices. The parameter values for 3200Mbps bandwidth
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are extrapolated from current DDR3 device trends.

The current drawn during Auto-refresh command (IDD5B), increase with clock

speed for the same DRAM device size. This is mainly due to the clocked peripheral

circuitry, which consumes more power at higher clock speeds. In contrast, IDD6,

which is the current drawn during SR mode remains constant for same density de-

vice, even for higher speed device operations. This is because, in SR mode, the

external clock is disabled, and the refresh is generated by a built-in timer. Further-

more, IDD6ET is the current drawn when the refresh rate in SR mode is doubled,

which is intended for DRAM cells to operate in the higher extended temperature

range. The difference between IDD6 and IDD6ET represents the average current drawn

by a refresh command when it is issued internally in SR mode. This value remains

constant (6 mA) for all speed grades of same density DRAMs.

The last column in Table 4.1 shows the power savings achieved by serving

refreshes in SR mode instead of through Auto-refresh commands in active mode.

For instance, in 4 Gb devices running at 1333 Mbps, 26% of the power is saved

by issuing a refresh command in SR mode instead of in the active mode. Further,

as the device speed increases to 3200 Mbps, power savings associated with issuing

refresh commands in SR mode approach 50%, since background power consumed

by peripheral circuitry increases at faster speeds. For devices with density 8 Gb

and higher, these power savings will be more substantial, since refresh operations

will take longer and the overall contribution of refresh energy to the total memory

system energy would become more significant.
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Table 4.1: Refresh currents in 4Gb DRAMs. Avg. Auto-refresh current in second
last column is calculated as ”IDD5B ∗ (tRFC/tREFI)”.

Speed
IDD5B IDD6 IDD6ET tRFC tDLLK Refresh Avg. AR Savings:
(mA) (mA) (mA) (Cycles) (Cycles) IDD in Current AR vs

SR (mA) (mA) SR

DDR3-1333 210 22 28 200 512 6 8.07 26%

DDR3-1600 220 22 28 240 512 6 8.46 29%

DDR3-1866 230 22 28 280 512 6 8.84 32%

DDR4-3200 300 22 28 480 512 6 11.53 48%

4.3 Proposed Coordinated Techniques

4.3.1 Coordinated Refresh

The key towards reducing the background power consumption during refresh

operations is to coordinate the scheduling of low power mode transitions and refresh

commands in such a way that most of the required refresh operations are scheduled,

when the DRAM rank is in the SR mode. Furthermore, this rescheduling of refresh

operations must not violate retention time constraints for DRAM cells. Below, we

present two techniques, collectively referred to as coordinated refresh, which achieve

these goals:

4.3.1.1 Coordinated Fast Refreshes in SR (CO-FAST)

In current DDR3 devices, there is an option to double the refresh rate in SR

mode [56]. This is configured by a mode register, which could be changed any

time before switching to SR mode. When the faster rate is enabled, one refresh

command is scheduled internally every 3.9mus rather than the usual 7.8µs (tREFI)
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(a) Periodic Demand Refresh  

(b) Elastic Refresh (Prior Art)  
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Figure 4.2: An illustration of prior art and proposed Coordinated Refresh
techniques.
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period. This option is provided for DRAM to work in the extended high temper-

ature range. However, we observe that one can also use this option in the regular

temperature range to artificially increase the refresh rate. Our first technique, called

Coordinated Fast Refreshes in SR mode (CO-FAST), leverages this option to service

more refreshes in the SR mode, thereby reducing the number of refreshes issued in

the active mode.

Figure 4.2(c) explains the workings of CO-FAST. Like Elastic, CO-FAST uti-

lizes the full flexibility of refresh scheduling. When a DRAM rank is busy, CO-FAST

postpones any periodic refresh commands (up to a maximum of eight refreshes) and

waits till the next idle period opportunity to issue extra refreshes to compensate

for pending ones. The key difference between CO-FAST and Elastic is that unlike

Elastic, CO-FAST attempts to co-ordinate the scheduling of pending refreshes with

low power mode transitions. Specifically, for long idle periods, CO-FAST switches

to SR mode before servicing the pending refreshes. Furthermore, for long enough

idle periods, CO-FAST issues up to eight advance refreshes (We describe Advance

Refreshes in more detail in Section 4.3.2.2). The issuance of advance refreshes is

based on the prediction that in the next active phase, this rank will receive high

memory traffic and carrying out some of the refreshes in advance could avoid the

latency penalty of refresh commands. However, in case of short idle periods, CO-

FAST falls back to an approach similar to Elastic; where refreshes are flushed in the

active mode in short idle periods, so that the performance penalties of switching

from SR to active mode are avoided. Finally, in the worst case, when there are no

idle periods at all, refreshes are issued like the demand refresh scheme, since pending
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refresh count will reach to its maximum of eight.

CO-FAST relies on the fact that the memory controller has an accurate pre-

diction mechanism, which can provide information about the length of current idle

phase and future memory activity phase on specific DRAM ranks. In Section 4.3.2.1,

we present a dynamic History-based Memory Activity Prediction scheme, which is

accurate enough to be used for guiding different decisions that CO-FAST makes.

A scenario could arise in which CO-FAST may switch to SR mode with a faster

refresh rate, and the idle period may prolong to the extent that all the pending

refreshes and the maximum allowed advance refresh commands have already been

issued. In such a scenario, the rank refresh rate needs to be reduced to its usual

7.8µs value in order to avoid the energy overhead of faster refresh rate. To enable

this change, the rank is first transitioned to active mode, the mode register is re-

written to decrease the refresh rate, and then the rank is switched back to SR

mode. The main advantage of CO-FAST is that it does not require any change

to the DDR3 device. However this advantage also becomes a limitation, since the

maximum increase in refresh rate during the SR mode cannot be more than 2x of

the usual refresh rate. Consequently, for short idle periods, CO-FAST can only

issue a small number of extra refreshes (for example, one extra refresh during a

7.8µs idle period). To mitigate this limitation, the DRAM device must provision for

higher refresh rates beyond 2x of usual refresh rates during the SR mode. In next

Section 4.3.1.2, we present one such mechanism.
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4.3.1.2 Coordinated Flush Refreshes in SR (CO-FLUSH)

In order to transition a DRAM rank into the SR mode, the memory controller

issues a self-refresh command. In existing DDR3 devices, the self-refresh command

does not need any other attribute, since the DRAM rank internally tracks the ad-

dress of the next row to be refreshed and uses an internal timer to schedule the

required refreshes. Our third technique, called Coordinated Flush refreshes in SR

mode (CO-FLUSH), requires a minor modification in the DRAM device, wherein

a specified number of refreshes could be flushed (initiated as a batch), just after

switching to the SR mode. To make this modification, we introduce a new com-

mand called self-refresh-flush, wherein a few of the address bits would be used to

specify the number of immediate refreshes to be initiated. After entering SR mode,

the device would first finish these many refreshes as shown in Figure 4.2(d), and

then only, it would resume the normal refresh rate.

With this small change in the DRAM device, CO-FLUSH can flush many

refresh commands in SR mode, which otherwise would have been issued in active

mode. This change enables CO-FLUSH to be more effective than CO-FAST in

situations where the idle periods are too short such that the simpler approach of

doubling the refresh rate is insufficient to issue extra refreshes.

A scenario could arise where the memory controller may transition the DRAM

device from SR mode to the active mode before all the immediate refresh commands

have been issued. In such a scenario, the memory controller must account for the

remaining refreshes and service them in the active mode. This functionality can be
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implemented by adding a timer to track the number of cycles in SR mode. Based on

the timer value, memory controller would decide the number of unfinished refreshes.

Furthermore, an extra 3 bit counter is required in the DRAM device, which stores

the number of refreshes to be initiated immediately in SR mode. This counter is

decremented for each refresh issued, and reset when the SR mode exits.

Similar to CO-FAST, CO-FLUSH postpones refreshes in a high activity phase

and then finds the appropriate idle period for switching to SR mode, wherein those

pending refreshes are internally serviced by the DRAM. Also, like CO-FAST, CO-

FLUSH may schedule some refreshes in advance depending on the length of the idle

period. Since CO-FLUSH could use smaller gaps to flush extra refresh commands;

it needs smaller threshold values to switch to SR mode if there is scope for issuing

extra refreshes. Consequently, short gaps in activity could sometimes be utilized

to transition into SR mode quickly and flushing extra refreshes. However, if the

number of pending refreshes during the preceding active phase is zero, then there

is no immediate requirement for extra refreshes, and hence CO-FLUSH would not

unnecessarily transition to SR mode.

4.3.1.3 Coordinated First Immediate Refresh in SR (CO-FIRST)

The JEDEC standard dictates that soon upon entering the SR mode, the

DRAM device must internally schedule an immediate refresh operation. One more

variant of coordinated techniques, called Coordinated First Immediate Refresh in

SR (CO-FIRST), can leverage this immediate refresh command to service a higher
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number of DRAM refreshes in the SR mode.

To understand the workings of CO-FIRST, consider a simple refresh scheduling

approach, in which a refresh command is issued immediately after every tREFI time

period. Such an approach is called Demand Refresh (DR), the base technique shown

in Figure 4.2(a). In the DR approach, if an idle rank needs to be refreshed and is in

one of the lower power modes (such as Power Down), then the memory controller

switches the rank to the active mode and sends a refresh command to the rank. In

contrast, the CO-FIRST technique predicts that a currently idle rank would stay

idle for a long period of time. Consequently, CO-FIRST switches the rank to the SR

mode and utilizes the first refresh command to fulfill the refresh period constraints.

The advantage of CO-FIRST is that it can be used in conjunction with any

refresh scheduling algorithm. It requires only minimal change to the memory con-

troller and no change to the DRAM device. The power improvements provided by

CO-FIRST depend on the frequency and length of idle periods. If the execution

time is dominated by long idle periods, then CO-FIRST would be able to coordi-

nate SR mode transitions with most of the required refresh commands. However, if

idle periods are relatively infrequent, then CO-FIRST will not provide any benefit

over the DR approach. Furthermore, for short idle periods, CO-FIRSTs approach

of servicing refreshes in the SR mode may be counter-productive in terms of energy

efficiency, as the SR mode background power savings may not offset the performance

penalty of switching back from the SR mode to the active mode. To circumvent this

limitation, we propose an idle period length predictor (Section 4.3.2.1) and can be

used it in conjunction with CO-FIRST to prevent unnecessary SR mode transitions.
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Figure 4.3: Main memory bandwidth variation with time in 6 SPEC2006
benchmarks

4.3.2 Optimizations

4.3.2.1 History-based Memory Activity Predictions (HMAP)

For our coordinated refresh techniques to operate in an energy-efficient man-

ner, we must be able to predict the lengths of idle periods for each memory rank, so

that we could eagerly switch to SR mode for long idle periods and avoid the penalty

of switching to SR mode for short idle periods. Fortunately, many programs exhibit

predictable patterns of memory activity as seen by individual DRAM ranks. Our

goal is to develop an intelligent mechanism which could detect such patterns and

leverage them to accurately predict idle period lengths.

