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Abstract- We propose a new architecture fnr efficient network 
monitoring and measurements in a traditional IP netw,ork. This 
new architecture enables estahlishmrnt nf niultiple paths (tunnels) 
hetween source-destination pairs without having to modify the 
underlying routing prntoeol(s). Based nn the proposed architecture 
we propose a measurement-based multi-path rmuting algorithni 
derived from simultaneous perturbation stochastic appmrimution. 
The proposed algorithm does not assume that the gradient o f  
analytical cost function is known to the algorithm, hut rather 
relies on noky estiniates from nimsurenimts. Using the analytical 
model presented in the paper we prove the canvergenee of the 
algorithm to the optimal solution. Simulation results are presented 
to denionstrate the advantages of the proposed algorithm under a 
variety of network scenarios. A comparative study with an existing 
nptimal routing algorithm, MATE, is also provided. 

Keywords - Mathematical programmingloptimization, Simula- 
tions 

I. INTRODUCTION 

Rapid growth of the Internet and the emergence of new 
demanding services have sparked interests in the Internet traffic 
engineering. As defined in [I]. traffic engineering deals with the 
issue of performance evaluation and performance optimization 
o l  operational IP networks and encompasses the ineusirreiiient. 
churucterizafion. inodeling and cont1ol of the Internet traffic. 

Due to the evolution of the Internet from ARPANET, tra- 
ditional routing algorithms for IP networks are mostly based 
on shortest path routing. However. methods relying on a single 
path between a source-destination pair cannot efficiently utilize 
network resources and offer limited control capabilities for traf- 
fic engineering [I]. Various solutions derived from shortest path 
routing algorithms have been suggested, mainly by modifying 
link metrics in accordance with the network dynamics (See 
[2]. [ 3 ] ) .  However, these approaches have several shortcomings 
that have not been addressed effectively. First, they tend to 
have network-wide effect and can result in undesirahle and 
unanticipated traffic shifts [l]. Second. these schemes cannot 
distribute the load among the paths of different cost. Third. they 
do not consider the uaffic/policy constraints. such as avoiding 
certain links for particular source-destination pairs [41. 

MultiProtocol Label Switching (MP1.S) technology has of- 
fered new traffic engineering capabilities that can help over- 
come these limitations [ 5 ] ,  [6]. Many schemes have been pro- 
posed based on MPLS technology [41. flowever_ these methods 
require that the existing IP intiastructure be replaced with 
MPLS capable devices. and therefore raises a major investment 
question for b e  Internet Service Providers (ISPs). 

In a recent study presented in [7] we have proposed a new 
architecture that provides traffic engineering capabilities within 

a domain without requiring major changes in the infrastruc- 
ture of I P  Networks. and addresses some of the limitations 
of basic shortest path schemes mentioned earlier. This new 
architecture does nnt need the traditional IP routers tn be 
replaced or modified. Rather it requires simple devices (such 
as PCs or network processors) to be carefully placed inside the 
intradomain network. creating overlay paths between source- 
destination (SD) pairs. Furthermore. the architecture allows 
grudirul deployment of such devices. resulting in improved 
network performance with the addition of each new device. This 
provides ISPs with an alternative solution to achieve desired 
level of performance at potentially much lower costs. We will 
give a brief description of this architecture in Section IV. 
However. the details of this architecture are not the sub.ject 
of this paper. For more details on the architecture refer to 171. 
Here. we will assume that the overlay architecture provides the 
following traffic engineering capahilities required for optimal 
routing: establishment of nnrlliple purhs hetween S D  pairs a i d  
efficient distribution of local network state information to the 
snurce nodes. 

The focus of this paper is the 1rafJic mapping (load bal- 
ancing) problem; that is the assignment of traffic load Onto 
pre-estahlished paths to meet certain requirements [I] .  In this 
paper? we propose an asynchronous distributed optimal routing 
algorithm hased on stochastic approximation theory. using local 
network state information. The model is similar to that in [41, 
with the following differences. In [41, although the authors have 
mentioned b a t  the cost rleriwtives cannot be computed and 
should be estimated by measurements. the mathematical analy- 
sis given in the paper does not consider this fact and implicitly 
assumes that the analytical gradient function is available to the 
alporithm. In addition. the details of the process of estimating 
Uie cost gradient are not given. and the method described in 181 
appears to be a variant of well-known jn i t r  differences method 
([9]. [IO]). However. this issue is not clearly or explicitly stated 
in the aforementioned references. This point is crucial in the 
sense that the convergence of the optimal routing algorithm 
strongly depends on the conditions defining this estimation 
process as described in the stochastic approximation literature 
(See [lo], [11L 1121). 

In this study we consider the same problem while relaxing 
the assumption that the analytical gradient function is available. 
The prnposed nieasiirPirient bused ulgoritlim is derived from 
the idea of simultaneous perturhation stochastic approxima- 
tion (SPSA). This allows us to greatly reduce the number 
of' measurements required for estimating the gradient. while 
at the same time we have approximately the same level of 
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accuracy as the classical finite differences method at each 
iteration. By reducing the nririih~r of ~~~ea . s~~re~r~enrs .  we obtain 
a better overall convergence rate due to the fact that each 
measurement requires a non-negligible amount of time in a 
networking environment. We will discuss these issues in more 
detail in the following sections. As presented in Section V. 
a simulation based study also demonstrates that the proposed 
algorithm outperforms the algorithm proposed in [4]. 

