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Abstract

The current trend in high performance and embedded computing consists
of designing increasingly complex heterogeneous hardware architectures with
non-uniform communication resources. In order to take hardware and software
design decisions, early evaluations of the system non-functional properties are
needed. These evaluations of system efficiency require high-level information
on both the algorithms and the architecture. In state of the art Model Driven
Engineering (MDE) methods, different communities have developed custom ar-
chitecture models associated to languages of substantial complexity. This fact
contrasts with Models of Computation (MoCs) that provide abstract represen-
tations of an algorithm behavior as well as tool interoperability.

In this report, we define the notion of Model of Architecture (MoA) and study
the combination of a MoC and an MoA to provide a design space exploration
environment for the study of the algorithmic and architectural choices. An
MoA provides reproducible cost computation for evaluating the efficiency of a
system. A new MoA called Linear System-Level Architecture Model (LSLA) is
introduced and compared to state of the art models. LSLA aims at representing
hardware efficiency with a linear model. The computed cost results from the
mapping of an application, represented by a model conforming a MoC on an
architecture represented by a model conforming an MoA. The cost is composed
of a processing-related part and a communication-related part. It is an abstract
scalar value to be minimized and can represent any non-functional requirement
of a system such as memory, energy, throughput or latency.



1 Introduction

In the 1990s, models of parallel computation such as the ones over-viewed by
Maggs et al in [1] were designed to represent a global system including hard-
ware and software-related features. Since the early 2000s, rapid prototyping
initiatives such as the Algorithm-Architecture Matching (AAA) methodology
[2] have fostered the separation of algorithm and architecture models in order
to automate design space exploration.

Models of Computation (MoCs) and especially dataflow MoCs are currently
gaining popularity for the design of stream processing systems [3]. Their popu-
larity is due to the capacity of dataflow MoCs to model a parallel application and
to guarantee (under certain conditions) functional properties such as deadlock-
freeness and memory boundedness while ignoring hardware concerns (type and
instruction set of the processing elements, number of available processing ele-
ments, etc...).

Simplifying the design of distributed systems is an important objective due
to the widening software and hardware productivity gaps [4] that reveal the
constantly increasing costs of system design and programming.

Modern hardware processing systems are a combination of non-equivalent
processing and communication resources, referred to as heterogeneous Multi-
processor Systems-on-Chips (MPSoCs). The design and programming costs of
heterogeneous MPSoCs is constantly rising, because the improvement of pro-
gramming efficiency is slower than the increase of system complexity. In MP-
SoCs, different sources of heterogeneity arise such as:

• Different types of processing units. As an example, Texas Instruments
Keystone II processors [5] embed GPP and DSP cores as well as hardware
coprocessors. As another extreme example, the Xilinx Ultrascale MPSoC
architecture [6] embeds on a single die microcontrollers, GPPs, GPUs and
programmable logic.

• Non Uniform Memory Access (NUMA). For instance, Intel Haswell General
Purpose Processors (GPPs) have 4 levels of cache.

• Different types of interprocessor communication (IPC). As an exam-
ple, Kalray MPPA many-core processors [7] embed clusters with internal
shared memory that communicate with each other through a Network-on-
Chip (NoC).

MPSoCs are designed to address a large range of applications, for instance
in the telecommunication, military, multimedia and spatial domains. As a con-
sequence, the topologies of these processors and their parallelism differ from the
topology and parallelism of the applications they execute. A unique MoC model
is thus unable to represent the properties of an application and the resources of
the hardware platform.

In this report, the notion of Model of Architecture (MoA) is introduced. A
parallel is drawn between dataflow Models of Computation and MoAs. The main
goal of an MoA is to offer standard, reproducible ways to evaluate the efficiency
of design decisions. One may note a difference between system performance and
system efficiency. In computer science, and considering an application alone,
performance is often a synonym of throughput [8][9]. However, system design
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requires decisions based on many non-functional costs such as memory, energy,
throughput, latency, or area. These costs can be seen as the different modalities
of a system’s efficiency. In order to evaluate these non-functional costs, an MoA
models the internal behavior of an architecture at a high level of abstraction.
The MoA provides an unequivocal cost metric computation for a given non-
functional cost category.

Modern streaming applications such as telecommunication processing, video
processing or deep learning, require an ever greater amount of computation. An
early evaluation of the system efficiency is a valuable tool for system designers,
as demonstrated by company products such as Poly-Platform from PolyCore
Software, Inc. [10], SLX Explorer from Silexica [11] or Pareon from Vector
Fabrics [12] whose objectives include providing feedback to the designer some
early performance numbers. These tools have internal performance models but
no standard approach is shared between them.

MoAs complement the work on MoCs in providing precise semantics for
the second input of the Y-chart [13]. The Y-chart separates the description
of an application from the one of an architecture, as illustrated in Figure 1
where algorithm descriptions, conforming to a precise MoC are combined with
architecture descriptions conforming to an MoA.

Model of ArchitectureModel ofComputation Algorithm Architecture

Mapper and Simulator

efficiency metrics

conform to conform to

redesign redesign

Figure 1: MoC and MoA int the Y-chart [13].

The report is organized as follows: Section 2 presents a static and a dynamic
dataflow MoCs, as well as the Bulk Synchronous Parallel (BSP) MoC for parallel
computation. These models have inspired the idea of MoA by their simplicity
and expressiveness. Section 3 introduces the notion of MoA and Section 4
proposes a new MoA named LSLA. Section 5 presents a discussion on related
works and Section 6 demonstrates the cost computation from algorithm and
architecture models. Finally, Section 7 concludes the report.