Figure 4.3 shows the memory bandwidth for six different SPEC2006 bench-
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marks over a run time of 1 billion instructions in a selected region of interest (RoI).

Most of these programs exhibit repeatable memory activity patterns. This behav-

ior is consistent with prior work which shows that programs often exhibit stable

phases [57], which leads to predictable patterns of memory request arrival periods.

For example, wrf slowly progresses from a high memory activity phase to a low

memory activity phase. For such patterns, memory activity prediction could be

highly accurate and help in implementing the coordinated techniques described in

Section 4.3.1.1 and Section 4.3.1.2.

More interesting patterns are in programs cactusADM and bzip2, where there

are fast transitions between low memory activity and high memory activity phases.

In such traffic patterns, intelligently transitioning to SR mode and flushing extra

refreshes during low activity phases will be very important to reduce the growing

refresh penalties. Furthermore, leslie3d shows a pattern from low to medium and

then high memory activity phases repeated several times. This wide variety of pat-

terns suggests that our prediction mechanism must be intelligent enough to capture

a variety of behaviors involving memory activity changes.

A simple history-based prediction (HBP) has been proposed by Delaluz et

al. [12] to predict the next inter-access time based on the previous inter-access time

value. We observe that HBPs approach of relying only on one previous idle period

length makes it incapable of capturing common patterns present in many programs,

like alternating low and high activity phases. Furthermore, HBPs short history

makes it vulnerable to sporadic noisy behaviors within stable program phases (such

as one long idle period in the midst of several short idle periods), resulting in frequent
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mispredictions (Section 4.5.3).

We instead propose a more sophisticated prediction mechanism called History-

based Memory Activity Predictions (HMAP), which categorizes previous idle peri-

ods in ranges, based on period lengths. The number of previous idle periods stored

for history (n) and the number of levels used for idle period ranges (m) are con-

trolled by configurable parameters for a DRAM rank. In our simulations, we used

m=3 which categorized idle period lengths as: LOW (0 to 0.67*tREFI), MEDIUM

(0.67*tREFI to 1.5*tREFI) and HIGH (longer than 1.5*tREFI). For each rank, HMAP

predicts the next memory activity phase based on the pattern of previous idle period

ranges.

Table 4.2 illustrates the workings of HMAP for the case of n=3, i.e. by storing

the last three idle period ranges (Well evaluate the impact of different values of n on

HMAP accuracy in Section 4.5.3). Each row in Table 4.2 corresponds to a pattern

of recent idle period lengths and HMAPs prediction of next idle period length for

that particular pattern. Our choice of patterns is based on typical program phase

behaviors illustrated in prior work on phase analysis.

Pattern1 represents a stable phase of low memory activity on a rank, i.e., a

continuous stream of HIGH idle periods. In such a scenario, HMAP can confidently

predict a HIGH length for the next idle period and subsequently help in switching

to SR mode early. In this pattern, HMAP only looks for previous two HIGH idle

periods, because by then the program is assumed to have settled into a stable be-

havior. We experimented with increasing two previous idle periods to three, but

then predictions become more conservative, and the opportunity of switching early
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Table 4.2: The IDLE period patterns and their predictions, Symbols: dont care (),
HIGH (H), LOW (L), MEDIUM (M)

Pattern Name
Previous (n=3) IDLE periods Prediction

Prev3 Prev2 Prev1

Pattern1 * H H H

Pattern2 L/M H L/M H

Pattern3 * M M M

Pattern4 Others L

to SR mode is reduced.

Pattern2 captures a memory traffic pattern on a rank which is constantly

switching between high and low activity phases. Pattern3 represents a stable phase

of MEDIUM Idle periods. Finally, Pattern4 corresponds to all other cases where

no regular pattern is detected. In these scenarios, HMAP conservatively predicts a

LOW idle period to avoid the high misprediction penalty of eagerly switching to SR

mode for short idle periods.

We believe that the patterns listed in Table 4.2 are representative of the pat-

terns found in the majority of the programs. Our results in Section 4.5.3 show that

HMAP is able to predict 84% of idle period lengths correctly. We experimented with

adding more history, but we did not observe substantial improvements in predictor

accuracy to justify the cost of adding extra hardware resources.

4.3.2.2 Advance Refreshes

According to JEDEC standard for DDR3 device [56], up to 8 refresh commands

can be either issued in advance or can be postponed, with the additional constraints

that at least one refresh command must be issued in 9*tREFI time period, and no
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more than 16 refresh commands issued in 2*tREFI interval. Figure 4.4 shows an

example of this available flexibility in scheduling of refresh commands. The Elastic

scheme uses only the pending refresh option to postpone up to 8 refresh commands,

when a memory rank is in the high activity phase. As the refresh penalty increases

with each DRAM generation, this scheme provides substantial improvement in per-

formance, especially in programs with high bandwidth requirements.

However, further performance improvements can be achieved by issuing up

to eight advance refreshes. For instance, when a rank receives a memory request

activity similar to Pattern2 shown in Table 4.2, which has alternating high and

low activity phases, then during the low activity phase, advance refreshes could

be issued. Consequently, in the subsequent high activity period, refresh command

requirement is reduced and hence the rank can service memory requests without any

refresh interruption for a longer time. Furthermore, if these advance refreshes could

be issued in the SR mode, then substantial savings in energy can also be achieved.

4.3.3 Putting it All Together

Figure 4.5 shows the implementation details of coordinated techniques when

integrated with our other energy efficient optimizations (HMAP and Advance Re-

fresh).

When a rank becomes idle, the memory controller first checks the pending

refresh count. If the pending refresh count exceeds eight then the memory controller

immediately issues an Auto-refresh. Otherwise, an Auto-refresh command is issued
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Figure 4.4: DDR3 Flexibility in scheduling refreshes.

only if all the following three criterions have been satisfied ( 1© in Figure 4.5):

First, the number of pending refreshes has exceeded a threshold (PendingTh); we

set PendingTh to 4 in CO-FAST and 5 in CO-FLUSH. Second, the rank has been

idle for more than a threshold (waitRefTh); we set this threshold as a function of

the number of pending refreshes. Third, this idle period is predicted as a short idle

period. Together, these three criteria enable our techniques to be conservative in

scheduling Auto-Refresh commands for servicing pending refreshes.

Both CO-FAST and CO-FLUSH switch to SR mode under two scenarios: (a)

Regular switching: If the idle period exceeds a threshold (SRTh), we switch to SR

mode, irrespective of the prediction made by HMAP ( 2©in Figure 4.5), (b) Eager

switching: If HMAP predicts a long idle period, then we wait for a much shorter
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Figure 4.5: Flowchart of Coordinated Refresh with HMAP.

threshold (minWaitTh) before switching to SR-mode ( 3© in Figure 4.5). CO-FAST

characterizes only HIGH idle period predictions from HMAP as long idle periods,

whereas CO-FLUSH characterizes both MEDIUM and HIGH predictions as long idle

periods. We have experimented with different values of switching thresholds, and

found that, SRTh = tREFI and minWaitTh = 2*tRFC works best for our techniques.

Once in SR mode, both CO-FAST and CO-FLUSH issue advance refreshes if idle

periods are long enough and all the pending refreshes have been serviced.
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4.4 Simulation Methodology

To evaluate our proposed techniques, we use MARSSx86 [28], a full-system

x86 simulator. MARSSx86 models an out-of-order superscalar processor [30], which

is configured as shown in Table 4.4 for single and multi-core experiments. We

integrate MARSSx86 with a modified version of DRAMSim2 [27], a cycle accurate

memory system simulator, to incorporate different refresh and low power modes.

We model accurate timings for low power mode switching overheads and refresh

constraints, compliant with DDR3 standard. The DRAM parameters used in our

simulations are listed in Table 4.3 and Table 4.4. For the device sizes and speed

grades not currently available, we extrapolate the IDD values from existing DDR3

devices based on recent scaling trends. We calculate DRAM energy from the devices

IDD numbers, using the methodology described in [32]. For DDR4 refresh timing

parameters (tREFI and tRFC), we use the same values as those used in [18]. In all

our experiments, the memory controller closes an open row after four accesses to

that row (as suggested in [33]) or if the queue for that rank is empty. The address

mapping configuration used by the memory controller (Table 4.4) ensures that each

channel and rank receives uniform memory traffic.

We use the SPEC CPU2006 benchmark suite [36] for both single- and multi-

core experiments. For single core runs, each program executes 1 billion instructions

in its region-of-interest (RoI) determined using SimPoint 3.0 [37]. We characterize

programs into three categories based on their main memory bandwidth require-

ments: (1) LOW (< 100MBps), (2) MEDIUM (> 100MBps and < 1500MBps) and
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(3) HIGH (> 1500 MBps). With this criterion, 8 programs are in LOW, 15 in

MEDIUM, and the remaining 6 are in the HIGH category. For our multi-core runs,

we simulate a total of 1 billion instructions, where each program starts from its RoI.

We construct heterogeneous multi-core workload mixes by combining programs from

the same or different categories. Table 4.6 shows our 15 workload mixes, in which

12 are generated by randomly combining programs from the same category and 3

are created by mixing benchmarks from all categories. We also experimented with

other heterogeneous mixes and found the mixes in Table 4.6 to be representative of

overall trends.

Our baseline scheme implements Demand Refresh, wherein a DRAM rank is

refreshed periodically after every tREFI interval. To use such a periodic refresh

scheme in a multi-rank system, we considered two approaches for orchestrating the

timing of refresh commands for different ranks: (i) a simultaneous refresh approach

in which all the ranks are refreshed together in a lockstep, (ii) a distributed approach

which refreshes different DRAM ranks at different times so that while one rank

is being refreshed, other ranks remain available. We found that the distributed

approach consumes less DRAM energy because each rank is individually capable

of coordinating its low power mode transitions with refresh commands, resulting

in more refreshes being serviced in SR mode. Consequently, our baseline uses the

distributed approach (similar to the baselines in [2, 18]. However, in the interest of

comprehensive analysis, we also compare our techniques against the simultaneous

refresh approach in Section 4.5.5.

Our baseline scheme uses fixed switching thresholds to transition idle DRAM
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workload benchmarks workload benchmarks workload Benchmarks 

mix_low_1 povray,h264ref, 

namd,calculix 

mix_med_1 gcc,milc,astar, 

cactusADM 

mix_high_1 mcf,libquantum, 

lbm,leslie3d 

mix_low_2 gamess,hmmer, 

h264ref,dealII 

mix_med_2 milc,gromacs, 

wrf,sjeng 

mix_high_1 GemsFDTD,mcf, 

lbm, libquantum 

mix_low_3 povray,namd, 

calculix,tonto 

mix_med_3 gobmk,sjeng,   

sphinx3, leslie3d 

mix_high_1 omnetpp,leslie3d, 

GemsFDTD,libquantum 

mix_low_4 h264ref,gamess, 

namd,povray 

mix_med_4 soplex,hmmer, 

bwaves,cactusADM 

mix_high_1 mcf,omnetpp, 

leslie3d,lbm 

mix_mix_1 namd,h264ref, 

gobmk,mcf 

mix_mix_2 hmmer,GemsFDTD, 

gamess,sjeng 

mix_mix_3 GemsFDTD,libquantum, 

gromacs,namd 

Figure 4.6: Composition of heterogeneous workload mixes.

ranks into low power modes. A rank switches to PD slow exit immediately after

the request queue for that rank becomes empty, as proposed in [58]. If the rank

remains idle for a time period equal to tREFI , then the rank switches to SR mode.