From a broader point of view. a special case of the proposed 
algorithm provides an optimal solution to more general prob- 
lems that have a siinp1e.r consIrain/ sct. (Specifically. we are 
referring to the single SD pair scenarios as the special case.) 
Although applications of SPSA to the constrained optimization 
problems have generated a certain level of interest in the 
literature. the simplex constraint set problems have not been 
handled properly as we will discuss in the following :section. 

The rest of the paper is organized as follows. In Secti.on II we 
define the optimization problem. and give a brief overview on 
stochastic approximation Tor readers who are not familiar with 
the topic. Section Ill  presents the optimal routing algorithm. 
and proves its stability and optimality. Section IV discusses the 
implementation issues. Section V describes the experimental 
setup used to study the performance of the proposed algorithm. 
and presents the simulation results. We conclude the paper and 
discuss possible topics of future work i n  Section VI. 

11. THE OPTIMIZATION PROBLEM 

A. 77ie Routing Model 
In this section. we define the optimization problem of in- 

terest, describe the network model used for the analysis. and 
list basic assumptions we make. We will closely follow the 
formulation in [41 due to the similarity of the problem. 

The network is modeled by a set L of unidirectional links. 
Let S = {l: ?>.  . . ~ S} denote the set of SD pairs. An SD pair 
s has a set P, C 2' of paths available to it. and iV, = /PSI, 
i.e.. iVS is the number of  paths available for SD pair s. With a 
little abuse of notation we let P, = {l> 2: . . . ~ N s } .  and define 
the set of all paths P = USE,P, = (1: 2 ; .  . . ~ N},  where N = 
CsES N,. While by definition. none of the paths can be used 
by more than one SD pair. the paths of two distinct SD pairs 
can share a link. 

The total input uaffic rate of an SD pair s is .rs and i t  routes 
3;,p amnunt of traffic on path p E P, such that 

z,,' = rs: for all s (1) 
PE Ps 

Let :c3 = (?:8p> p E~P,) be the rate vector of SD pair s. and 
let :E = (:cs,,! p E P,: s E S) be the vector of all rates. Then. 
the flow on a link I E L has a rate that is the sum of source 
rates on all paths that traverse link I :  

For each link I .  C1[d)  represents the cost as a function of 
the link How :d. We assume that. for all 2 .  C l ( . )  is convex and 

continuously differentiable. The ohjecLivt. is to minimize the 
total cost C.'[:I:) = C,  C,',(:$) by optimally mapping the traffic 
on paths in P :  

~~ 

Z A P  2 t: vp E P,; ,< E s , ( 5 )  

where e is an arbitrarily small positive constant. For instance. 
some of the control packets may be routed along different paths 
available between an SD pair. 

We can use the well known gradient proiection algorithm 
to solve this constrained optimization problem. where the 
conswaint set 0 is defined by (4) and (5). Each iteration of 
the algoridim takes the form: 

Z(k+ 1) = no[z(I;) -n(I;)VC'(L)] ( 6 )  

where VC!(k )  is the gradient vector whose [ . % I I ) ~ "  element 
is the first derivative length of path y E P, at iteration I ;  
( [VC[k)j,, = ilC/D:c,, ). ~ [ k )  > 0 is the step size. and 11,[1?] 
is the projection of a vector 19 onto the feasible set with respect 
to the Euclidean norm. 

The above iteration can be carried out in a distributed manner 
by each pair s without the need to coordinate with other pairs 
in an asynchronous lashion [13]. [14]: 

(7) 

where VC:,[k) = [DC/ i f : c sp (n: (k ) ) .p  E P,) is the vector of 
first derivative lengths of paths in PS. and nes denotes a 
projection onto the feasible set of SD pair s. 

One problem with directly implementing (7) is that 
8C'/8zSp, the first derivative length of a path. may not be 
available in practice and can only he estimated empirically 
through noisy measurements of the cost function. This is 
mainly due to the fact that the link capacities typically Huc- 
tuate randomly [4] and the traffic patterns in the Internet are 
dynamic in nature. Therefore. i t  is necessary to use a gradient 
approximation method in the optimization problem. Clearly. 
stochastic approximation methods are reasonable solutions to 
such problems. 

Li Stochastic Appro.riina/ion 
Stcchastic Approximation (SA) is a recursive procedure 

for finding the root(s) of equations in the presence of noisy 
measurements. and is particularly useful for finding extrema of 
functions [ I l l  (e.g., [151 and [161). 

The general constrained SA has the same form as ( 6 )  with 
the gradient vector VC!(k) replaced by its approximation j ( k ) .  
The approximation is typically obtained through measurement.? 
of C.'(:E) around ~ ( k ) .  Under appropriate conditions. one can 
show that : c (k )  converges to the solution of (3) denoted by z*. 