2 State of the art of MoCs

As illustrated in Figure 1, the objective of this report is to sketch the contours
of MoAs as the architectural counterparts of MoCs. This section introduces a
few MoCs that will be used in Section 6 to demonstrate the cost computing
capabilities of the proposed LSLA MoA.

Many Models of Computation have been designed in recent decades to rep-
resent with a high level of abstraction the behavior of a system. The Ptolemy
II project [14] from the University of California Berkeley has had a considerable
influence in promoting MoCs with precise semantics and different forms.

Different families of MoCs exist such as finite state machines, discrete events,
process networks, petri nets, synchronous MoCs and functional MoCs [15]. This
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report leverages on both dataflow MoCs and the BSP MoC for their capacity to
represent a parallel computation. Any MoC which activity can be decomposed
into processing and communication tokens (defined in Section 4) can be used
with the LSLA MoA proposed in this report. Section 2.1 presents a static and
a dynamic dataflow models while Section 2.2 introduces the BSP MoC.

2.1 Dataflow MoCs

Dataflow MoCs constitute an important class of MoCs targeting the modeling of
streaming applications. Dozens of different dataflow MoCs have been explored
[16] and this diversity of MoCs demonstrates the benefit of precise semantics
and reduced model complexity.

A dataflow MoC represents an application behavior with a graph where
vertices, named actors, represent computation and exchange data through First
In, First Out data queues (FIFOs). The unitary exchanged data is called a data
token. Computation is triggered when the data present on the input FIFOs of
an actor respect its firing rules. Dataflow MoCs are suitable for representing
streaming applications, i.e. applications that process a stream of ordered data.

In order to draw a parallel between Models of Computation and Models
of Architecture, two examples of dataflow MoCs, namely SDF and CFDF, are
presented in this section and their benefits for system design are discussed.

The Synchronous Dataflow (SDF) MoC

SDF [17] is certainly the most commonly used Dataflow Process Network (DPN)
MoC [18]. SDF has a limited expressivity and an extended analyzability. Pro-
duction and consumption token rates set by firing rules are fixed scalars in an
SDF graph and for that reason, SDF is commonly called a static dataflow MoC.

Static analysis can be applied on an SDF graph to determine whether or not
fundamental consistency and schedulability properties hold. Such properties,
when they are satisfied, ensure that an SDF graph can be implemented with
deadlock-free execution and FIFO memory boundedness (assuming that suffi-
cient memory is available on the target platform to satisfy the available memory
bounds).

For an SDF actor, a fixed, positive-integer-valued data rate is specified for
each port by the function rate : P in

data ∪ P out
data → N∗ where P in

data is the set of
all input ports for an actor and P out

data is the set of all output ports for an actor.
These rates correspond to the fixed firing rules of an SDF actor, i.e. the data
pattern firing actor execution. A delay d : F → N is set for each FIFO in the
FIFO set F , corresponding to a number of tokens initially present in the FIFO.
The lower represented FIFO in Figure 2 holds for instance 4 tokens of delay.

A Actor

FIFO

Port name
and rate A Bp: 1 p: 1

pi: 2

fi: 4 fo: 4

Cpo: 6
p: 3

*4*4
Delay and
number of tokens

Figure 2: Example of an SDF Graph.

If an SDF graph is consistent and schedulable, a fixed sequence of actor
firings can be repeated indefinitely to execute the graph, and there is a well
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defined concept of a minimal sequence for achieving an indefinite execution with
bounded memory. Such a minimal sequence is called graph iteration and the
number of firings of each actor in this sequence is given by the graph Repetition
Vector (RV).

Graph consistency means that no FIFO accumulates tokens indefinitely when
the graph is executed (preventing FIFO overflow). Consistency can be proven
by verifying that the graph topology matrix has a non-zero vector in its null
space [17]. When such a vector exists, it gives the RV for the graph. The
topology of an SDF graph characterizes actor interconnections as well as token
production and consumption rates on each FIFO. A graph is schedulable if and
only if it is consistent and has enough initial tokens to execute the first graph
iteration (preventing deadlocks by FIFO underflow).

The notion of graph iteration will be used to compute the cost of mapping an
SDF algorithm model on an LSLA architecture model in Section 6.1. The com-
bination of the SDF MoC and the LSLA MoA to compute an implementation
efficiency will be discussed in Section 6.1.

The Enable-Invoke Dataflow (EIDF) and Core Functional Dataflow
(CFDF) MoCs

EIDF is a highly expressive form of DPN that is useful as a common basis for
representing, implementing, and analyzing a wide variety of specialized dataflow
MoCs [19, 20]. While such specialized models, such as SDF [17] (Section 2.1) and
Cyclo-Static Dataflow (CSDF) [21], are useful for exploiting specific character-
istics of targeted application domains (e.g., see [22]), the more flexibly-oriented
MoC EIDF is useful for integrating and interfacing different forms of dataflow,
and providing tool support that spans heterogeneous application areas, subsys-
tems, or target platforms. At the same time, EIDF is a generalization of SDF
and CSDF, so that techniques for these popular decidable dataflow models (e.g.,
see [23]) can be applied seamlessly within an EIDF framework.