We experimented with different SR mode switching thresholds and found that tREFI

works optimal for the benchmarks considered.

We also compare our techniques against the Elastic scheme. Note that the

Elastic implementation in [18] does not employ any low power modes. Our evalua-

tion showed that such an implementation consumes on average more than twice the

energy as compared to the baseline. To enable a fair comparison of our techniques

against Elastic, we implemented a modified version of elastic refresh, which switches

idle ranks to low power modes based on the same thresholds as the baseline. Our ex-

periments show that this modified Elastic implementation performs only 3% slower

on average, compared to Elastic without using low power modes, while consuming

less than half of the DRAM energy. We use this modified Elastic scheme in all our

evaluations.
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Table 4.3: Relevant IDD values (in mA) used in the simulations.

IDD Current 4Gb- 4Gb- 4Gb- 8Gb-
Type 1333Mbps 1866Mbps 3.2Gbps 3.2Gbps

ACT-PRE (IDD0) 80 100 130 150

PD-Slow (IDD2P0) 20 20 20 35

PD-Fast (IDD2P1) 32 42 62 71

Active-Standby (IDD3N ) 73 82 103 113

Refresh (IDD5B) 210 230 300 360

Normal SR (IDD6) 22 22 22 35

Fast SR (IDD6ET ) 28 28 28 45

Table 4.4: CPU and memory parameter settings used in the simulations.

Single Core Multi-core

Processor 2 GHz, out-of-order, 4 cores, 2 GHz,
4-issue per core out-of-order, 4-issue per core

L2 Cache 2MB, 8-way associativity, Shared, 8MB, 8-way associativity,
64B Block Size, 5 cycle latency 64B Block Size, 8 cycle latency

Main Memory 1 Channel, 64 bit width, 2 Channels, 2 Ranks per channel,
8GB, 2 Ranks 16GB, 64 bit width

L1 Cache (per core) 128 KB, 8-way associativity, 64B Block Size, 2 cycle latency

Memory controller Open page, FR-FCFS, 64-entry queue,
”row:bank:rank:channel:column” address mapping

DDR3 devices 4Gb, x16, speed 1333Mbps-1886 Mbps,
tRP =15ηs, tRCD=15ηs, tRFC=300ηs, tREFI = 7.8µs

DDR4 type devices 8Gb, x16, speed 3200Mbps, tRP=15ηs,
tRCD=15ηs, tRFC=550ηs, tREFI = 7.8µs
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Figure 4.7: Energy reduction with our proposed CO-FAST technique for
different DRAM speed grades in 4Gb devices.

4.5 Experimental Results

4.5.1 Evaluations for Current-generation Devices

In this section, we evaluate the energy benefits of our techniques for current-

generation 4 Gb devices. We also analyze the impact of DRAM speeds on the

effectiveness of our techniques. In the interest of space, we show results only for

CO-FAST and single-core in this section.

Figure 4.7 shows the reduction in DRAM energy for CO-FAST, when nor-

malized to the baseline. We show results for 4Gb DRAM devices running at three

different speed grades. For DDR3-1333 Mbps chips, CO-FAST reduces DRAM en-

ergy by 3% on average and up to 8% across all the benchmarks. Further, as we

increase the speed to 1886 Mbps, which correspond to high speed DDR3 parts

currently available in market, the energy gains for CO-FAST increase to 3.7% on
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average and some programs exhibit energy savings up to 10%. Finally, for 3.2 Gbps

device speed, CO-FAST exhibits energy reductions of up to 12%. As we described

in Section 4.2.4, these results demonstrate the higher energy savings potential of

coordinated techniques with increasing DRAM speeds.

4.5.2 Evaluations for Future-generation Devices

In this section, we present the energy and performance results of single and

multi-core systems using the near-future DRAM devices of 8 Gb density and 3.2

Gbps speeds.

4.5.2.1 Single Core Evaluations

Figure 4.8 shows the energy reduction and instructions-per- cycle (IPC) im-

provement for Coordinated and Elastic techniques normalized to the baseline in a

single-core CPU. We arrange benchmarks from LOW to HIGH categories and show

average results in the rightmost set of bars.

Both CO-FAST and CO-FLUSH achieve significant energy savings and per-

formance improvements, in particular for the MEDIUM and HIGH categories. CO-

FAST reduces DRAM energy by up to 17% and increases performance by up to

13%, whereas CO-FLUSH provides up to 25% energy reduction and up to 14% IPC

improvements.

The energy reductions achieved by the coordinated techniques are primarily

due to the higher fraction of refreshes serviced in the SR mode. To quantify this ben-
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Figure 4.8: DRAM energy and performance improvements for our pro-
posed coordinated techniques in 8 Gb devices.
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efit, Table 4.5 shows the percentage (over the total number of refreshes) of refreshes

issued during the SR mode for different techniques. In the LOW category, the base-

line already issues most of the refreshes (97%) in SR mode; therefore coordinated

techniques do not provide substantial extra benefit. However, in the MEDIUM

category, which contains 15 of our 29 benchmarks, coordinated techniques are par-

ticularly effective in increasing the percentage of SR mode refreshes from 40% in the

baseline to 59% and 67% for CO-FAST and CO-FLUSH, respectively. Consequently,

in the MEDIUM category, CO-FAST and CO-FLUSH reduce DRAM energy on av-

erage by 10% and 13% as compared to the baseline, and 9% and 12% as compared to

Elastic, respectively. For the HIGH category, most of the refreshes have to be issued

in the active mode due to the shorter idle periods. In these programs, coordinated

and Elastic technique provide similar performance improvements as compared to

the baseline. On average across HIGH category programs, Elastic, CO-FAST and

CO-FLUSH achieve IPC improvements of 6.2%, 6% and 5.8%, respectively over the

baseline scheme.

CO-FAST is almost as energy efficient as CO-FLUSH, except for programs

such as astar, cactusADM and libquantum which have idle periods of medium length,

in which CO-FAST is not able to issue extra refresh commands. Compared with

Elastic, our coordinated techniques not only save energy but also improve perfor-

mance by intelligently using the advance refreshes in idle periods. Furthermore, the

accurate memory activity predictions using HMAP dynamically control the thresh-

olds to avoid unnecessary transitions to SR mode.
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Figure 4.9: DRAM energy savings and Performance improvements in 4
cores. Heterogeneous workloads composition shown in Table 4.6.
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4.5.2.2 Multi-core Evaluations

For multi-core experiments, we use two types of workloads: (i) SPECRate-type

homogeneous workloads, containing four copies of the same program, (ii) heteroge-

neous workloads composed of program mixes from Table 4.6. Like in Section 4.5.2.1,

the results in this section are based on 8 Gb DDR4 devices running at 3.2 Gbps.

Figure 4.9 shows the energy and performance results for our multi-core work-

loads, when using Coordinated and Elastic techniques. For homogeneous workloads,

we show only average results for each category in the interest of space. Compared

with the baseline, Elastic, CO-FAST and CO-FLUSH achieve energy reductions of

2.0%, 8.2% and 10.1%, and performance improvements of 3.7%, 3.5% and 3.5%

respectively, over all the workloads

Most of the trends observed in the single program workloads (Section 4.5.2.1)

repeat in the multi-core scenarios. In homogeneous multi-core workloads, coordi-

nated techniques provide higher energy benefits in MEDIUM and HIGH workload

categories. The results for heterogeneous workload mixes demonstrate significant

benefits for coordinated techniques, even if they have fairly random memory request

patterns generated by characteristics of constituent programs.

4.5.3 HMAP Characterization

Both of our coordinated techniques rely on the ability of HMAP to detect long

idle periods in advance so that the DRAM rank can be eagerly switched to SR mode.

To analyze the effectiveness of HMAP, we calculate HMAPs prediction accuracy by
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Table 4.5: Percentage of Refresh operations scheduled in SR.

Technique % of refreshes in SR mode

LOW MEDIUM HIGH

Baseline 97.3 40.4 8.1

Elastic 97.3 40.2 7.8

CO-FAST 99.5 58.7 13.9

CO-FLUSH 99.6 66.6 24

Table 4.6: Effectiveness of HMAP with varying idle history length.

Metric HMAP History (n) in CO-FLUSH

1 3 5

% Energy Reduction -4.2 10.3 9.9

% Performance Improvement 2.1 2.4 2.6

Accuracy
Single Core 68% 84% 87%

4 Cores 63% 80% 82%

comparing the predictions made by HMAP at the start of each idle period to the

actual length of the idle period. We also analyze the impact of history length (n)

on HMAP prediction accuracy. All the results in Sections 5.1 and 5.2 use HMAP

predictions derived from last three idle periods (n=3). In this section, we extend

the analysis to include two additional cases: n=1 and n=5.

Table 4.6 shows the energy and performance benefits (relative to baseline) of

CO-FLUSH implementations with HMAP history lengths (n) of 1, 3 and 5 idle peri-

ods, respectively. The table also shows prediction accuracies for each configuration

in single-core and multi-core workloads.

The n=1 case is similar to the previously proposed HBP [12], which predicts

the next idle period to have the same length as the previous idle period. Our results

indicate that this simplistic approach results in high prediction inaccuracy, leading
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to a net increase in memory energy.

The n=5 case uses similar prediction heuristics as n=3, except that it waits

for a longer pattern to develop before predicting a HIGH idle period. It predicts a

HIGH idle period only after seeing three consecutive HIGH periods or three LOW

periods followed by two HIGH periods. The latter case corresponds to a program

gradually transitioning from intense memory activity to relative inactivity. Thus

n=5 uses its longer history to mitigate some of the inaccurate HIGH predictions

made in case of n=3. Our results indicate that the longer history used by n=5

results in a 2-3% increase in prediction accuracy.

We also experimented with different threshold values to characterize idle pe-

riods into low, medium and high categories (Section 4.3.2.1). We observed that as

long as the medium idle period is in the range of tREFI , there is no substantial effect

on the results. We also found that switching to SR mode is energy-efficient when

the request queue for a DRAM rank is empty for at least two to three times the

value of tRFC , irrespective of HMAPs prediction.

4.5.4 Contributions of Individual Techniques

Our results in the previous sections (Section 4.5.2.1 to Section 4.5.3) quantify

the combined impact of using our proposed techniques (CO-FAST/CO-FLUSH in

conjunction with HMAP and Advanced Refreshes). In this section, we separate out

the contributions of HMAP and Advanced Refreshes. In the interest of space, we

show results only for CO-FLUSH and single core programs in this section.
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Figure 4.10: Improvement contributions from HMAP and AR.