A critical issue in SA is Ilie approximation of gradient 
vector. 'I'he standard approach motivated lrom the definition of 
gradient is the Finite Differences (FD) method. in which each 

: 1 J s [ I ;  + 1) = nes [z&) - ,l&)VC:(k)] 
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component of:i:(k) is perturbed one at a time and corresponding 
measurements ! I ( . )  are obtained. Typically, the i-th component 
of @ ( k )  ( i = 1! ?! . . . ~  u t )  for FD approximation is given by 

FDSA and improve the overall network pcrfomance. 
In [I  11. Spall gives a formal proof of convergence of SPSA 

algorithm for the "unconstrained" case. Convergence of SPSA 
algorithm under inequality constraints are presented in [I71 
as well as 1121. However. these results do not consider the 
case where :.(a) i c(k)A(L) 0. which may be the case 
in the optimal routing problem. Particularly. in 1171 Sadegh 
suggests to project : x ( k )  to a point :I: ( k )  E 0 such that 
z'(A:) + c(k)A(k) E 0. If  : L ( k )  - z(k) - 0 as k - .x?. 

convergence can still be established. However, when 0 is a 
simplex. if  c ( k )  E, A,(k) # 0 then :': (a) c ( k ) A ( k )  0 
for all : d ( k ) .  Under these conditions. there is no  existing proof 
on the convergence of an SPSA algorithm that we can directly 
apply to our problem. ( In [12], although authors claim that 
they have proved the convergence for the case of a network of 
queues with similar constraints. they do not consider the issue 

where A(k) = (A,(k)> A2(I;): ... ;A, , , (k)] .  the vector of the mentioned ahove in the proofs.) 
random perturbations for SP. needs to satisfy certain conditions In the next section. we will resolve this technical issue by 
as will he discussed in the following section. a simple method and present a formal proof of the SPSA 

~ ~ t h  of the above approximations have a "two-sided" algorithm under these consminu. 

y(:r(k) + c ( k ) e i )  - g ( z ( k )  - c ( k ) e i )  
fj;(k) = ?c(k) 

where c ( k )  is some positive number, ei denotes a unit vector 
with one in the i-th position and zeros elsewhere. and y(.) 
denotes the measured cost function with measurement noise. 

~n alternative method to estimate the gradient is  called he 
Sisrirlraneoss Pertrrrbafion (SP). In this method. all elements 
of :c(k) are randomly perturbed together to obtain two mea- 
surements g(.). The i-th component of B ( k )  is computed by 

y(:c(k) + c ( k ) A ( k ) )  - y ( s ( R )  - c ( I ; ) A ( k ) )  
&( I ; )  = 2(k>)Ai(k)  

form in the sense that they use the measurements 111. OPTIMAL ROUTING USING SPSA 
y ( z ( k )  + per.t.wbrrtion). On the other hand. one-sided gra- 
dient approximations involve measurements of 1, (:.(a)) and 

dard two-sided form gives more accurate estimates compared to 
one-sidcd forms. for real-time applications one-sided gradient 
approximation may be preferred when the underlying 
dynamics change too rapidly to get an accurate gradient csti- 

assume that the one-sided form is utilized for the approximation 
process for both methods unless stated otherwise. 

SA algorithms using one of the gradient approximations 
above are referred to as FDSA or SPSA. One should note that. 
in an SPSA algorithm the gradient approximation uses only 
two cost-function measurements. independent nf the number 
of parameters being optimized. Standard (two-sided) tinite- 
difference approximation requires 2 m  measurements to esti- 
mate the gradient. In [ I  I ]  i t  is shown that under reasonably 
general conditions, SPSA and FDSA achieve the Same level 
of statistical accuracy for a given number of iterations even 
though SPSA 
 SA, niS theoretical result has heen confirmed in many 
numerical studies. even in where , ~ 1  is on the order of 
sevcral hundreds or thousands [')]. This is certainly m important 

time 
consuming, clearly: this is ,he 

and 
be collected and reported in a timely manner. in other words. 
SPSA suggests a potential for better statistical accuracy 
the Same period of .*time., due to a much shorter required 
measurcment period. even though the have the 

A, 

prove its stability and optimality. We know from [I31 that if 
each SD pair runs (7 )  independently and asynchronously,' the 
overall algorithm converges. Let us now consider the use of 
SPSA in place of (7). 

Opfi,,lal Rollring Algo~ir,,,l~ 

( z c ( ~ )  +,,er.~.PLrb,rtio?l), Although it is known that the In this section we propose an optimal routing algorithm and 

mate with successive [91, In this paper we At time A:. SD pair updates its rate according to 

:u,(k + 1) = rIoa[z,(k) - 0 3 ( k ) @ s ( k ) ]  (8) 

where is (A . )  is the approximation to the gradient vector VC, ( I ; )  
given by the SPSA algorithm and is given by 

N, ? / s ( s ( k )  + c ( k ) A ( k ) )  -:ys(:z(I;)) 
(9) fj, . ( k )  :- 9 . J  

N ,  - 1 c 3 ( k ) A S , ( ( k )  
- N, (C.'+(k) + &( I ; ) )  - (C : - (k )  - ~ ; ( k ) )  