In EIDF, the behavior of an actor is decomposed into a set of mutually ex-
clusive actor modes such that each actor firing operates according to a given
mode, and at the end of each actor firing, the actor determines a set called the
next mode set, which specifies the set of possible modes according to which the
next actor firing can execute. The dataflow behavior (production or consump-
tion rate) for each actor port is constant for a given actor mode. However, the
dataflow behavior for the same port can be different for different modes of the
same actor, which allows for specification of dynamic dataflow behavior. EIDF
can be qualified as a dynamic dataflow MoC.

An EIDF graph G = (A,F ) contains a set of actors A that are interconnected
by a set of FIFOs F . An actor a ∈ A comprises a set of data ports (P in

data , P
out
data)

where P in
data and P out

data respectively refer to a set of data input and output
ports, used as anchors for FIFO connections. Functions src : F → P out

data and
snk : F → P in

data associate source and sink ports to a given FIFO.
In this report, we focus on a restricted form of EIDF that is particularly

useful in the modeling of signal processing systems. This restricted form, called
core functional dataflow (CFDF), requires that the next mode set that emerges
from any actor firing contain exactly one element [19]. This restriction is im-
portant in ensuring determinacy. The unique element (actor mode) within the
next mode set of a CFDF actor firing is referred to as the next mode associated
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with the firing.
Dataflow attributes of a CFDF actor can be characterized by a CFDF

dataflow table. The rows of the dataflow table correspond to the different actor
modes, and the columns correspond to the different actor ports. Thus, an actor
with nm modes and np ports has a dataflow table with dimensions nm × np.
Given a CFDF actor A, we denote the dataflow table for A by TA. If m is a
mode of A and p is an input port of A, then TA[m][p] = −κ(m, p), where κ(m, p)
denotes the number of tokens consumed from p in mode m. Similarly, if q is an
output port of A, then TA[m][q] = ρ(m, q), where ρ(m, q) represents the number
of tokens produced onto q in mode m. Recall from the definition of EIDF, that
κ(m, p) and ρ(m, q) are constant values (independent of the data values that
are consumed or produced during execution of the mode).

A Actor

FIFO

X YPort:p1

Port:p2

(a) Example of a CFDF graph.

(b) Dataflow table for actor X. (c) Dataflow table for actor Y.

(d) Mode transition graph for
actor X.

(e) Mode transition graph for
actor Y.

Figure 3: Dataflow attributes of CFDF.

Figure 3a shows a simple example of a CFDF graph with two actors X and
Y . Examples of dataflow tables for these actors are illustrated in Figure 3b and
Figure 3c, respectively.

Mode transition behavior for a CFDF actor can be graphically represented by
a mode transition graph. Given a CFDF actor A, the mode transition graph for
A, denoted MTG(A) is a directed graph in which the vertices are in one-to-one
correspondence with the modes of A. The edge set of MTG(A) can be expressed
as {(x, y) ∈ VA × VA | y ∈ µA(x)}, where VA represents the set of vertices in
MTG(A), and µA(x) is the set of possible next modes for actor x. Note that
while production and consumption rates for CFDF actor modes cannot be data-
dependent, the next mode can be data-dependent, and therefore, µA(x) can in
general have any positive number of elements up to the total number of modes
in A.

Figure 3d and Figure 3e illustrate examples of mode transition graphs for
the actors X and Y in the CFDF graph example of Figure 3a, respectively. The
notation M(a, b) in these figures represents the mode labeled b for the actor a.
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For example, from Figure 3d, we see that µX(1) = {2}, and µX(2) = {1, 2}.
The developments of this report can be extended to incorporate concepts of

parameterized sets of modes (PSMs), which facilitate the efficient management of
related groups of modes in a given CFDF graph [24]. Developing such extensions
is a useful direction for future work. The combination of the CFDF MoC and
the LSLA MoA to compute an implementation efficiency will be discussed in
Section 6.2.

2.2 The Bulk Synchronous Parallel MoC

Another example of a MoC for parallel computation is the Bulk Synchronous
Parallel (BSP) [25] MoC. BSP analyzes an application into several phases called
supersteps. A BSP computation is composed of a set of components A — we
will call them agents in this report to distinguish them from the Processing
Elements (PEs) in an MoA. Each agent α ∈ A has its own memory. An agent
α can access the memory of another agent β through a remote access (message)
r(α, β) via a so-called router. The computation execution happens in a series
of supersteps indexed by σ ∈ N and consisting of processing efforts, remote
accesses and a global synchronization s(σ). An example of a BSP algorithm
model is illustrated in Figure 4.

α Agent
α β γ δ ε

Memory

Router

time

Remote
access

Superstep

α1

β1

γ1
δ1

ε1

α2
β2

γ2
δ2

ε2

α3

β3

γ3

δ3

ε3

α1
Firing of A in
superstep 1

Synchronization

Figure 4: Example of a BSP Representation.

Each agent α executes the processing effort ασ during the superstep σ. The
processing effort ασ requires a time w(ασ) ∈ N to be processed. During the
superstep σ, an agent sends or receives at most hσ remote accesses, each access
transferring one atomic data from one agent to another. A barrier synchroniza-
tion follows each superstep, ensuring global temporal coherency before starting
the next superstep σ + 1.
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BSP provides a time performance evaluation for a superstep. A lower bound
for the time of a BSP superstep is computed by:

Tσ = max
0≤α<card(A)

w(ασ) + hσ × g + s (1)

where card(A) is the number of agents, w(ασ) is the time of the processing
effort of agent α during superstep σ, hσ is the maximum number of remote
transfers sent and received by a single agent in superstep σ, g is the time to
execute one atomic remote transfer, and s is a fixed time cost associated to the
synchronization. A superstep has a discrete length n×L with n ∈ N and L the
minimal period of synchronization. The smaller L is chosen, the closer from the
lower bound Tσ the superstep time results.