Figure 4.10 shows the energy and performance benefits when CO-FLUSH is

implemented: alone, with HMAP, and with both HMAP and Advance Refresh (AR).

Both HMAP and AR enhance the energy savings of CO-FLUSH across all the bench-

mark categories. HMAP contributes most of the additional energy savings by eagerly

switching to SR for long idle periods. However, such eager switching slightly reduces

performance, in particular for the HIGH benchmark category. Adding AR compen-

sates for this performance loss by servicing more refreshes in idle periods. Therefore,

all three techniques work cooperatively to improve DRAM energy efficiency.
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Figure 4.11: Comparison with simultaneous and ideal refresh.

4.5.5 Comparison with Other Refresh Options

As mentioned in Section 4.4, our baseline uses distributed refresh scheduling for

individual ranks. In this section, we compare against the alternative simultaneous

refresh approach, where all the DRAM ranks are refreshed in a synchronized fashion.

Furthermore, we compare against an ideal scheme which could serve as an upper

bound for our proposed coordinated techniques. Like our baseline, the ideal scheme

issues periodic demand refreshes for individual ranks. However, to nullify the penalty

of these refreshes, we assume that any refreshes issued by the ideal scheme in the

active mode complete in zero time and consume no power.

Figure 4.11 shows the energy and performance results in each category for

simultaneous refresh, CO-FAST, CO-FLUSH and ideal refresh schemes, normalized

to our baseline. Compared to simultaneous refresh, CO-FAST and CO-FLUSH
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Figure 4.12: Coordinated Refresh with DDR4 fine-grained options.

reduce DRAM energy by 8.5% and 11% respectively, while improving performance

by 3.5% on average in the HIGH category. The results for ideal refresh indicate

that there is untapped potential for 6-8% additional energy improvement if one

could schedule all refresh commands in the SR mode. Some of this potential could

be realized if there is more flexibility available in the refresh command scheduling

window and refresh granularity in future DRAM devices.

4.5.6 DDR4 Fine Grained Refresh Options

In Figure 4.12, we evaluate our techniques for the new DDR4 device options of

fine-grained refreshes (Section 4.2.2). We derive the tREFI and tRFC values for the

finer-grained (2x and 4x) refresh modes based on the scaling trends in the DDR4

specifications [1].

Both CO-FAST and CO-FLUSH provide higher energy (and performance)

gains as the refresh interval (tREFI) is reduced. This is because the refresh com-

mand length (tRFC) does not scale down proportionally, and therefore refresh op-
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erations consume a higher fraction of DRAM energy and bandwidth. Since our

techniques effectively minimize the refresh penalties, we see greater improvements

as refreshes become more frequent. As future DRAM devices continue to become

denser and faster, refresh penalties will increase and our techniques would become

more effective.

4.5.7 High Speed Device Termination

Multi-DIMM DDR3 memory systems have signal integrity challenges at high

speeds due to interference between multiple DRAM ranks sharing the same multi-

drop bus. Therefore, it is becoming difficult to use more than one DIMM per channel

beyond 1.6Gbps [59]. In addition, when using low power modes (slow exit PD or

SR), DRAM ranks turn-off their on-die termination (ODT), further worsening the

interference from non-target ranks in a multi-rank system. This poses a challenge

for our approach of using SR modes independently on a per-rank granularity in

current DIMM architectures. However, we note that systems which currently use

faster DRAM devices (1.6 Gbps+) in multi-rank configurations have already started

transitioning to other DIMM architectures, such as LRDIMM or RDIMM, which use

an intermediate buffer to enhance the signal integrity [59]. In such systems, ranks

could employ low power modes independently. Further it is projected that future

DDR4 systems would use point-to-point interconnects or multiple dies in a package,

wherein switching ranks independently to SR mode would not be a problem [1].

To further address the challenges associated with multiple ranks per channel,
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we also evaluated our techniques in a single-rank-per channel configuration which

uses x8 DRAM devices. For this configuration, CO-FLUSH achieves 9% memory en-

ergy savings and 3% IPC improvement across Medium and High categories, relative

to the baseline.

4.6 Related Works

Early works on reducing DRAM background power propose hardware and

software policies for switching to low power DRAM modes [12–15,60]. Even though

these policies were proposed for Rambus DRAM (RDRAM) devices, their obser-

vations on using appropriate thresholds for switching to low power modes are still

valid for current-generation JEDEC specified DDR devices. Our techniques further

reduce DRAM background by servicing most of the required refreshes in the lowest

power mode.

Huang et al. [16] observed that the PD mode switching can be done imme-

diately when the request queue for a rank is empty. Delaluz et al. [12] proposed a

simple history based predictor (HBP) for switching thresholds based on the length

of previous idle interval on that device. However, we observed that using only one

previous interval does not capture memory patterns common in many programs.

We propose a more accurate memory activity prediction mechanism, which uses

history from multiple previous idle periods. A recent work proposes a rank idle

time predictor [61], wherein predicted idle period lengths are used to decide suitable

opportunities for flushing writes to main memory such that there is minimum inter-
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ference with read traffic. While this predictor bears some similarity in objectives to

our HMAP mechanism, it addresses a completely different problem than the one ad-

dressed by our study. Furthermore, our HMAP design is simpler than the rank idle

time predictor [61], which uses two-levels of tables indexed by the program counter

(PC).

Recent work in [58, 62] have either throttled or reshaped the main memory

traffic to create longer idle periods, thereby increasing the opportunity to switch

to low power modes. Bi et al. [63] use the file I/O and system calls information

to predict the DRAM activity for memory used as buffer cache. Our proposed

techniques do not actively reshape or throttle the memory requests; therefore these

techniques are complementary and can co-exist.

ESKIMO [5] and smart refresh [4] propose to avoid refresh commands to spe-

cific locations where either memory is deleted or an access has happened after the

last refresh period. Even though these schemes benefit by reducing the total num-

ber of refreshes, they require changes to the standard auto-refresh commands in

order to specify the page to be refreshed. Furthermore these techniques can co-

exist and complement the benefits of our techniques. Flikker [38] and RAPID [39]

use the information about variability in DRAM cell retention times to reduce the

refresh power. Flikker requires the application to partition data into critical and

non-critical sections, and then it uses the memory with regular refresh rate for crit-

ical data and slow refresh rate for non-critical data. In RAPID, OS is aware of the

retention time of the pages, and therefore prefers to use pages with high retention

time. More recently, RAIDR [2] intelligently stores the cell retention characteris-
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tics of rows in bloom filters and then refreshes each of the rows individually, based

on its range of retention time. Unlike our technique, all these approaches require

additional DRAM testing to classify DRAM rows based on their retention times.

Our approach of intelligently coordinating DRAM refreshes and low power mode

transitions is orthogonal to these approaches.

4.7 Summary

In order to satisfy the ever-increasing memory capacity and performance re-

quirements for computer systems, the speed and density of DRAM devices has in-

creased in successive technology generations. These trends have resulted in two main

scalability concerns relating to the energy efficiency of future DRAM subsystems,

namely, the increase in background power consumption of the DRAM peripheral

circuitry and the growing performance and energy penalties of DRAM refresh oper-

ations. To address these concerns, this Chapter describes a set of novel techniques,

called coordinated refresh. These techniques are based on the key idea that coordi-

nating the scheduling of low power mode transitions and refresh operations during

idle memory periods can provide both energy savings and mitigate the performance

penalties of refresh operations. Furthermore, we have also proposed mechanisms to

accurately predict idle period lengths and to issue additional refresh commands in

advance during long idle periods. Together, coordinated techniques increase DRAM

energy efficiency by 8% as compared to the state-of-the-art Elastic technique, av-

eraged across all the SPEC 2006 programs. As energy efficiency quickly becomes a
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key design constraint, techniques like coordinated refresh will become a key driver

for energy-efficient operation of future computer systems.
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Chapter 5

Flexible Refresh: Scalable Refresh Solution

Capacitive DRAM cells require periodic refreshing to preserve data integrity.

In DDRx devices, a refresh operation is carried out via an auto-refresh command,

which refreshes multiple rows from multiple banks simultaneously. Each DRAM

device maintains a refresh counter to keep track of the next batch of rows to be

refreshed. One way to reduce the refresh overhead is to refresh DRAM rows on an

as-needed basis. For example, prior work has shown that DRAM rows with longer

retention times can be refreshed at a slower rate than the rows with shorter retention

times. However, such row-granularity refreshing approaches cannot employ existing

auto-refresh commands, because auto-refreshes operate only on a batch of rows and

do not support skipping of refreshes. Consequently, prior schemes are forced to use

explicit sequences of ACTIVATE and PRECHARGE commands to mimic row-level

refreshing. The drawback of these row-level refreshes is that they are inefficient both

in terms of performance and power as compared to auto-refresh commands.

In this Chapter, we first analyze the scalability problems for the row-level

refreshes in high density DDRx devices. In particular, we show that even if prior

row-level refresh techniques are able to skip a high percentage of refreshes, they
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do not achieve the desired benefits due to the inherent inefficiency of row-level

refreshes. Next, we propose simple DRAM modifications, which enable the memory

controller to read, write and increment the refresh counter in a DRAM device. We

also introduce a new dummy refresh command which enables refresh operations to be

skipped by increasing the refresh counter. To further reduce the refresh activity, we

leverage fine-grained refreshing and per-bank refreshing. With these enhancements,

our techniques collectively referred to as REFLEX reduce as many refresh operations

as prior row-level only refresh schemes, while achieving energy and performance

advantages by using auto-refresh commands most of the time. Our simulations show

that the performance and energy advantage of our proposed REFLEX techniques

are significant enough to make a case for the small modifications in DRAM device

to access the refresh counter.

5.1 Overview

Refresh operation in DDRx devices are typically carried out via Auto-Refresh

(AR) command, which refreshes several rows simultaneously. To simplify refresh

management, the memory controller is given a limited responsibility in the refresh

process. It only decides when an AR should be scheduled based on a pre-specified

refresh interval (tREFI). Whereas, DRAM device controls what rows to be refreshed

in an AR and how refresh is implemented internally. With this greater flexibility,

the device designers have optimized AR by utilizing the exact knowledge of how

the DRAM bank is internally organized in multiple sub-arrays. Each sub-array can
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carry out refresh operations independently using only its local row-buffers; therefore

DRAM can schedule several refreshes in parallel, for multiple rows of single bank,

to minimize AR performance and energy penalty.

However, since the memory controller has little control in the refresh process,

AR option cannot be used to reduce unnecessary refreshes. Prior research has shown

that a large number of refresh operations are unnecessary and can be skipped, for

example by utilizing retention period awareness. The retention period in DRAM

cells follow a normal distribution with a tail representing very few weak cells, having

low retention period. But the commodity device specifies a single retention period

(tRET ), the worst case time of the weakest cells, and hence issues many unnecessary

refreshes. To eliminate unnecessary refresh operations, prior techniques characterize

and store retention period per-row and then selectively schedule frequent refreshes

to only the rows with weak cells [9, 19]. Moreover, refresh operations can also be

skipped to a memory region which has either been accessed recently or data stored

in it are no longer required [4, 5]. Both the retention and access aware techniques

rely on row-level refresh commands, not the optimized AR, to selectively refresh

required rows.