~ 

N, - 1 c. (k)A,.i ( k )  
where C - ( b )  = C(z(k)L cT+(k) is the cost with :c ( I ; )  plus 
wrturbation terms and &( I ; )  and l c ; ( k : )  are measurement 
noise terms. Note that the noise terms observed by each SD 
pair is allowed to he diffcrent. In addition. while c , ( k )  is a 
positive scalar as in standard SA, we iedefine c ( k )  as a N x A- 
diagonal matrix whose j-th diagonal enuy is equal to &, (si 
being the SD pair associated with the j-th component of A ( k ) ) .  
This definition allows the possibility to  have different (:,(I;) 
values for dificrent SD pairs. In addition. we have an exua 
multiplicative factor fi in (9) compared to the standard 
SA. This is due to the projection of zs(A:) + c s ( k ) A s ( k )  
to 0, for all s t S using L2 projection while calculating 
i 3 ( k ) .  This is explained in the Appendix in details. Finally, 

, Same statistical accuracy the Same of ~*i te ra~ons- ,  ifne, l:c,(k)+c,s(k)A,(k)l = : ~ : . ( k ) .  the SD pair draws a new 

,n times fewer function evaluations 

especially i f  the meaSuIementS are costly 

at hand measuremenls require 
for the optimal 

This result can be Dromisinn in the sense that the algorithm As(k)  until :1:3(k1 # n(3s [ :us (k )  +G(k)As(k) l .  



Note that SD pairs may have different step sizes u 3 ( k )  for 
a given iteration. This brings about a level of asynchronism 
between S i 3  pairs in the sense that SU pairs can independently 
respond to the dynamics of the network. ' Hnwever. we assume 
that SD pairs update their rates once every iteration after they 
start running the algorithm. This assumption makes Sense since 
at each iteration SD pairs should make use of the mcsnitoring 
information that is already available. This is. however. nnt  to 
say that the updates take place simultaneously. The emor due 
to  this asychronism is assumed to he absorbed into the error 

terms /c,;(k) in (9). 
For the optimality of the new algorithm. we need to show 

( 8 )  converges to the same point z: as (7) for all SD pairs. For 
this. we iise the following result of [IS] for the standard SA 
algorithm: 

+ 

Proposition 3.1: Suppose CL, n ( k )  = w. If . C(:i:(k)) is differentiable for each : c (k )  E 0. and either 
convex or unimodal. . b ( k )  - 0 w. p. 1. and . cy=, E [ < ( k ) T : ( k ) ] . ' ( k )  < c4 w. p. I: 

then : c ( k )  - z* with probability 1. where b ( k )  and ,:(k) are 
defined as 

b(k )=E[g(k ) l z ( k ) ]  - VC"(%(k)) (10) 
< ( k ) = f j ( k )  - E [ j ( k ) / z ( k ) ]  (11) 

For the convergence of the algorithm we assume that the 
following conditions are true: 
A I .  C(z ( k ) )  is differentiable for each ~ ( k )  E 0. arid either 

convex or unimodal. 
A?. &(k) are (i) mutually independent with zero mean 

for all s E S and i E P,. (ii) uniformly bounded by 
Some finite constant a. and (iii) independent of (:I:(/)> / = 
0: 1 : .  . . ~ k ) .  ,!?[(48.i(1:))-2] are bounded for all 1:. 

A3. E[p,$')2(k)] are bounded and E [ p t ( k )  - 
bb; (k ) lA(k ) :F~]  = 0 a. s. lor all k ,  where 
Fk (:~(O),z(l);-. : : c ( k ) }  or the U-field generated 

A4. E"' k = l m  "") < cm and (s) = O( 1) for all s: s' E S. 
A5. There exists a positive constant M such that 

by {:.io), . . . ~ . ( k ) } .  
2 

for all s .  s' E S and for all k .  
A6. Let o ( k )  = iiiaxStS ns(k). Then. for all s E 5 

and 

'Fur j n s ~ m c ~ .  this formulalion TOYSTS thc case where SD pairs sliirt lunniqe 
the algorithm a i  different times. 

~ 
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Proyosirion 2.2: lJnder Assumptions AI - A6. the sequence 
: c ( k )  = ( : c S ( k ) : s  E S) generated by the algorithm dclined by 
(8) converges to :I:* with probability 1. regardless of the initiaI 
vector (2:s(n):s E S). 

The proof of the Proposition 3.2 is given in 
Appendix. 

Note that in our model each SD pair runs the algorithm 
independently in a distributed fashion. 

B. Meas~tr~ramt process 

In this section. we provide the details of the measurement 
process and ils effect nn the overall performance of the pro- 
posed algorithm. We will also point out benefits of SPSA based 
algorithms over the FDSA alternatives. 

As we mentioned earlier. the Simultaneous Perturbation idea 
allows us to  estimate a 111 x 1 gradient vector by only two 
measurements while the Finite Differences method requires 
i n  + 1 for one-sided and 2ni for two-sided measurements. When 
we consider the routing problem. this result suggests that an 
SD pair can simultaneously perturb all of its paths if an SPSA 
based algorithm is employed. However. by definition. an FDSA 
based optimal algorithm requires an SD pair to prrturb these 
paths one at a time. 