This cost computation is limited to latency computation and assumes that
communication costs for an agent are additive and that synchronization has
a fixed cost. The combination of the BSP MoC and the LSLA MoA will be
explained in Section 6.3. Combining the BSP MoC with different MoAs opens
new opportunities in terms of agent merging and efficiency computation when
compared to using BSP alone.

2.3 Benefits Offered by MoCs

In a CFDF dynamic representation, a conditional if statement can be repre-
sented by using a parameterized mode and executing the statement in the cor-
responding actor firing. In a static SDF representation, a conditional statement
cannot be represented at graph level and the amount of data flowing between
actors is constant over time. In a BSP representation, inter-core synchronization
been designed to scale up to thousands or millions of processing cores. Depend-
ing on the complexity and constraints of the modeled application, a simple SDF
representation or a more complex EIDF or BSP representation can be chosen.

MoCs offer abstract representations of applications at different levels of ab-
straction. They can be used for early system studies or system functional verifi-
cation. MoCs simplify the study of a system and, since they do not depend on a
particular syntax, they offer advanced interoperability to the tools manipulating
them.

MoCs, by nature, do not carry hardware related information such as resource
limitations and hardware efficiency. In this report, we propose the concept of
MoA to complement MoCs in the process of design space exploration.

3 Definition of Models of Architecture (MoAs)

Definition 1. A Model of Architecture (MoA) is an abstract efficiency
model of a system architecture that provides a unique, reproducible cost com-
putation, unequivocally assessing a hardware efficiency cost when processing an
application described with a specified MoC.

As explained by Box and Draper [26], “all models are wrong, but some are
useful”. An MoA does not need to reflect the real hardware architecture of
the system. It only aims to represent its efficiency at a coarse grain. As an
example, a complete cluster of processors in a many-core architecture may be
represented by a single Processing Element (PE) in its MoA representation,
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hiding the internal structure of this PE. As another example, the resources
offered by a partially loaded PE can be represented in an MoA by a lower
performing processing element.

MoAs are intended to be used at a high level of abstraction where hardware,
operating system and middleware may be abstracted together. MoAs can be
used at all stages of the system design process, from early steps (e.g. to define
how many hardware coprocessors are necessary) to late steps (e.g. to optimize
runtime scheduling).

In addition to classical information such as processor frequency, number
of cores or memory architecture, an MoA can give information on physical
properties such as energy consumption and temperature dissipation. MoAs are
intended for Cyber-Physical Systems, where physical properties and processing
properties are intricately linked.

An MoA can take different forms. It may be a matrix specifying communi-
cation speed between each pair of cores in a system, a vector specifying relative
processing capabilities of the different cores or a graph specifying inter-core
connectivity.

In the next section, a new MoA is proposed and named LSLA. This model is
providing minimal semantics for computing an abstract cost from the mapping
of an application described with a precise (and not necessarily dataflow) MoC.

4 The Linear System-Level Architecture Model
(LSLA) MoA

In this section, a novel MoA is proposed. As an MoA, LSLA provides repro-
ducible cost computation when the activity A of an application is mapped on
the architecture.

4.1 Definitions

Three application-related notions need to be defined prior to the definition of
LSLA: application activity, tokens and quanta. These notions are necessary
because they make LSLA independent from the chosen MoC.

Definition 2. The application activity A corresponds to the amount of pro-
cessing and communication necessary for accomplishing the requirements of the
application. The application activity is composed of processing and communica-
tion tokens.

Definition 3. A quantum q is the smallest unit of application activity. There
are two types of quanta: processing quantum qP and communication quantum
qC .

Two distinct processing quanta are equivalent, thus represent the same
amount of activity. Processing and communication quanta do not share the
same unit of measurement. As an example, in a system with a unique clock and
Byte addressable memory, 1 cycle of processing can be chosen as the processing
quantum and 1 Byte as the communication quantum.

Definition 4. A token τ ∈ TP∪TC is a non-divisible unit of application activity,
composed of a number of quanta. The function size : TP ∪ TC → N associates
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CN Communication Node
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2x+1

2x+1

λ=0.3

Figure 5: LSLA MoA semantics elements.

to each token the number of quanta composing the token. There are two types
of tokens: processing tokens τP ∈ TP and communication tokens τC ∈ TC .

The activity A of an application is defined formally as the set:

A = {TP , TC} (2)

where TP = {τ1P , τ2P , τ3P ...} is the set of processing tokens composing the appli-
cation processing and TC = {τ1C , τ2C , τ3C ...} is the set of communication tokens
composing the application communication.

An example of a processing token can be a run-to-completion task. It is
composed of N processing quanta (for instance, N cycles). An example of a
communication token is a message in a message passing system. It is composed
of M communication quanta (for instance M Bytes). Using the two levels of
granularity of a token and a quantum, the LSLA MoA can reflect the cost of
managing a quantum and the overhead of managing a token composed of several
quanta.