Row-level refresh command is not supported in JEDEC specified commodity

SDRAM devices. Nevertheless, row-level refresh can be accomplished by sending

explicitly Activate (ACT) followed by Precharge (PRE) commands to each row

separately. The memory controller decides when and what row to be refreshed,

and even the refresh operation happens by bringing the row in externally visible

banks global row-buffer. With this greater-flexibility and finer-granularity of row-
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level refresh option, the memory controller is able to reduce the maximum number

of unwanted refreshes. However, now, since DRAM device has no control over how

refresh happens in the row-level refresh option, all the refresh timing and energy

optimizations made using internal local row-buffers in AR option are nullified.

To quantify row-level refresh overheads, let us consider JEDEC specified 16Gb

DDR4 x4 device [1, 6] with 256K rows per bank and a total of 4M rows in all

of its 16 banks. In the row-level refresh option, the memory controller schedules

4M ACT and 4M PRE in tRET (64ms) period. In addition, ACTs on same and

different banks must wait for tRC (50ηs) and tRRD (6ηs) respectively. Thus, row-level

refresh consumes 13.1ms (256K*50ηs) to refresh single bank, and 25.1ms (4M*6ηs)

to refresh all banks in a tRET period of 64ms. In contrast, the memory controller

sends only 8K AR commands, each requiring tRFC (480ηs) to finish [20]. Hence, AR

takes only 3.93ms (8K*480ηs) to refresh all the banks, which is 3.3X and 6.4X less

than the row-level option for single and all banks respectively.

Row-level refreshes are also energy inefficient compared to AR. Because, an

ACT of row-level refresh sends row address on the command bus and needs to bring

the row from the sub-arrays local row-buffer to the banks global row-buffer wasting

energy. Moreover, frequently issued row-level refreshes consume high command

bandwidth and reduce the opportunity of going in to low power modes. Lastly,

to save energy during long idleness, DRAM employs deepest low power self-refresh

(SR) mode in which device itself controls entire refresh process. The SR mode

is incompatible with explicitly controlled row-level refresh, further worsening the

energy efficiency when DRAM is idle.
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Therefore, the prior refresh reduction techniques utilizing inefficient row-level

refresh are not scalable as the number of rows increase in high density DRAM.

Even when most of the refresh operations are skipped using these techniques, the

inherent inefficiency of row-level refresh nullify the desired benefits. Motivation of

our work is to make the already optimized AR option flexible so that the memory

controller can skip unwanted refreshes while serving rest of refreshes efficiently. Our

key observation is that if somehow the DRAM internal refresh counter tracking the

batch of rows refreshed in the next AR can be made visible to the memory controller,

then both the refresh options, AR and row-level, can coexist. Importantly, in the AR

option, the device should be able to control and optimize the refresh implementation.

To that end, we propose a simple DRAM modification to provide an external

interface for accessing the device refresh counter register. Our key idea is to utilize

the register interface already available in the latest commodity DDR4 and LPDDR3

devices. The interface allows the memory controller to write or read pre-defined

mode registers through Mode Register Set (MRS) or Mode register Read (MRR or

MPR) commands [1, 6]. For instance, in DDR4 device, on-die temperature sensor

value can be read by accessing a specific register with an MPR command. Similarly,

we propose that the updated refresh counter value can be readout from DRAM,

without too many changes. In addition, we introduce a dummy-refresh command

which is decoded similar to AR with a flag to differentiate it. The dummy-refresh

only increments the refresh counter but does not schedule refreshes internally, hence

it consumes one command bus cycle without need to interrupt memory requests on

any of the banks.
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We use capabilities provided by REFACE architecture to devise novel flexible

refresh (REFLEX ) techniques, with the main purpose of fulfilling most of the re-

fresh requirements by optimized AR while skipping unnecessary refreshes through

dummy-refresh commands. To further reduce refreshes, REFLEX techniques utilize

mix of finer-grained DDR4 AR options, per-bank AR, and even explicit row-level re-

freshes. With these enhancements, our proposed techniques reduce as many refresh

operations as prior row-level only refreshes mechanisms could, while achieving en-

ergy and performance advantages by issuing optimized AR most of the time. Lastly,

our proposed new architecture also enables easy switching between SR and active

mode, since the memory controller can synchronize the refresh counter. Therefore,

energy of unnecessary refreshes can be reduced by configuring lower refresh rates in

SR mode.

The key contributions of this work are:

1. To our knowledge, this is the first work which analyzes in detail the disad-

vantages of row-level refresh commands in current DDRx device in terms of

performance, command bandwidth and energy inefficiency compared to AR

command. We conclude that even if the row-level refresh based techniques re-

duce large number of the refreshes, the benefits will not be scalable in higher

density devices with higher number of rows.

2. We propose a small change in DRAM device to access the refresh counter

which enables AR commands to be utilized in refresh reduction techniques.

3. Based on REFACE architecture we propose multiple refresh reduction tech-
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niques called Flexible Refresh (REFLEX). REFLEX techniques serve most of

the required refresh operations through energy and performance optimized AR

commands, while skipping refreshes through dummy-refresh command which

only increments the refresh counter.

4. REFLEX techniques can utilize and coexist with SR mode to further reduce

the refresh energy.

5. Our full-system simulations show that the REFLEX techniques save 17% more

memory energy than row-level refresh when 75% of the refreshes are skipped, in

16Gb devices. The energy benefits increases to 25% in 32Gb devices. Further-

more, REFLEX and row-level techniques with 75% skip show average speedup

of 10.8% and 8.4% respectively compared to baseline AR without skip.

5.2 Background and Motivation

As mentioned, retention time is not evenly distributed among DRAM cells;

most of the cells have high retention period while very few cells (referred to as weak

cells) have low retention period. Because the number of weak cells can be significant

(e.g., tens of thousands per DRAM device [40]), the device manufacturers specify a

single retention time (tRET ) that corresponds to the weakest cells. Typically, tRET

is 64ms at normal temperature and 32ms at high temperature [1].

Earlier asynchronous DRAM devices supported two refresh commands: CAS-

before-RAS (CBR) and RAS-Only [7]. Under CBR operation, the DRAM device

itself controls the refreshing row number using an internal refresh counter. Under
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Table 5.1: Number of rows and refresh completion time in DDR4 devices (x4). Both
increase with device density. Note: K = 1024, M= 1024*1024.

Device density Num. Banks Per-bank Rows Total Rows Rows in AR tRFC (ηs)

8Gb 16 128K 2M 256 350

16Gb 16 256K 4M 512 480

32Gb 16 512K 8M 1024 640

RAS-Only, the memory controller manages refresh operations for each row. To-

day, however, modern synchronous DDR DRAMs, which have completely replaced

asynchronous devices, support only one refresh mechanism: Auto-Refresh (AR).

5.2.1 Auto-Refresh (AR) Command

In general, refresh process can be separated in to three phases: when a refresh

command is issued, what portion (rows) of memory is refreshed, and finally, how the

refresh is implemented. In commodity DRAM, AR command is designed to provide

greater control of the refresh process to the device itself, thereby simplifying refresh

in memory controller. For instance, memory controller just issues an AR in every

refresh interval (tREFI). Then, the DRAM device is free to decide what rows are

to be refreshed and how the refresh operations are accomplished internally, during

the refresh completion interval (tRFC). A refresh counter, internal to the device,

manages the set of rows to be refreshed in next command. More importantly, device

designers have utilized the banks physical organization to optimize refresh in AR

option (as detailed in Section 5.2.4).

Table 5.1 shows a trend; as device density increases, the number of rows grows
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at the same pace, and all rows must be refreshed in a tRET (64ms) period. If re-

freshing a single row at a time, 16Gb and 32Gb devices would require 4M and 8M

refresh commands per tRET , respectively; which means a refresh command should

be issued every few nanoseconds (15.2ηs in 16Gb and 7.6ηs in 32Gb device). Fortu-

nately, JEDEC realized this scalability problem early on and kept the tREFI period

high (7.8µs for DDR3), allowing a single AR to refresh several rows at once. But,

as shown in Table 5.1, tRFC period increases as more rows are refreshed in an AR

(512 rows in 16Gb and 1024 in 32Gb). To address increasing tRFC values, DDR4

devices have three refresh rate options. The default refresh rate is to issue 8K AR

commands in tRET , as in DDR3. The other two options increase refresh rate by 2x

or 4x by refreshing half or one-fourth rows respectively, to reduce tRFC value.

Lastly, AR can be issued at a per-bank or an all-bank level. In commodity

DDR devices, only all-bank AR is supported, while LPDDR devices have a per-bank

AR option in addition. In the all-bank AR operation, all the banks are simultane-

ously refreshed and are unavailable for the tRFC period. In contrast, LPDDRs

per-bank AR refreshes rows only in the addressed bank. While this requires many

more refresh commands to be issued during tRET period (the number increases by a

factor equal to the degree of banking), a refreshing bank is idle for a shorter tRFCpb

period (approximately half of all-banks tRFC value), and other banks can service

memory requests during the refresh operation. The advantage of all-bank AR is

that with single command, several rows of all the banks are refreshed, consuming

overall less time than equivalent per-bank ARs. However, since per-bank AR allows

non-refreshing banks to service memory requests, the programs with high memory
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bank-parallelism may perform better in per-bank AR compared with all-bank AR.

5.2.2 Self-Refresh (SR) Mode

To save background energy, DRAM devices employ low power modes during

idle periods. The lowest power mode, known as Self-refresh (SR), turns off the entire

DRAM clocked circuitry and the DLL and triggers refresh operations internally by

a built-in analog timer without requiring any command from the memory controller.

When in self-refresh mode, the scheduling of refresh commands is exclusively

under the control of the DRAM device. The device automatically increments the

internal refresh counter after each refresh operation. The number of refresh opera-

tions serviced during the SR mode would vary depending on the time the DRAM

spends in the SR mode and how refresh operations are scheduled by the DRAM

device during that time. Consequently, when the memory controller switches the

DRAM back from the SR mode to the active mode, the exact value of the refresh

counter cannot be correctly predicted.

5.2.3 Row-level Refresh Reductions

Since most DRAM cells have high retention periods, prior retention aware

techniques use row-level refresh to reduce a large number of unnecessary refreshes

[2, 3]. For instance, the previously proposed RAIDR scheme skips 75% of refresh

operations by storing the measured retention time profile at a row granularity and

issuing or skipping refresh to a row based on its retention period. A second set of
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refresh reduction techniques, such as Smart refresh [4] and ESKIMO [5], skip refresh

to a row if the row is recently accessed or data stored in it are no longer accessed

in the future. Both these sets of techniques rely on row-level refresh granularity to

reduce the required number of refreshes.

5.2.4 Auto-Refresh Optimization

Current DDR devices do not support any row-level refresh command like RAS-

Only in the earlier asynchronous devices. As described in Section 5.2.1, managing

refresh at row granularity is problematic, especially with millions of rows in DDR

devices; therefore JEDEC deprecated row-level refresh. In addition, JEDEC spent

considerable effort to optimize the auto-refresh operation.