For the same reason. FDSA based algorithms necessitate that 
each SD pair should start doing measurements (i.e.. perturb its 
paths) at different times. As mentioned in [4]. this requires a 
special coordination protocol and limits the independence of 
actions made by SD pairs. Besides. it creates an additional 
traffic load (i.e., overhead) to the network. On the other hand. 
once again the theory o i  SPSA enables simultaneous operation 
of SD pairs due to the following reason. Since the perturbations 
( ~ ( k ) A ~ ( k ) )  made by SD pairs are all zero mean. the effect 
of SD pairs to each other can effectively be modeled as a 
zero mean noise. In other words, when different S D  pairs 
that are sharing common links do measurements simultane- 
ously. they will create an additional noise term to each other. 
However. from Proposition 3.1 and Proposition 3.2. we know 
that the convergence of the overall algorithm is valid under 
these conditions. Due to this reason. we have the important 
flexibility to allow SD pairs ti) operate i n  a totally independent 
fashion so that each SD pair can freely perturh its paths. As 
a consequence. a potential overhead that would be caused by 
the coordination protocols is eliminated. Furthermore. we can 
significantly reduce the time spent on the meaurement process 
by simply overlapping these measurements. So. we can achieve 
a much faster convergence with respect to an FDSA alternative. 
since we effectively reduce the time between iterations by 
overlapping measurements while the accuracy of each iteration 
remains approximately the same as discussed earlier. 

Here we would like to note that even though the simultaneous 
operation of SD pairs is beneficial to the convergence process. 
on a given sample path that the algorithm follows it may 
increase the magnitude of the overall error term observed during 
the measurements, In that case. it may actually slow down the 
convcrgence temporarily especially when the sign of one or 
more component of the gradient is inverted due to high amount 
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of noise. However. since the additional noise term due to this 
simul~aneous operation is zero mean. on the average there is 
no effect on the convergence process. 

Moreover. one can still improve the performance observed 
on a givcn sample path by making simple modifications to 
the base algorithm as we explain below. Let us first give an 
example to illustrate how the sign of the gradient can be 
inverted by simultaneous operation of SD pairs. Suppose an 
SD pair s has a path passing through a bottleneck link '. 
which is also shared by some two other SD pairs. Suppose 
also that s increases the amount of load it is sending on 
this path as a result of a random perturbation made by the 
gradient estimation process. At the same time. i t  is possible 
that the other two SD pairs decrease their corresponding path 
rates and ultimately the overall effect may be a decrease in 
the cost of the bottleneck link. Under these conditions, SD 
pair s will possibly observe a decrease in the overall.cost 
although it increases its rate over the bottleneck link. This 
may result in an erroneous decision in the next iteration and 
slows the convergence prwess as a result. However. with simple 
modifications using problem specific information that is already 
available at the source nodes, the adverse effects of this noise 
term can he eliminated. Specifically, by taking the current state 
of the paths into consideration. a source node can double check 
the decisions made at the current iteration using the information 
i t  already has and avoid taking erroneous actions like the one 
given in the example above. Particularly. the existence of the 
following conditions are checked by the source nodes at each 
iteration: 

An SD pair s tries to increase the load of a path that is 
already realizing drops. 
An SD pair s tries to increase/decrease the utilization of a 
path. which is already the highest/lowest utilization path. . An SD pair s tries to increasekiecrease the load of a 
path. whose utilization level is closer to highestAowest 
utilization path than to the IowesWhighest utilization path. 

Whenever such a situation is detected'. the algorithm simply 
ignores the calculated iterate values and continues to use old 
rates ( i f . ,  : c , , i ( k  + 1) = : ~ ~ ~ ~ ( k ) ) .  As a result; we limit the 
possible adverse effects of the simultaneous perturbation where 
the sign of an entry in the gradient vector is estimated wrongly. 
On the other hand. when the sign of the entries of the estimated 
gradient vector does not change. the projection algorithm will 
still be working in the negative derivative direction. Conse- 
quently. we still get closer to the neighborhood of the optimal 
operating point though it may be with a slower rate under 
certain cases compared to the noiseless case. 

Considering these facts. we can intuitively say that the 
performance of the algorithm improves with this modification. 
Although a formal treatment of the convergence rate of the 

JWe ilssunie that n hottlensck link hna an m i v d  rate that lends to hc greater 
thao its depmurz rate. 

'Some of the mnditmns given u h v c  arz valid spdcilically for netwwks 
having links with equal capacities and paths with equal p t h  Isngths. Howzvcr. 
siMlar conditions a n  easily he dclincd for more general nztwwk settings. 

proposed algoriihm is required before drawing any definitive 
conclusions about the behavior of the algorithm. simulation 
results presented in Section V show that the optimal routing 
scheme clearly outperforms the algorithm suggested in [41. 

Another issue regarding the measurement process is the 
effects ol  asynchronous operation of SD pairs. It is proved in 
[41 that. with increasing asynchronism. the convergence process 
gets slowcr. In other words, this result suggests that the larger 
the value of t o  gets, the slower will be the convergence. where 
t o  is defined to he maximum time lag between the iterate 
point ( r ( t ) )  and time when the measurements are taken (:c(t - 
t o ) ) .  On the other hand, in the SPSA case as asynchronism 
between the SD pairs increases. the magnitude of the error 
term in measurements gets smaller since the time that the 
measurements overlap with each other gets shorter and this 
may cause a marginal performance increase on the overall 
system with increased asynchronism. Considering these two 
effects of asynchronism. we can say that there exists a trade-off 
between the benetils gained by nverlapping the measurements 
and benefits of having relatively less noisy measurements. As 
we will see in Section V_ up to a certain level of asynchronism 
both effects mainly cancel each other and the performance 
of the algorithm does not change. When the asynchronism 
increases further. i t  turns out that to is dominant over the 
benefits of less noisy measurements and the convergence starts 
to get slower. 