The LSLA Model of Architecture (MoA) is defined hereafter. The model
composing elements are illustrated in Figure 5. An LSLA is composed of Pro-
cessing Elements, Communication nodes and links. The cost of executing a
token on a Processing Element or a Communication Node is affine wrt. the
number of quanta in this token. Definition 5 formally defines the LSLA model.

Definition 5. The Linear System-Level Architecture Model (LSLA) is a Model
of Architecture (MoA) that consists of an undirected graph G = (P,C, L, cost, λ)
where:

• P is the set of the architecture Processing Elements (PEs). A PE is an
abstract processing facility. A processing token tP must be mapped to a
PE p ∈ P to be executed.

• C is the set of the architecture Communication Nodes (CNs). A commu-
nication token tC must be mapped to a CN c ∈ C to be executed.

• L = (ni, nj), ni ∈ C, nj ∈ C ∪ P is a set of undirected links connecting
either two CNs or one CN and one PE. A link models the capacity of a
CN to communicate tokens to/from a PE or to/from another CN.
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• cost is a function associating a cost to different elements in the model.

The cost related to the management of a token τ by a PE or a CN is defined by:

cost : TP ∪ TC × P ∪ C → R
τ, n 7→ αn.size(τ) + βn,

αn ∈ R, βn ∈ R
(3)

where αn is the fixed cost of a quantum when executed on n and βn is the fixed
overhead of a token when executed on n. A token communicated between two
PEs connected with a chain of CNs Γ = {x, y, z...} is reproduced card(Γ) times
and each occurrence of the token is mapped to 1 element of Γ. This procedure
is explained on different exemples in Section 6.

The cost of the execution of application activity A on an LSLA graph G is
defined as:

cost(A,G) =
∑
τ∈TP

cost(τ,map(τ)) + λ
∑
τ∈TC

cost(τ,map(τ)) (4)

where map : TP ∪ TC → P ∪ C is a surjective function returning the mapping
of each token on one of the architecture elements.

• λ ∈ R is a lagrangian coefficient setting the Computation to Communica-
tion Cost Ratio (CCCR), i.e. the cost of a single communication token
relative to the cost of a single processing token.

5 Related Work

5.1 Related Work on Virtual Platforms

Virtual platforms such as QEMU [27], gem5 [28] or Open Virtual Platforms
simulator (OVPsim) have been created as functional emulators that aim to
validate software when silicon is not available. The high complexity of these
virtual platforms limits the maximum complexity of the emulated hardware.
The steadily increasing complexity of MPSoCs motivates the creation of a new
level of architecture modeling abstraction and a new type of virtual streaming
platforms, focusing on hardware resources and parallelism rather than on cycle
accuracy. MoAs are created to fill this gap. MoAs are abstract models for system
efficiency evaluation while virtual platforms are linked to hardware features such
as instruction sets. Moreover, an MoA can be used to represent the behavior
of both software and hardware, in contrast with existing methods that either
focus on hardware description or on software coding.

Some initiatives such as UML MARTE [29], SystemC Transaction-level mod-
eling (TLM) [30], AADL [31] or SHIM [32] aim at defining architecture descrip-
tions at a higher level of abstraction than virtual platforms. These standards
are focused of global system modeling and do not foster separation of concerns
between algorithm-related performance, architecture resources and system re-
quirements. The semantics of different architecture models from the literature
are detailed in the next Section and their belonging to the domain of MoAs is
discussed.
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5.2 Related Works on Architecture Modeling

Many publications are related to architecture modeling. Table 1 references
some models and properties. All the presented models abstract heterogeneous
parallel architectures and are algorithm-agnostic. A general idea of the level of
abstraction of each model is given, as well as some properties.

MoA Abstr- Distributed Obj- Reprodu-
action Memory ectives cible cost

HVP [33] - - - no time no
UML Marte [34] - - yes multiple no

AADL [31] - yes multiple no
[4] - yes multiple no
[35] + yes multiple yes
[36] + yes time no
[37] ++ yes multiple no

S-LAM [38] ++ yes time no
LSLA +++ yes abstract yes

Table 1: Properties of different state of the art architecture models.

In multi-core rapid prototyping tools, each community is using a different
custom architecture model, often associated to a specific syntax and specific
requirements. For example, some custom models for multicore scheduling have
been proposed such as the High-level Virtual Platform (HVP) [33], the SynDEx
architecture model [2], and the System-Level Architecture Model (S-LAM) [38].
These models are time-oriented models for automated multicore scheduling.

HVP [33] defines an evolutionary virtual platform based on SystemC rather
than a strict MoA. HVP is presented here to distinguish virtual platforms from
MoAs. The corresponding MoC that can be coexplored by HVP is the Com-
municating Processes one [39]. The HVP platform virtually executes tasks and
HVP defines task automata for managing the internal behaviour of application
tasks over time. HVP targets Symmetric Multiprocessing (SMP) processor ar-
chitectures. HVP is focused on time simulation and does not provide other
types of performance information.

UML Marte [34] is a system modeling standard offering a holistic approach
encompassing all aspects of real-time embedded systems. The standard consists
in Unified Modeling Language (UML) classes and stereotypes. As a specifica-
tion language, UML Marte does not standardize how a cost should be derived
from the specified amount of hardware resources and non-functional properties.
MoAs focus on abstract cost computation and can be used in the context of
UML Marte. The data specified in a UML Marte representation of a system
can fill an MoA for computing the cost of a design decision.