Figure 5.1 shows the physical organization of a DRAM, divided into sub-arrays.

The number of sub-arrays in a DRAM bank is specific to each DRAM vendor and

can vary widely [64]. Each sub-array contains its individual row-buffer called a local

row-buffer, its set of sense amplifiers that are not visible externally to the DRAM

but that are visible internally. A single global row-buffer is shared by all the sub-

arrays in a bank; after an activate, for example, the data in a local row buffer are

amplified and driven to the global row buffer, from which further READ/WRITE

operations can access it. Importantly, after an ACT command, data in the global

row-buffer are accessible to memory controller, but the local row-buffers are not

visible externally.

This sub-array organization allows a DRAM to refresh a row simply by fetch-
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Figure 5.2: An illustration (in 1Gb DDR3 devices) of Row-level refresh
timing constraints compared with an auto-refresh (AR) command. An
AR, in this case, refreshes two rows in each of the 8 banks.

ing data to local row-buffers and then writing them back to the DRAM cells. In

modern DDRs, refresh happens independently at the sub-array level, and therefore

different rows in different sub-arrays within a bank are all refreshed in parallel. The

degree of parallelism is determined by the degree of sub-array division and is chosen

by each DRAM designer. In contrast, issuing a sequence of ACT and PRE com-

mands to refresh a row cannot utilize local row-buffers in sub-arrays and so cannot

exploit parallelism. An ACT command fetches an entire row of data from the local

row-buffer of a sub-array all the way to the global row-buffer paying both perfor-

mance and power penalties. As shown in Figure 5.2, subsequent ACT commands

on the same bank have to wait for a long tRC (row cycle) time, and even those to

different banks have to observe tRRD (row-to-row activation delay) and tFAW (four-

bank activation window) constraints. As Figure 5.2 illustrates, optimized AR is

significantly faster, and it consumes significantly less power, than row-level refresh.

The following sections explore this in more detail.
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5.2.5 Performance Overheads of Refresh

The time required to perform refresh is growing exponentially over time, as the

time required scales with the number of bits to refresh. The advantage of JEDECs

optimized auto-refresh mechanism is that, as rows are added to each generation,

the device is also banked to a finer degree, and the internal refresh mechanism

refreshes more rows in parallel. Row-level refresh cannot exploit this, because the

sub-array organization is not visible outside the DRAM. Figure 5.3 quantifies the

difference; the figure shows refresh time in milliseconds as DRAM density increases

for all-bank AR; this is compared to the individual row-level option, given different

degrees of refresh reductions (labeled % skip). The skip percentage represents a

refresh-reduction schemes ability to eliminate that percentage of refresh operations.

Note that, for the row-level results, refresh time is shown per-bank, assuming an

ideal case for row-level when all banks are able to schedule refreshes in parallel.

Specifically, the graph shows that, for a 16Gb device, even if 70% of the refreshes

are eliminated, the time to complete the remaining 30% is equal to using AR on all

the rows.

Another timing detail to note is that the DRAM device in all-bank AR is

permitted to activate rows faster than the tRRD and the tFAW constraints, as the

power dissipation of an AR is known and optimized. Note that using ACT to perform

row-level refresh must observe both tRRD and tFAW to meet the DRAM power

constraints, as illustrated in Figure 5.2. Lastly, since row-level refresh only throttles

the refreshing bank while other banks can service memory requests, workloads with
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high bank parallelism can get better performance compared with all-bank AR. But

we observe that a more efficient way of utilizing this bank parallelism is to implement

per-bank AR instead of relying on row-level refreshes. For example in 16Gb devices,

if per-bank AR is used, then refresh on a bank requires only 1.967ms (assuming

LPDDR3 trends of tRFCpb half of tRFC), only 15% of row-level option.

Finally, issuing ACT/PRE commands can consume substantial command band-

width, and the situation worsens as the number of ranks sharing the command bus

increases. For instance, a rank using 32Gb devices requires 16M (8M ACT and 8M

PRE) commands to satisfy row-level refresh, and in a four-ranked channel all 64M

commands for refresh are scheduled on a common bus. As shown in Figure 5.4,

the required bandwidth for row-level refreshes approaches 100% of the total avail-

able command bandwidth (assuming 64ms refresh window and 1600Mbps devices).

Thus, row-level refresh commands leave little command bandwidth for normal mem-

ory requests (reads and writes).

5.2.6 Energy Overheads of Refresh

An ACT command must send a row address on the command bus; the row

address is decoded, and the row is fetched from a sub-arrays local buffers to a

common global row-buffer, spending energy that, if the data is not then read or

written, is wasted. To conclude the refresh, an explicit PRE writes back data from

global to local row-buffer of the sub-array, and eventually to the row cells. In

comparison, an AR command does not specify an address and uses multiple local
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row-buffers in sub-arrays to refresh several rows in parallel.

To compare the energy consumed by an AR command and one ACT/PRE

sequence we use the equations below [32] (To simplify equations, Vdd of 1V is

assumed):

Ear = (IDD5 − IDD3N)× tRFC (5.1)

Eact/pre = (IDD0 × tRC)− (IDD3N × tRAS)− IDD2N × (tRC − tRAS) (5.2)

We use timing and IDD current values based on the 16Gb JEDEC DDR4

datasheet and Table 4 in [20] respectively. The values are IDD0 = 20mA, IDD3N =

15.5mA, IDD2N = 10.1mA, and IDD5 = 102mA; tRC = 50ηs, tRAS = 35ηs, and

tRFC = 480ηs, IDD0 and IDD3N values for x8 devices scaled down to the smaller row

size in x4 devices. Using these parameters, energy consumed by one AR command

is: Ear = (102 − 15.5) × 480 = 41.5ηJ. Energy consumed by one set of ACT/PRE

commands: Eact/pre = 20×50−15.5×35−10.1×15 = .306ηJ. Since an AR schedules

32 row-refreshes in each of the 16 banks, so Erow−level = Eact/pre × 32× 16 = 157ηJ.

Hence, energy dissipated by row-level refreshes (Erow−level) is almost four times the

Ear, energy consumed by an AR command.

Furthermore, on average in the 16Gb device, an ACT should be scheduled in

each 15.2ηs (64ms/4M) interval for row-level refresh. This means that DRAM burns

highest background power most of the time by staying in active mode, since it does

not get enough opportunity to switch into low power modes. Lastly, as described

in Section 5.2.2, DRAM device takes control of refresh command scheduling during
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the self-refresh (SR) mode. When the device switches back to active mode, the row-

level refresh scheme needs to know which rows were refreshed while the device was

in SR mode, so that the refresh operations can be resumed from the correct point.

However, lack of access to the internal device refresh counter makes it difficult

for a row-level refresh scheme to resume refresh correctly. This difficulty makes

row-level refreshes incompatible with the SR mode, further worsening the energy

consumption, when the device is idle.

5.3 Flexible Auto-Refresh

As we have shown, the JEDEC auto-refresh mechanism is incompatible with

the refresh-reduction techniques that exploit row-level awareness. We propose a

modification of the DRAM access protocol that would return control to the memory

controllers heuristics without sacrificing the optimizations in JEDEC auto-refresh.

We note that the DRAM refresh counter value is not accessible externally, yet

control-register-access mechanisms exist in the JEDEC DDR specs. If, somehow,

the memory controller can access and change the refresh counter, then as we will

show, our proposed techniques can reduce as many refreshes as the individual row-

level heuristics, while issuing most of the remaining refreshes through the optimized

AR mechanism.
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5.3.1 Refresh Counter Access Architecture

Our key observation is that the current DRAM devices already have an inter-

face available to read and write some selected DRAM registers [1, 21]. We propose

to extend the interface to include the refresh counter, thereby making the refresh

counter both readable and writeable by the memory controller.

Figure 5.5 shows the details of our proposed DRAM architecture. Reading

the refresh counter register (REFC-READ) can be implemented similar to MPR

(multi-purpose register) reads in DDR4 or MRR (mode register read) in LPDDR3

devices [1,21]. In response to a REFC-READ command (Figure 5.6(a)), the DRAM

returns the refresh counter value on its data-bus like a normal control-register read.

Since the refresh counter is accessed infrequently, only at initialization and on exit

from self-refresh (SR) mode, timing overheads are not critical. Using the refresh

counter access feature, the memory controller knows the rows refreshed in the next

AR and can also find exactly how many refreshes happened during the previous

self-refresh (SR) mode.

In order to skip refresh operations, the memory controller should be able to

increment the refresh counter without actually performing refresh operations. We

propose to add such a command, referred to as dummy-refresh. As shown in Fig-

ure 5.5(b), dummy-refresh can be implemented to share the command-code (RAS

and CAS asserted) with normal auto-refresh (AR) while one of the address bits

is used as a flag to differentiate it from AR. Since dummy-refresh increments the

refresh counter only and does not issue any refresh operations, it does not have
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the performance or energy overheads of regular refresh operations. For instance,

memory controller can issue normal memory requests while dummy-refresh is ser-

viced. Furthermore, dummy-refresh can be easily extended to have all AR variations

like per-bank (LPDDR3) and DDR4 fine-grained (x2, x4) options by incrementing

appropriate number of rows in the refresh counter.

Finally, a REFC-WRITE command, as shown in Figure 5.6(b), can overwrite

the value of the refresh counter register, implemented as another Mode Register Set

(MRS) command [1]. The REFC-WRITE can be used to synchronize all the devices

in a rank after exiting from SR mode. In SR mode, the DRAMs issue refreshes based

on timing events generated from their local ring oscillators. The timings of oscillators

in each device are not synchronized, and therefore some devices in a rank may issue

more refreshes than others. In this scenario, the refresh counter values read on SR

exit from devices of a rank may not match exactly. Therefore, the memory controller

uses REFC-WRITE to synchronize all the devices on a rank.

5.3.2 Flexible Auto-Refresh (REFLEX) Techniques

Through the proposed architecture, the memory controller can access and

synchronize the refresh counter values of all devices in a rank. The memory controller

can utilize dummy-refresh commands to skip refreshes when needed. We propose a

set of three refresh reduction mechanisms, collectively referred to as Flexible Auto-

Refresh (REFLEX).

In DDR devices, the default refresh option is to issue 8K all-bank AR (1x
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granularity mode) commands in a tRET period. Two other options added in DDR4

are to increase the refresh issue rate to 16K and 32K AR in the retention period (2x

and 4x granularity modes respectively). These finer granularity options decrease

the number of rows refreshed in a single AR command. Our first proposed tech-

nique called REFLEX-1x, issues auto-refresh (AR) and dummy-refresh using only

the default 1x refresh granularity option. When using REFLEX-1x, the memory

controller tracks refresh requirements at the granularity of all rows refreshed in a

single AR command (we refer to them as AR bins).