When we look to the F'DSA case, it is hard to discuss 
asynchronism since we need a certain level of coordination 
hetween SD pairs so that each SD pair does measurements 
( i.e., perturb its paths) at different times. However. the time 
lag between the iterate point ( ~ ( t . ) )  and time when the earliest 
measurement is taken ( ~ ( t  - t o ) )  can be assumed as a source of 
asynchronism according 10 the definition o f t o  given in [4]. This 
is because a large to  can force source nodes to use outdated 
measurement information considering the dynamic nature of 
networks. Consequently. this means the convergence should he 
slower in the F'DSA case when compared to SPSA not only 
because the time between iterate points is longer than SPSA. but 
also it forces the system to use more outdated information. ( A  
critical issue is that there is no formal guarantee of convergence 
when the measurements made in FDSA overlap in time and 
therelore i t  is not possible to minimize the size o f t o  by partially 
overlapping measurements in time.) 

C. Cos1 Fimction 
The requirements on the cost iunction are stated in Proposi- 

tion 3.1. Selecting the link cost function in the following form 
is sufficient to satisfy these conditions: 

where. d,(l) is the number of packets dropped on link 1 during 
the (t. t+l) period and u i ( t )  is the link utilization level at the 
same time period. 

The arrival process at a source node is an aggregate process 
of many individual flows. We assume that each individual How 
generates packets according to m equilibrium renewal process. 
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i.r.. interarrival times of packets from a How have B fixed dis- 
tribution. and these equilibrium renewal processes are mutually 
independent. 'Then, by the Palm-Khintchine theorem 1191. the 
superpnsition of these independent renewal processes can be 
approximated by a Poisson process. where interarrival times of 
packets are exponentially distributed. 

In addition. according to the work presented i n  1201. there 
exists two peaks at SO0 and 1500 hytes in the packet size 
distribution of Internet traffic. Using this result. we can roughly 
model the packet size distribution as a Bernoulli random 
variable with values at SO0 and I500 hytes. 

Under the conditions above. we can approximate the links in 
the network as !If/G/l/K queues. Following this assumption 
we can justify the assumption on convexity of the cost function 
as follows. One can check that in the regime of interest (e.,?., 
with utilization level being less than IS0 percent). the link cost 
function is convex in the case of i I~ l / i~~l / l /K queue. In the 
case of ! \~llG/l/ l i  queue one can show that the approximation 
iunctions for blocking probability of an Af/G'/1/X queue. 
(e .g . .  Gelenbe's formula [? 11 and two-moment approximation in 
1221). are indeed convex in the regime of interest under various 
parameter settings. 

IV. IMPLEMENTATION ISSUES 
In this section. we present a new overlay architecture to 

provide traffic engineering capab es. Here. we will give a 
brief overview of the architecture. lhe dctails of the overlay 
architecture can be found in [71. 

A. Putlr Establishinent 
Alternative paths between SD pairs are created using over- 

lay nodes. The overlay nodes are located at all the source- 
destination nodes as well as at some core nodes. The idea 
is similar to the ones presented i n  1231 and [?4], with the 
difference that the overlaying is done intra-domain as opposed 
to inter-domain. When a packet is sent along the shortest path, 
it will be forwarded in the same way as the traditional IP 
networks. On the other hand. if the packet is to be sent through 
an alternative path. i t  will be processed at the source overlay 
node'and an additional IP header will be attached to  the packet. 
This way the packet can be forwarded ti) a carefully placed 
overlay node that is lying along the particular alternative path. 
As soon as this overlay node gets the packet. it removes thc 
outer IP header and forwards the packet to the tinal destination 
(or possibly to another overlay node). By this methodology. one 
can utilize as many alternative paths as needed. Note that using 
this &hilecture. we can still employ the simple shortest path 
routing inside the network. This allows us to use the existing 
traditional routers without any modification. The overlaying 
capabilities can be realized by attaching a simple device (e.g.. a 
PC or a network processor) to the existing routers. This device 
simply processes the packets. adds or removes IP headers 
before the hasic forwarding operation is made at the routers. 

As a final remark. we would like to emphasize the point that 
the proposed optimal routing algorithm does not necessitate 
the use of the overlaying architecture. For instance. i t  can alsc 

Fig. 1. Network T o p l o ~ y  I 

he employed in an MPLS based network. where the overlay 
paths are replaced with LSPs (Label Switched Paths). The 
use of nverlaying architecture actually gives us the additional 
opportunity to use the proposed algorithm in thc traditional IP- 
based networks. 

B. Tructfic Monitoring 
Traffic monitoring is also handled by the overlay architecture. 

Each link in the network.is mapped to the closest overlay node 
with a certain tie-breaking rule that gives a unique mapping 
[7]. Overlay nodes periodically poll the links that they are 
responsible for. process the data and forward necessary local 
state information to the SD pairs utilizing the corresponding 
links in a coordinated way. (Note that this way the links are 
not required to be probed by each SD pair.) While sending the 
information to a source node of a specific SD pair. the overlay 
nodes also aggregate the information gathered from different 
links as much as possible. Far instance. the cost information 
obtained from the links that are on a particular path of an SD 
pair s are aggregated hy the overlay nodes, using the fact that 
the cost structure is additive according to the definition given in 
( 3 ) .  As a consequence. the overhead caused by the distribution 
of the link state information is minimized. 