The Architecture Analysis and Design Language (AADL) language [31],
specified by the SAE International organization, defines a syntax and semantics
to describe both software and hardware components in a system. The efforts
are focused on building a description language more than in providing a sim-
ple model. The language constructs match logical and physical features of the
described system such as threads and processes for software and bus and mem-
ory for hardware. In contrast to this approach, MoAs offer abstract features
for describing hardware architectures and delegate responsibility for modeling
algorithms to MoCs.

Castrillón and Leupers define in [4] a quasi-MoA that divides an archi-
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tecture into PEs. Each PE has a specific Processor Type (PT) defined by
PT = (CMPT , XPT , V PT ) where CMPT is a set of functions associating costs
to PEs, XPT is a set of PE attributes such as context switch time of resource
limitations, and V PT is a set of variables such as the processor scheduling policy.
A graph G of PEs is defined where each edge interconnecting a pair of PEs is
associated to a Communication Primitive (CP). A CP is a software application
programming interface that is used to communicate among tasks. A CP has its
own cost model CMCP associating different costs to communication volumes.
It also refers to a Communication Resource (CR), i.e. a hardware module that
is used to implement the communication and has information on the number of
channels and on the amount of available memory in the module. This model can
be refered to as a quasi-MoA because it does not specify any cost computation
rule from the data provided in the model.

In [36], Grandpierre and Sorel define a graph-based quasi-MoA for message
passing and shared memory data transfer simulations of heterogeneous plat-
forms. Memory sizes and bandwidths are taken into account in the model. The
model is composed of an oriented graph Gh = (V,E) where E is a set of oriented
edges with no property and each vertex v ∈ V is a finite state machine with one
of six types:

• an operator is a processing element,

• a Random Access Memory (RAM) is a memory that may be shared be-
tween operators. It can be a data, program or mixed memory,

• a Sequential Access Memory (SAM) is a FIFO queue supporting message
passing. It can natively support multipoint and broadcast data transfers,

• a communicator is equivalent to a Direct Memory Access (DMA) that
drives the communication between two operators by accessing RAM or
SAM memories,

• a bus/multiplexer/demultiplexer (BMD) without arbiter is a bloc rep-
resenting together the data multiplexer preparing memory data for bus
transfer, the bus itself, and the demultiplexer preparing data for memory
access,

• a BMD with arbiter is a BMD with a function, specifying data conflict
management when accessing memories.

More details on this architecture model are given (in french) in [40]. This
model can also be considered as a quasi-MoA because cost computation is not
specified. It is moreover focused on time modeling.

In [35], Kianzad and Bhattacharyya present the CHARMED co-synthesis
framework and its MoA. The CHARMED framework aims at optimizing mul-
tiple system parameters represented in pareto fronts. The MoA is composed of
a set of PEs and Communication Resources (CR). Each PE has a vector of at-
tributes PEattr = [α, κ, µd, µi, ρidle]

T where α denotes the area of the processor,
κ denotes the price of the processor, µd denotes the size of data memory, µi de-
notes the instruction memory size and ρidle denotes the idle power consumption
of the processor. Each CR also has an attribute vector: CRattr = [ρ, ρidle, θ]

T

where ρ denotes the average power consumption per each unit of data to be
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transferred, ρidle idle denotes idle power consumption and θ denotes the worst
case transmission rate or speed per each unit of data. This model constitutes,
to our knowledge, the only existing MoA as stated by Definition 1. This MoA
targets several costs and proposes a pareto-based method. Compared to the
LSLA model proposed in this paper, the model in [35] is much more complex
and does not abstract the computed cost, limiting the model to the few metrics
defined by the authors.

In [37], Raffin et. al, describe a quasi-MoA for evaluating the performance of
a Coarse Grain Reconfigurable Architectures (CGRAs) implementation in order
to perform constraint programming optimization. The model is customized for
the ROMA processor [37] and based on a graph representing PEs (called oper-
ators), memories, a network connecting PEs to memories (for local and shared
memory accesses), and a network interconnecting PEs (for message passing).
The model contains memory sizes, network topologies and data transfer latency
information. The objective of the model is to provide early estimations of the
necessary resources to execute a dataflow application. Compared to LSLA,
the model in [37] does not abstract the computed cost and does not provide a
reproducible cost computation procedure.

The S-LAM quasi-MoA focuses on timing properties of a distributed sys-
tem and additionally defines communication enablers such as RAM and DMA.
S-LAM has been used so far for the dataflow design of a video decoder within the
MPEG Reconfigurable Video Coding (RVC) framework [41] as well as for the
rapid prototyping of a 3GPP Long Term Evolution (LTE) base station [15] and
for the design space exploration of a computer vision algorithm [42]. S-LAM is
focused on time modeling and does not provide a reproducible cost computation
procedure.

In Table 1, many architecture description languages have been omitted be-
cause they operate at a different level of abstraction than MoAs. For instance,
behavioral VHDL is a language to model a hardware behavior but its extreme
versatility does not orientate the designer towards a specific Model of Architec-
ture.

In the next section, the cost computation of LSLA is demonstrated on dif-
ferent MoCs, showing the genericity of the model.

