Trends in Memory Systems

Prof. Bruce Jacob

Keystone Professor & Director of Computer Engineering Program Electrical & Computer Engineering
University of Maryland at College Park

Maryland Memory-Systems Research

- Cagdas Dirik, Ph.D. 2009. Performance Analysis of NAND Flash Memory Solid-State Disks. (SanDisk)
- Sadagopan Srinivasan, Ph.D. 2007. *Prefetching vs. the Memory System:* Optimizations for Multi-core Server Platforms. (Intel)
- Brinda Ganesh, Ph.D. 2007. Understanding and Optimizing High-Speed Serial Memory-System Protocols. (Intel)
- Ankush Varma, Ph.D. 2007. High-Speed Performance, Power, and Thermal Co-Simulation for SoC Design. (Intel)
- Nuengwong (Ohm) Tuaycharoen, Ph.D. 2006. Disk Design-Space Exploration in Terms of System-Level Performance, Power, and Energy Consumption.
 (Dhurakijpundit University, Thailand)
- Samuel Rodriguez, Ph.D. 2006. myCACTI: A New Cache-Design Tool for Pipelined Nanometer Caches. (AMD)
- Aamer Jaleel, Ph.D. 2005. The Effects of Out-of-Order Execution on the Memory System. (Intel)
- David Tawei Wang, Ph.D. 2005. Modern DRAM Memory Systems: Performance Analysis and a High Performance, Power-Constrained DRAM-Scheduling Algorithm. (MetaRAM, RIP)

Yesterday's high-performance technologies are today's embedded technologies, but yesterday's embedded-systems *issues* are today's high-performance *issues*

Ankush Varma, U. Maryland PhD 2007 (Intel)

What's the point, exactly?

- Embedded systems designers care <u>deeply</u> about power & heat dissipation, cost, physical size, and correctness of design.
- The memory system has become the dominant concern in performance, and it is rapidly becoming a/the dominant concern in power. Our ability to deliver main-memory capacity is nonexistent, limited by bandwidth and power. Bandwidth is also a problem, limited by power/heat, as well as physical size. In larger systems, correctness is critical. The list goes on.
- The embedded-systems community has SOLVED (or at least ADDRESSED more-or-less successfully) issues of correctness, power/space, etc. ... in particular the very issues that now confront the general-purpose community.
- Pretty obvious where to look if you want to predict the near-term future ...

Problem: Capacity

Problem: Capacity

JEDEC DDRx ~10W/DIMM, ~20W total

FB-DIMM ~10W/DIMM, ~300W total

Problem: Bandwidth

- Like capacity, primarily a power and heat issue: can get more BW by adding busses, but they need to be narrow & thus fast.
 Fast = hot.
- Required BW per core is roughly 1 GB/s, and cores per chip is increasing
- Graph: Thread-based load (SPECjbb), memory set to 52GB/s sustained ... cf. 32-core Sun Niagara: saturates at 25.6 GB/s

Problem: TLB Reach

- Doesn't scale at all (still small and not upgradeable)
- Currently accounts for 20+% of system overhead
- Higher associativity (which offsets the TLB's small size) can create a power issue
- The TLB's "reach" is actually much worse than it looks, because of different access granularities

Trend: Disk, Flash, and other NV

- Flash is currently eating Disk's lunch
- PCM is expected to eat Flash's lunch

Obvious Conclusions I

 Want capacity without sacrificing bandwidth

 Need a new memory system architecture

 This is coming (details will change, of course)

Obvious Conclusions II

- Flash/NV is inexpensive, is fast (rel. to disk), and has better capacity roadmap than DRAM
- Make it a first-class citizen in the memory hierarchy
- Access it via load/store interface, use DRAM to buffer writes, software management
- Probably reduces capacity pressure on DRAM system

Obvious Conclusions II

- Flash/NV is inexpensive, is fast (rel. to disk), and has better capacity roadmap than DRAM
- Make it a first-class citizen in the memory hierarchy
- Access it via load/store interface, use DRAM to buffer writes, software management
- Probably reduces capacity pressure on DRAM system

Obvious Conclusions III

- Reduce translation overhead (both in performance and in power)
- Need an OS/arch redesign
- Revisit superpages, multi-level TLBs
- Revisit SASOS concepts,
 location of translation point/s
- Probably most suited for the high-end, at least initially

... and while we're on the topic of high-end ...

Enterprise & Super- Computing

- Run same app (set of apps) 24x7
- Developers spend significant time/energy optimizing apps
- Frequently run a custom (or at least fine-tune the existing) OS
- Have significant, pressing correctness/failure/dependability issues
 => not intrinsic to application area, but because of large-scale multipliers
- Care very deeply about energy consumption and heat dissipation
 => not intrinsic to application area, but because of large-scale multipliers
- Sounds a lot like embedded systems, no?

Acknowledgements & Shameless Plugs

- Much of this has appeared previously in our books, papers, etc.
 - The Memory System (You Can't Avoid It; You Can't Ignore It; You Can't Fake It). B. Jacob, with contributions by S. Srinivasan and D. T. Wang. ISBN 978-1598295870. Morgan & Claypool Publishers: San Rafael CA, 2009.
 - Memory Systems: Cache, DRAM, Disk. B. Jacob, S. Ng, and D. Wang, with contributions by S. Rodriguez. ISBN 978-0123797513. Morgan Kaufmann: San Francisco CA, 2007.
- Support from Intel, DoD, DOE, Sandia National Lab, Micron, Cypress Semiconductor

The Memory System

You Can't Avoid It. You Can't Ignore It, You Can't Fake It

Questions?

(thank you for your kind indulgence)

Prof. Bruce Jacob

Keystone Professor & Director of Computer Engineering Program Electrical & Computer Engineering
University of Maryland at College Park

blj@umd.edu www.ece.umd.edu/~blj

... or just google "bruce jacob"