C. Truflc Filtering 
For QoS purposes, special care should be given while split- 

ting the traffic at the source nodes. Specifically. one should 
avoid the well-known reordering problems especially for the 
TCP traffic. The nptimal routing algorithm proposed in this 
paper does not require and specify how a particular packet 
should be routed along the network. Instead. it calculates 
the rates at which the traffic should be distributed dong the 
alternative paths between SD pairs. Therefore. any existing 
filtering scheme that minimizes the reordering problem can be 
used for this purpose. A possible solution is presented in L41 
that depends on the use of hash-functions. 

V. EXPERIMENTAL SETUP A N D  SIMULATION RESULTS 
The purpose of this section is to identify the characteristics 

of the proposed routing algorithm and evaluate its performance 
under various networkrng conditions. Using simulations. we 
would like to verify that the algorithm is stable and robust in 
such a way that i t  minimizes congestion and quickly halances 
the load among multiple-paths between SD pairs in a reasonable 
period of  time. 
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Fig. 2. Network topology 1 with an offset of 50 tiis 

Fig. 3. Network t o p h q y  I with an offsil of 50 nw 

I 15m 

In all simulations, the period of link state measurements is 
selected .w one second. As a consequence. SD pairs can update 
their rates at hest approximately every two seconds since we 
require two measurements for estimating the gradient vector 
according to the SPSA. 

Experiments are simulated under two network topologies. 
The first topology, which is horrowed from [4] is given in 
Figure 1. This topology allows us to obtain insights ahout 
the fundamental behavior of the proposed algorithm due its 
simplicity. In addition, it serves us as a base setup s o  that we 
can make a comparison with the MATE algorithm presented 
in [4]. We have threc SD pairs (SI-Dl. S2-D2 and S3-D3) 
and each pair has two distinct palhs. Note that this creates a 
considerable amount of interaction hetween these SD pairs. 

The network consists of identical links with a handwidth of 
45 Mhps. Packet size is given as 257 hytes. Each pair initially 
uses only the default shortest (minimum hop distance) path. 
Since all paths have equal length. the default min-hop paths 

120 'r- 

F q .  a. Network topology I with an offsol of 200 m 

2o t i 

Fig. 5. Nctwork loplopy I with an offset of 500 nis 

we selected such that L2 is along the default shortest path 
of S1-D1, while the default shortest paths of S2-D2 and S3- 
D3 both Uavcrse L3. Each SD pair generates a 19.8 Mbps 
(corresponding to 0.44 link utilization) Poisson traffic on thc 
average. In addition. L I ,  L2 and L3 carry uncontrolled cross 
traffic. The cross tralfic dynamics is given in Tahle 1. 'This setup 
is effectively the same as the one given in [4]. (See [25] for the 
details o l  this setup.) A random delay is introduced hefore each 
SD pair starts running the optimal routing algorithm to guaran- 
tee that Lhe SD pairs are not synchronized. (The maximum value 
of this random delay is defined as offset.) As shown in Figures 
2 and 3. the algorithm quickly eliminaks the congestion and 
successfully balances the traffic in a short time. Moreover. these 
results show that the proposed algorithm clearly outperforms 
the MATE algorithm. While MATE requires around 400-5011' 

'Since simulation code and packet size distributions for the M A E  aleorithm 
is propnelarp it  was no1 possiblz lo simulate MA=. 7hsrsforz. wc base ow 
comparison on the results przsentcd in [a). 
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TABLE I 
THE CROSS TRAFFIC DYS.AIllCS 

Z I  / /  0.77 1 0.44 

- - 

- Load Distribution in  time (sec) 
10 - l00O)l 11000 - '2iIJ0)l 12500 - 3800) 

Link 

0.44 
L' 
LY 

0 . 3 3  0 .33  0.lii 
0.33 0.33 0.:33 - 

seconds to converge. it takes around 200 seconds6 in the case 
of the proposed algorithm. Besides. the proposed algorithm 
quickly (around 50 seconds) clears out the packet drops unlike 
MATE. ( See Figures 10 and I I presented in [4].) 

Figures 4 and 5 illustrates the effect o f  increased asynchro- 
nism between SD pairs. We increase the asynchronism hetween 
SD pairs by simply increasing the offset value. From both 
graphs we can conclude that the algorithm is still able to 
converge in a short time. As we see from Figures 2 and 4. the 
performance is almost the same for offset values 50 ms and 
200 ms. However. when we increase the oiiset to 500 ms. we 
see that the convergence o f  the proposed algorithm gets slightly 
slower. Thus. these results validate the earlier discussion made 
in Section 111-8. 

Figure 6 represents the second topology we consider in this 
paper. This topology is also used in [261. [271 and considered 
to he typical of a large ISP's network. (This topology closely 
resembles the MCI Internet topology [281.) Using this topology. 
we intend to analyze the performance of the proposed algorithm 
under more realistic networking conditions. 