6 Computing the cost of an application execu-
tion on an LSLA architecture

A useful approach to applying the cost computation models introduced in this
report is to integrate them with functional simulation to provide estimates of
performance based on underlying MoAs. This kind of simulation would be faster
to execute and easier to adapt compared to a cycle-accurate, timed simulation,
while providing some insight about efficiency and application-architecture affin-
ity (in contrast to a purely functional simulation).

The next sections illustrate the cost computation provided by LSLA when
combined with SDF, CFDF, and BSP MoCs introduced in Section 2. This
combination follows the Y-chart displayed in Figure 1. Different Models of
Computation are combined with LSLA and show the genericity of the LSLA
MoA.
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6.1 Computing the cost of an SDF application execution
on an LSLA architecture

z
B
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LSLA architecture

Figure 6: Computing the cost of executing an SDF graph on an LSLA architec-
ture. The obtained cost for 1 iteration is 31 + 21 + 0.3 (2 + 2 + 20 + 2) + 7
= 66.8 (Equation 4).

The cost computation mechanism of Linear System-Level Architecture Model
(LSLA) is illustrated by an example in Figure 6 combining an SDF application
model and an LSLA architecture model. The cost of the execution of appli-
cation activity A on LSLA graph G is arbitrarily conducted in the processing
domain, as stated in Equation 4. The multiplication by λ brings the cost of
communication tokens into the processing domain.

Each actor firing during the studied graph iteration is transformed into one
processing token. Each dataflow token transmitted during one iteration is trans-
formed into a communication token. A token is embedding several quanta (Sec-
tion 4), allowing a designer to describe heterogeneous tokens to represent firings
and data of different sizes. In Figure 6, each firing of actor A1 is associated
with a cost of 3 quanta and each firing of actor A2 is associated to a cost of 4
quanta. Communication tokens represent 2 quanta each. The natural scope for
the cost computation of a couple (SDF, LSLA), provided that the SDF graph
is consistent, is one SDF graph iteration (Section 2.1).

Each processing token is mapped to one PE. Communication tokens are
“routed” to the CNs connecting their producer and consumer PEs. For instance,
the second communication token in Figure 6 is generating 3 tokens mapped to
x, y, and z because the data is carried from C to B. The resulting cost from
Equation 4 is 66.8. This cost is reproducible and abstract, making LSLA an
MoA.
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6.2 Computing the efficiency of a CFDF execution on an
LSLA architecture
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Figure 7: Computing the cost of executing a CFDF graph on an LSLA archi-
tecture. The obtained cost for the chosen simulation scope is 62+32+9.6+7 =
110.6.

For dynamic dataflow models, such as CFDF, a simulation-based integration
is a natural way to apply MoA-driven cost computation since there is in general
no standard, abstract notion of an application iteration — i.e., no notion that
plays a similar role as the periodic schedules (and their associated repetitions
vectors) of consistent SDF graphs.

A simulation-based integration approach may be useful even for SDF graphs
because even though the production and consumption rates are statically fixed
in SDF graphs (leading to the notion of periodic schedules), the internal be-
havior of the actors (the sequences of operations executed within the actors)
can vary significantly based on the data that is consumed. Models that cap-
ture or estimate this variation in terms of input data values can be integrated
with functional simulation to provide potential for more accurate performance
assessment compared to analysis that is based only on a single iteration of the
periodic schedule.

Figure 7 illustrates an example of execution of a CFDF dataflow graph on an
LSLA architecture. We define the cost of execution of actor X in mode M(X, 1)
to be 3 quanta and the cost of execution of actor X in mode M(X, 2) to also
be 3 quanta. Similarly, the cost of execution of actor Y in mode M(Y, 1) is 2
quanta and the cost of execution of actor Y in mode M(Y, 2) is 4 quanta. These
choices represent additional information associated with the CFDF MoC.

The cost of communication tokens on the FIFO is set to 2 quanta. We can
then compute a cost for every PE and CN. There are 2 actor tokens mapped to
PE A. Each of them has 3 quanta. The cost for PE A is 2× (3× 10 + 1) = 62.
There are 2 actor tokens mapped to PE B. They represent 2 and 4 quanta
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respectively. The cost for PE B is 1× (2× 5 + 1) + 1× (4× 5 + 1) = 32. There
is 1 actor token mapped to PE C. It represents 3 quanta. The cost for PE C
is 1 × (3 × 2 + 1) = 7. There is no actor token mapped to PE D. Therefore,
the cost for PE D is 0. There are 5 communication tokens mapped to CN x.
Each of them has 2 quanta. Therefore, the cost for CN x is 5 × (2 × 1) = 10.
There is 1 data token mapped to CN y. It has 2 quanta. Therefore, the cost
for CN y is 1 × (2 × 10) = 20. There is 1 data token mapped to CN z. It has
2 quanta. Therefore, the cost of z is 1× (2× 1) = 2. Since a multiplication by
λ = 0.3 brings the cost of communication tokens to the processing domain, the
total cost for communication would be 0.3× (10 + 20 + 2) = 9.6. Therefore, the
obtained cost is the summation of all PEs’ cost and CNs’ cost, which in this
example sums up to 62 + 32 + 9.6 + 7 = 110.6.

6.3 Computing the efficiency of a BSP execution on an
LSLA architecture
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Figure 8: Extracting the activity of a BSP model.

Figures 8 and 9 illustrate the cost computation of the execution of a BSP
algorithm on an LSLA architecture. Figure 8 displays the extraction of the
activity, consisting of processing and communication tokens, from the BSP de-
scription. Each processing effort ασ is transformed into one processing token
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consisting of w(ασ) quanta (Section 2.2) and each remote access is transformed
into one communication token of one quantum. This size of one quantum is
chosen because the BSP model considers atomic remote accesses.