Figure 5.7 illustrates the workings of REFLEX techniques. For simplicity,

only 32 rows of a device are shown and two of them (row 7 and row 20) have

weak cells. Rows with weak cells need to be refreshed in each tRET round whereas

other rows need to be refreshed infrequently (for example, once in every 4 tRET

rounds). In the example, each 1x AR command refreshes 8 rows in all banks.

Therefore the baseline scheme needs to send four AR commands so that all the

32 rows are refreshed (Figure 5.7(a)). In the REFLEX-1x scheme, the memory

controller schedules refresh only if there is any weak row among the rows refreshed

in an AR, otherwise a dummy-refresh is issued to increment the refresh counter.

Therefore, as shown in Figure 5.7(b), REFLEX-1x issues only two AR commands

corresponding to the AR bins including the two weak rows, whereas two dummy-

refresh commands are issued, reducing the overall refresh activity by a factor of

two.

The previously proposed RAIDR study [2] characterizes that less than 1K

rows have retention times less than 256ms in a 32GB DRAM based memory system.
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RAIDR refreshes these 1K weak rows once every 64ms, while refreshing the remain-

ing strong rows once every 256ms (or one-fourth of the worst-case rate). Therefore,

by employing row-granularity refreshes and skipping unnecessary refreshes to strong

rows, RAIDR is able to achieve 74.6% reduction in refresh activity. In comparison,

REFLEX-1x employs AR command, which when directed to weak row, also un-

necessarily refreshes the strong rows in the AR bin. However, even in the worst

case, when all the 1K rows are in separate AR bins, REFLEX-1x can reduce 65% of

refresh operations, because in a 256ms period, the baseline AR scheme issues 32K

(8K per 64ms) AR commands, while REFLEX-1x issues only 11K (1K + 1K + 1K

+ 8K) AR commands.

Our second technique, referred to as REFLEX-4x, utilizes the finer granularity

4x AR option introduced in DDR4. In REFLEX-4x, retention or access awareness is

stored at the granularity of rows refreshed in one 4x AR command. In 16Gb devices,

1x and 4x AR options refresh 512 and 128 rows respectively. Therefore, storage in the

bins increases for REFLEX-4x compared with REFLEX-1x. However, REFLEX-4x

has the ability to issue finer-grained refreshes to reduce more unnecessary refresh

operations. Besides for optimization, memory controller may issue AR or dummy-

refresh at 1x granularity, if all the bins either require or can skip refresh. As shown in

Figure 5.8(a), REFLEX-4x refreshes only 4 rows, reducing 75% of refresh operations

compared with the baseline. Furthermore, REFLEX-4x when used in the RAIDR

characterization settings reduces 72.5% of refresh operations, almost equal to what

row-level refreshes in RAIDR could achieve (74.6%).

The tradeoff by using 1x AR and finer-granularity AR is between refresh bin
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storage and amount of refresh reductions. In REFLEX-1x, since 8K AR are sched-

uled in a tRET , only 8K bins are required in a rank. Assuming 2 bit storage for each

bin (for example, indicating retention time of 64, 128, 192 and 256 ms), REFLEX-1x

requires 2KB of storage per rank. However, because of the larger refresh granularity

in REFLEX-1x technique, the potential of refresh reduction is less compared with

finer-grained REFLEX-4x scheme.

Finally, in our third technique referred to as REFLEX-Row, the memory con-

troller stores retention aware bin per row as done in RAIDR. In REFELX-Row

scheme, the memory controller issues ACT-PRE (same as row-level refresh) com-

mands to only weak rows in the next AR bin. After that, dummy-refresh is issued

to increment the refresh counter. An example working of REFELX-Row is shown

in Figure 5.8(b). To reduce refresh bin storage, an intelligent scheme using bloom

filters as proposed in RAIDR can be employed [2]. REFELX-Row, achieves as much

refresh reduction as previous row-level based retention aware techniques could, while

satisfying most of the refresh requirements through AR options and issuing row-level

refreshes only for few weak rows.

5.3.3 REFLEX using per-bank AR

Auto-refresh command has two types, as described in Section 5.2.1, all-bank

and per-bank AR. The advantage of per-bank AR is that when one bank is refreshing

other banks can service memory requests, while all-bank AR makes all the banks

unavailable. As in LPDDR devices, adding the support for per-bank AR in general
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purpose DDR devices should not be difficult. To simplify the implementation and

reduce energy, per-bank AR does not send bank address on the command bus.

The bank number of per-bank refresh is determined by following a protocol. The

protocol specifies that starting from bank 0, for each next per-bank AR, bank address

increases sequentially until the last bank, then rollover from bank0. The time to

finish per-bank AR (tRFCpb) is around 40% to 50% of all-bank AR (tRFC). For

instance, in 8Gb LPDDR3 device, tRFC is 210ηs while tRFCpb is 90ηs [21]. Lastly,

average energy consumed by per-bank AR in Micron 4Gb LPDDR2 option is equal

to an all-bank AR [25].

REFLEX-1x techniques can work in per-bank AR similar to all-bank AR.

Since per-bank AR is issued at a finer granularity, REFLEX-1x technique with per-

bank AR can reduce higher number of refreshes. For example, REFLEX-1x with

per-bank AR will reduce 74.2% of refresh operations in a device with 16 banks. We

propose that given the small changes required to implement per-bank AR, DDRs

should also adopt per-bank AR feature similar to LPDDRs.

5.3.4 Refresh Reduction in SR Mode

With the proposed refresh architecture, memory controller can synchronize the

refresh counter on an as-needed basis. Therefore, REFLEX techniques are capable

of switching the DRAM to the lowest power self-refresh (SR) mode when the DRAM

is idle for sufficiently long periods. To further save energy in SR mode, the refresh

rate can be reduced when switching to SR mode based on, for example, the retention
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Table 5.2: CPU and memory configurations used in the simulations.

Processor 4 cores, 2GHz, out-of-order, 4-issue per core

L1 Cache Private, 128KB, 8-way associativity, 64B Block Size, 2 cycle latency

L2 Cache Shared, 8MB, 8-way associativity, 64B Block Size, 8 cycle latency

Memory 1 Channel, 2 Ranks per channel, 64bit wide

Memory controller Open page, FR-FCFS [28], 64-entry queues (per-rank),
address mapping: page interleaving

DRAM DDR4, x4, 1600Mbps, 16 banks, 4 bank groups

period of next rows to be refreshed. Even if some rows have weak cells, those rows

can be refreshed through explicit row-level refresh commands before switching to SR

mode. This scheme is similar to partial array self-refresh (PASR) option in LPDDR

devices where unused memory locations are programmed to skip refreshes in SR

mode [25].

5.4 Evaluation Methodology

We use a full-system x86 simulator called MARSSx86 [28] to evaluate our

proposed work. MARSSx86 is configured, as shown in Table 5.2, to model four

out-of-order superscalar cores. For the main memory simulator, the cycle accurate

DRAMSim2 [27] is integrated and modified to incorporate DDR4 bank-group con-

straints, various refresh options and low power modes. The memory controller and

DRAM configurations are shown in Table 5.2. Furthermore, Table 5.3 lists the rel-

evant DRAM timing and current (IDD) values used in our simulations. The IDD

values are used to calculate the DRAM energy following the methodology described

in [32]].
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Table 5.3: DRAM timing (in 1.25ηs clock cycles) and current (in mA) parameters
used in the simulations.

Parameter DDR4 16Gb (x4) DDR4 32Gb (x4)

tRRD 4 4

tRRDL
5 5

tRAS 28 28

tRC 40 40

tFAW 16 16

tRFC 384 512

tRFCpb 200 260

tRFC4x 208 280

IDD0 20 23

IDD1 25 30

IDD2P 6.4 7

IDD2N 10.1 12.1

IDD3P 7.2 8

IDD3N 15.5 17

IDD4R 57 60

IDD4W 55 58

IDD5 102 120

IDD6 6.7 8

IDD7 95 105
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To evaluate and compare our proposed flexible auto-refresh techniques, we

implement the following refresh options: (i) all-bank AR, (ii) per-bank AR, and (iii)

explicit row-level refresh through ACT and PRE commands. In addition, to account

for refresh reductions, these options can be configured to skip certain percentage

of refreshes. The refresh options along with skip percentages are used to simulate

various refresh schemes. Our baseline refresh scheme employs an all-bank AR option

with 0% skipping. Other schemes with non-zero refresh skipping distribute the

remaining required refreshes evenly in time. For example, if 75% of the refresh

operations are skipped in the all-bank AR option, then the refresh rate is decreased

to one-fourth. Therefore, one AR is issued in each 31.2µs interval instead of normal

7.8µs. In the row-level option, to evenly distribute the refresh amongst banks, a

given row is refreshed in all banks, before the next row gets refreshed, a policy

similar to the one employed in RAIDR [2]. Finally, in the per-bank AR option,

refresh commands are sequentially issued to each bank. When a per-bank or row-

level refresh is happening on a particular bank, other banks are allowed to operate

on memory requests with the appropriate timing constraints.

We conduct our evaluations by using multi-programmed and multi-threaded

workloads from the SPEC CPU2006 [36] and the NAS parallel benchmark suite [65]

respectively. Multi-programmed workloads consist of four copies of the same pro-

gram except the mix workload with different programs (milc, gromacs, wrf, sjeng).

We use input sets ref in SPEC and CLASS C in NPB benchmarks. A total of 4

billion instructions are simulated, wherein each program starts from its region of

interest (RoI) determined using SimPoint 3.0 [37]. The workloads have a good mix

143



0

0.5

1

1.5

2

2.5

bt ft sp ua cactusADM gamess lbm leslie3d mcf milc mix namd avg

N
o
rm

a
li

ze
d

 E
n

er
g

y
 

all-bank_75% per-bank-0% per-bank-75% row-level-0% row-level-75%

(a)

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

bt ft sp ua cactusADM gamess lbm leslie3d mcf milc mix namd avg

N
o
rm

a
li

ze
d

  
E

x
ec

. 
T

im
e
 

all-bank_75% per-bank-0% per-bank-75% row-level-0% row-level-75%

(b)

Figure 5.9: DRAM energy (a) and system execution time (b) normalized
to baseline all-bank AR in 16Gb DDR4 devices, with different degree of
refresh skip percentage.

of low (ua, gamess, namd), medium (cactusADM, leslie3d, mix) and high (bt, ft, sp,

lbm, mcf, milc) memory requirements to represent energy and performance tradeoffs

in the refresh schemes.

5.5 Experimental Results

In this section, we first compare the energy and performance of different re-

fresh schemes. Our results show that row-level refresh is not scalable as the size of
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Figure 5.10: DRAM energy (a) and system execution time (b) normal-
ized to baseline all-bank AR in 16Gb DDR4 devices, with different degree
of refresh skip percentage.