Nodes I. 5. 6 .  14 and 18 are both source and destination 
nodes. This gives us a total of 20 SD pairs. Each pliir has at 
least two paths to reach to destination. A total of 75 paths 
are created between these 20 SD pairs using overlaying archi- 
tecture. Overlay capability is available at all source/dsstination 
nodes as well as the nodes 2 .  10 and 13. In this experiment. 
the offset is set to 0.1 sec. The dashed links have a capacity 
of 50 Mbps. while solid links have 20 Mbps. The packet size 
for this scenario is selected as 500 bytes. All SD pairs initially 
use only the shortest paths. Each SD pair generates traftic with 
a rate of 11.5 Mhps. In addition. the cross traffic traverses the 
network on link (3-1'2) starting at simulation time 1600 sec. 
The cross traffic rite is I5 Mhps and cannot he shifted to any 
alternative paths as before. 

In Figure 7. we illustrate how the load is distributed after the 
algorithm starts. The links that we have plotted are selected in 
such a way that each of them is located on a different alternative 
path that can divert the traffic sent through link (3-12). The 
only exception is link (12-16). which demonstrates how the 
traffic load is migrated away from the paths that were traversing 
link (3-1'2). In addition. Figure 8 shows the totnl number of 

'%is pcdornlancz result is verified under sewral sample path:: created hy 
diffirznt random seeds. 

Fig. 6. Network Topology 2 
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Fig. 7. Offered Load on Nctwwk Topology 2 

Fig. 8. Total packet drops on Network Topology 2 
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packets droppcd in the entire network. We observe from both 
figures that the algorithm can rapidly eliminate congestion and 
distribute the load among the multiplc paths between the SD 
pairs. Thk result is encouraging in the sense that the proposed 
algorithm converges in reasonable time scales even under the 
cases where many SD pairs have independent and asynchronous 
operation. 

VI .  CoNcLusloN 

In this paper, we have focused on the optimal multi-path 
routing problem where the link cost derivatives can only be 
estimated but cannot be calculated analytically. We mathemat- 
ically proved the optimalily and stability of the proposed algo- 
rithm. We have applied the technique of SPSA. which offers 
significant benefits over traditional finite-difference methods. 
This way we obtained much shorter measurement times while 
estimating the gradient and as a result achieved a faster conver- 
gence. Simulation results show that the proposed algorithm can 
swiftly and effectively minimize the congestion and distribute 
traffic load efficiently under dynamic network conditions. Fi- 
nally, we have presented a new architecture to efiectively apply 
traffic engineering in IP Networks. A possible future work is 
the integration of the proposed algorithm with the Differentiated 
Services environment where there exist several traffic classes 
with different Quality of Service ( Q o S )  requirements. 
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APPENDIX 

In this section we provide a sketch of the proof of Proposi- 
tion 3.2. The complete proof of this can be found in [291. 

Proposition 3.1 (i.e. Proposition I of 1181) relies on Theorem 
5.3.1 of [30]. We will prove Proposition 3.2 by adapting the 
same theorem. First. note that given any N, x 1 vector 0. the 
solution of thc minimization problem 

miu 113 - 11l2 (13) 
4 

s. t. @ U  = 1'$ 

is given by 

07803-8355-9/04/$20.00 02004 BEE. 195 



where ( I  = [I. 1: . . . ~ Obviously. i f  4; 2 IJ for all i .  this 
solution is equivalerit to the LY pmiection. Here for the purpose 
of temporary perturbation we replace ( 5 )  with a non-negativity 
constraint. Thus. the prii,jection of :i:,?(k) + cS(k)A,*(k) can he 
calculated using (14) if  

Recall that A,. i (k)  is hounded by CI from Assumption A?. 
Hence. (15) holds if 

(16) 

From ( 5 )  we h o w  " ' i " J ( ~ ~ ( k ' }  2 &. Since. c s ( k )  - 0. 
there exists finite ICl such that c , ( k )  5 & for all k > Z i l .  

Therefore. (14) can he used to compute the prtjection of 
z , ( k )  + c s ( k ) A , ( k )  for sufficiently large k > l i l .  

Let us first detine the notation to he used in the proof. 
Let A s ( k )  he an N x 1 vector. where values of entries 
corresponding to those of SD pair s are A,.i(k) and zero 
otherwise. Hence. CStsA,(k)  = ( h , . ; : s  E 5': i E Ps). 
Similarly. as is an IV x 1 vector. where the values of entries 
corresponding to those of SD pair s are one and zero otherwise. 
Following the proof in [I?] and using Taylor's theorem: for 
k > Kl and s E S we have 

Therefore. one can see that b ( k )  - 0 with probability one. 
From the assumption that E[/if(k) - p;(k)lF,"] = 0 and 

using the independence of p $ ( k , )  and A s ( k ) .  we can hound 
the second moment of & ( k )  as follows: 

E K i s ~ ~ ( k ) ) ' 1  (17) 

Following a similar argument used above one can show 
that the tirst term in (17) is O(1) and the second term is 
O(c,(k)- ' ) .  using the hounds on k[(A,(k))']. E[(A,(k))- '] .  
and E[(p$(  k ) ) ' ] .  

Now as shown in [?Y]. the convergence of the algorithm can 
be proved hy adapting the proof of Theorem 5.3.1 of [30] under 
the assumptions A1-A6. 
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