Figure 9 shows the mapping and pooling of the tokens, consisting on asso-
ciating tokens to PEs and CNs and replicating communication tokens to route
the communications. Agents α and β are mapped on core B, agent γ is mapped
on core A, agent ε is mapped on core C and agent δ is mapped on core D.
The global cost is computed as the sum of the cost of each token on its PE or
CN. The communication token α→ β is ignored because it is communicating a
token between two agents mapped on the same PE and such a communication
is supposed to have no specific cost, because there is no remote access.
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Figure 9: Computing the cost of executing the BSP model in Figure 8 on an
LSLA architecture. The obtained cost is 31 + 31 + 11 + 11 + 11 + 6 + 0.3 (6
+ 40 + 6) + 7 + 5 + 11 + 5 = 144.6 (Equation 4).

An abstract cost of 144.6 is obtained for this couple (BSP, LSLA) and, as for
SDF and CFDF MoCs, this cost is reproducible as long as the activity extraction
from the BSP model follows the same conventions.

When compared to using BSP alone, combining BSP and LSLA helps study-
ing the cost of mapping several agents on a single PE, exploiting parallel slack-
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ness to balance activity between PEs. Parallel slackness refers to the ability
for processing time to dominate communication and synchronization time. One
may note that the supersteps with the same σ of the different agents mapped
to the same PE are merged.

In the previous sections, the cost computation mechanisms of LSLA have
been demonstrated on static SDF dataflow, dynamic CFDF dataflow and BSP
MoCs. The generic and reproducible cost computation of LSLA make LSLA a
Model of Architecture. Next section discusses the meaning of the cost expres-
sions in LSLA and compares LSLA to the state of the art models.

6.4 Discussion on LSLA cost computation

While CNs with high cost (such as y in Figure 9) represent bottlenecks in the
architecture, i.e. communication media with low data rates, PEs with high cost
(such as A in Figure 9) represent processing facilities with limited processing
efficiency.

For example, the LSLA model at the bottom of Figure 9 may represent
a set of two processors {A,B} and {C,D} where {A,B} has a core A and a
coprocessor B. B is almost twice as efficient as A (cost of 5x + 1 instead of
10x+ 1 for each token). {C,D} may be a homogeneous bi-core processor with
high efficiency (cost of 2 for each firing). {A,B} and {C,D} are communicating
through a link (for instance a serial link) that has one tenth of the efficiency
of internal {A,B} and {C,D} communications (cost of 10 instead of 1 for each
token).

Each PE can indifferently model a GPP, a Graphics Processing Unit (GPU),
or a Digital Signal Processor (DSP) core executing software as well as a hardware
component implemented on a Field-Programmable Gate Array (FPGA) or an
Application-Specific Integrated Circuit (ASIC).

The cost computed by LSLA and resulting from communication and process-
ing is linear with respect to the number of communication and processing tokens
(Equation 4). This cost can represent either a processing time, a diminution in
the throughput, an area, a price, an energy, a power, an amount of memory,
etc..., depending on the purpose of the architecture model. Several LSLA mod-
els can be combined to represent several non-functional properties of a single
system.

Compared to the model in [4], the LSLA model differs in the sense that
PEs are not directly linked by edges but rather through communication nodes
that can be chained to represent complex PE interconnects. Moreover, LSLA
is simpler than the model in [4] and the cost of the internal communication in
a PE is taken into account in [4] while it is not taken into account in LSLA.

In [35], all different costs are represented in a single model whereas LSLA
defines a single abstract cost model and several models of the same hardware
can be combined for multi-objective optimization.

Compared to all other models presented in Section 5.2, the LSLA model is
the only one that abstracts the type of the computed implementation cost. By
its simplicity, LSLA is intended to be used both early in the system design pro-
cess, when high modeling accuracy is not needed, and for runtime management
decisions, when decision processing budget is limited.
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7 Conclusion

In this report, the notion of Model of Architecture (MoA) has been defined.
An MoA models the internal behavior of an architecture at a high level of
abstraction. When combined to an application model conforming to a given
MoC, an architecture model conforming to an MoA provides reproducible cost
computation mechanisms for evaluating non-functional system properties.

This report inspires from MoCs for parallel computation. An application
model, conforming a MoC, is an abstract representation of the application be-
havior and, by nature, does not give information on the hardware efficiency.
When combined with a model of the architecture conforming a precise MoA,
the efficiency of the system can be evaluated and the design space explored.
Application and architecture can then be modified independently and the cost
of these modifications can be analyzed. This efficiency evaluation can serve
for many studies such as the optimization of memory, energy, throughput, or
latency.

An MoA called Linear System-Level Architecture Model (LSLA) has been
introduced and compared to the state of the art of architecture models. LSLA
represents hardware performance with a linear model, summing the influences
of processing and communication on system efficiency.

In future publications, we intend to demonstrate the capabilities of differ-
ent MoAs to feed efficiency evaluations of systems, optimizing various non-
functional properties.
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Actes des Journées Francophones sur l’Adéquation Algorithme Architec-
ture, JFAAA’02, 2002.

[37] Erwan Raffin, Christophe Wolinski, François Charot, Krzysztof Kuchcin-
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