DRAM device increases from 16Gb to 32Gb, even when large number of refreshes are

skipped. Next, we show that all-bank and per-bank AR options further save DRAM

energy by using low power modes. Lastly, our proposed REFLEX techniques are

compared with two recently proposed refresh techniques: RAIDR [2] and Adaptive

Refresh [20]. The results indicate that REFLEX mitigates refresh overheads more

effectively than the state-of-the-art solutions, and the benefits of REFLEX approach

the ideal case of no-refresh.
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5.5.1 Benefits of Auto-Refresh Flexibility

Figure 5.9 and Figure 5.10 show DRAM energy and overall system execution

time of the three refresh options normalized to the baseline scheme in 16Gb and

32Gb devices, respectively. The three refresh options compared are all-bank AR,

per-bank AR and row-level refresh, labeled in the figures as all-bank, per-bank and

row-level respectively. Each refresh option is simulated with two levels of refresh

reductions: no reduction (0%) and three fourth of refreshes skipped (75%). The

baseline scheme is all-bank AR, and it neither skips refreshes nor employs low power

modes. This baseline scheme is used to normalize all the results in Section 5.5.

For 16Gb devices, the energy consumption of row-level option reaches up to

2.25x in low memory workloads, and on average row-level refreshes are 1.5x less en-

ergy efficient than the baseline. Moreover, even when 75% of the refresh operations

are reduced, row-level option consumes 2% more energy than the baseline. The en-

ergy consumption of row-level refresh worsens when the density of DRAM increases

to 32Gb, as shown in Figure 5.10(a). The average energy overhead of 2.5x and 12%

is observed in row-level option for without skip and 75% skip cases, respectively. In

comparison, all-bank and per-bank AR options save 20% of DRAM energy, when

75% of the refreshes are skipped.

Performance improvement in 16Gb devices without skip is similar for all the

refresh options. However, as the number of rows doubles in 32Gb devices, row-level

refresh incurs a 30% performance degradation compared to the baseline. The reason

for this performance loss is that, when using row-level refreshes, each bank stays
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mostly busy in servicing refresh operations through ACT and PRE commands, while

leaving inadequate bandwidth for normal memory requests. Further, when 75% of

the refreshes are skipped, all-bank, per-bank and row-level reduce execution time

by 8.1%, 9.5% and 7.5% respectively. Per-bank refresh option shows better results

as the number of refreshes skipped is increased, especially in memory intensive

workloads like lbm and mcf (18% and 12% respectively when 75% refreshes are

skipped).

Although row-level option gets performance benefits from bank parallelism,

extra time required to finish refreshes at the row granularity nullify the bank par-

allelism benefits as the number of rows increases in high density devices. Hence,

per-bank AR option is the right granularity to utilize bank level parallelism rather

than the row-level option. As shown in our analysis, energy as well as performance

benefits by using only row-level refresh option diminishes at higher DRAM densi-

ties, even when a large fraction of the refresh operations are skipped. In comparison,

our proposed REFLEX techniques provide scalable benefits by serving most of the

refreshes through optimized all-bank and per-bank AR options.

5.5.2 REFLEX with Low Power modes

Figure 5.11 presents energy and system execution time in 32Gb devices when

Power Down (PD) and Self-Refresh (SR) modes are enabled. In the interest of

space, average results of all the workloads are shown. In our implementation, a

rank switches to PD slow exit after the request queue for that rank becomes empty,
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as proposed in [34]. If the rank remains idle for a time period equal to tREFI , then

the rank switches to SR mode. The AR options, both all-bank and per-bank, are

able to save background energy by switching to low power modes in low activity

periods. In comparison, the row-level option reduces the opportunity to stay in PD

mode and is not compatible with SR mode. Therefore, the energy benefits of low

power modes, quite significant in workloads with medium to high idle periods [44],

are lost when row-level refreshes are employed.

Energy savings in all-bank and per-bank AR options increase on average by

5-7% with low power modes. For instance, in namd, all-bank AR exhibits 22%

and 38% DRAM energy improvement with PD and SR modes respectively. Fur-

thermore, since our proposed refresh architecture provides the memory controller

ability to access and synchronize the refresh counter before and after the SR mode,

REFLEX techniques can be designed to reduce unnecessary refreshes in SR mode
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Figure 5.12: Comparison of REFLEX with other refresh schemes.

by programming low refresh rate, similar to the CO-FAST technique in [44]. Such

techniques could further reduce refresh energy in SR mode.

5.5.3 REFLEX versus Prior Schemes

In Figure 5.12, we compare recent refresh studies with different implemen-

tations of our proposed REFLEX techniques. The REFLEX techniques assume a

DRAM memory rank with 1K weak rows requiring refreshes in every 64ms, while

rest of the rows can be refreshed at 256ms period, an assumption similar to the

RAIDR study [2]. Our RAIDR implementation skips 75% of the refreshes, and

schedules rest of the 25% refreshes through row-level refresh option. We also eval-

uate the recently proposed adaptive refresh technique, which uses finer-granularity

refresh modes introduced in DDR4 [20]. Adaptive refresh decides appropriate re-

fresh granularity by a simple heuristic based on dynamically monitoring the serviced
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memory bandwidth. Since adaptive refresh uses only all-bank AR and does not re-

duce unnecessary refresh operations, REFLEX techniques can coexist and provide

more benefits.

Finally, we compare to an ideal case when DRAM is not required to refresh

at all. REFLEX techniques reach, on average, within 6% of energy and 1% of

performance compared to the ideal refresh case. In comparison, both RAIDR and

Adaptive Refresh are unable to close the gap with ideal, in particular for refresh en-

ergy overheads, because RAIDR utilizes energy-inefficient row-level option to reduce

refresh whereas adaptive refresh does not reduces unnecessary refreshes at all.

5.6 Other Related Work

In prior sections, we discuss or compare following refresh schemes: RAIDR [2],

Smart Refresh [4], ESKIMO [5], SRA/VRA architecture [3] and Adaptive Refresh

[20]. In this section, other refresh studies related to our work are described.

Flikker [38] and RAPID [39] are software techniques to reduce unnecessary

refreshes based on the distribution of DRAM cell retention periods. Flikker requires

the program to partition data into critical and non-critical sections. The scheme

issues refreshes at regular rate for critical data sections only, while non-critical sec-

tions refreshed at much slower rate. In RAPID, retention time of a physical page

is known to the operating system (OS), which prioritizes to first allocate the pages

with longer retention time. However, as the number of populated pages increase,

this scheme does not provide substantial benefits. Moreover, burdening the soft-
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ware with tracking DRAM cell retention awareness complicates both OS design and

refresh management.

Elastic Refresh [42] and Coordinated Refresh [44] rely on the ability to re-

schedule refresh commands to overlap with periods of DRAM inactivity. Elastic

refresh postpones up to eight refresh commands in high-memory request phases of

programs, and then issues the pending refreshes during idle memory phases at a

faster rate to maintain the average refresh rate. Coordinated Refresh techniques co-

schedule the refresh commands and the low power mode switching such that most of

the refreshes are energy efficiently issued in SR mode. However, both these schemes

do not reduce the unnecessary refresh operations.

Liu et al. [40] experiment with commodity DDR devices to characterize re-

tention periods. The study finds that the retention period of a given cell varies

a lot with time and temperature, as also shown in earlier research. Profiling and

accounting for retention period variability is an unsettled topic. We do not tackle

this issue directly, but the refresh flexibility provided by our proposed mechanisms

can be extended to account for changing retention period phenomenon.

5.7 Summary

In this Chapter, we describe that since the refresh counter is controlled by

DRAM itself and is not visible to memory controller, refresh operations cannot be

skipped with the default JEDEC-specified auto-refresh options in general purpose

DDR devices. Furthermore, our analysis and simulation results show that the row-
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level refresh option used in prior refresh reduction techniques is inefficient both

in terms of energy and performance. Therefore, the objective of our work, in this

Chapter, is to enable the coexistence of refresh reduction techniques with the default

auto-refresh mechanism so that one could skip unneeded refreshes, while ensuring

that the required refreshes are serviced in an energy-efficient manner.

We proposed simple and practical modification in DRAM refresh architecture

to enable the memory controller to read, write and increment the refresh counter in a

DRAM device. This new architecture enables the memory controller to skip refresh

operations by only incrementing the refresh counter. We further proposed several

flexible auto-refresh (REFLEX) techniques that reduce as many refreshes as prior

row-level only refresh schemes, while serving remaining refreshes efficiently through

auto-refresh option. As the energy and performance overheads of refresh operations

become significant in high density memory systems, the increasing advantages of

our proposed techniques make a strong case for the small modifications in DRAM

device to access the refresh counter.
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Chapter 6

Conclusions and Future Work

In this dissertation, first we endeavor to systematically explore all the aspects

of DRAM refresh in current and future memory systems. Then based on the ex-

ploration results and learning, we propose two refresh techniques aimed at reducing

background energy during refresh operations and enabling large body of previous

refresh reduction research to scale with DRAM device density. Main principles and

observations in our techniques, based on DRAM scaling trends and our refresh ex-

ploration results, are summarized below. We also believe, future research on refresh

will benefit from these guidelines.

• There are some refresh techniques based on old DRAM devices and asyn-

chronous interfaces. These techniques are useful for DRAM caches, but for

general purpose DDR SDRAM devices, they are less practical.

• With the increasing device density, JEDEC has provided multiple refresh

scheduling and timing options. Understanding design trade-offs such as re-

fresh management complexity, device level changes for refresh, and available

refresh scheduling flexibility, will be important for designing practical refresh
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optimization schemes.

• The techniques that utilize built-in mechanisms present in DDR devices to

reduce the refresh penalty are desirable. For example, techniques that ex-

ploit Self Refresh mode, techniques that utilize available refresh flexibility

with auto-refresh commands, and techniques that take advantage of the finer-

granularity options in DDR4 devices.

• Auto-refresh command is optimized by DRAM vendors for power and per-

formance. Therefore, schemes that use row-level explicit commands to fulfill

refresh requirements will have more disadvantages. Moreover, their manage-

ment would become hard as the number of rows in high density DRAM devices

increases. Analytically, we have shown that unless more than 70% of the rows

are not required to be refreshed, there is no benefit of using row-level refresh

for high capacity memory systems. Additionally, the controller complexity,

command bandwidth, and energy overhead make row-level refresh even less

attractive than auto-refresh.

• Both the performance and energy penalties of refresh increase up to 35% in

near future 32Gb devices. The background energy in high density device

also increases substantially. Therefore, refresh and background power man-

agements become key design considerations. Future directions could be using

some techniques available in LPDDRs (PASR, Temperature Compensated Self

Refresh, etc.) more aggressively without sacrificing too much performance.
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• The use of retention awareness of DRAM cells and reducing refresh operations

can be very effective in reducing refresh penalty. However, such schemes should

be able to use auto-refresh and self-refresh modes effectively. Otherwise, the

gains obtained by retention awareness will be lost by issuing row-selective

refresh commands, especially in future high density DRAMs.

• Commodity DRAM devices have or can easily afford to have refresh commands

at different granularity. For instance in the DDR4 standard, finer-granularity

refresh commands are added beside the normal all-bank refresh. In future, per-

bank refresh command can easily be supported in DDRx devices, as already

been done in LPDDRx devices. After that, the next challenge is to design on-

line algorithms which can automatically switch between these refresh options

based on memory activity so that the overall performance and energy benefits

are maximized.
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