Midterm Exam (20\%)
ENEE 359a: Digital VLSI Design, Spring 2007 The Ides of March, Opening Round of the NCAA Tournament

This exam should take you less than an hour: 5 questions, 10 minutes apiece. The exam is closed book, closed notes.

Note that each question is worth the same number of points; this means you should do those questions you find easy first.

Solutions

Name: \qquad

Score:

Problem 1:	out of 4
Problem 2:	out of 4
Problem 3:	out of 4
Problem 4:	out of 4
Problem 5:	out of 4

Total:

Grade Distribution:

$$
\begin{aligned}
& \text { 20-X X } \\
& \text { 19-X X X X } \\
& 18 \text { - X X X } \\
& \text { 17- } \\
& \text { 16-X } \\
& \text { 15-X X X } \\
& 14 \text { - } \\
& \text { 13-X } \\
& 12 \text { - } \\
& \text { 11- } \\
& 10 \text { - } \\
& \text { 9-X }
\end{aligned}
$$

1. Consider the following stick diagram. Draw the electrically equivalent transistor-level schematic. What logic equation does the circuit implement?

solution:

$$
\begin{aligned}
\text { out } & =\sim(\mathrm{DE}+\mathrm{C}(\mathrm{~A}+\mathrm{B})) \\
\text { out } & =\sim(\mathrm{DE}+\mathrm{CA}+\mathrm{CB})
\end{aligned}
$$

2. Consider the logical expression out $=\sim(a b+c d)$. Convert this to a schematic diagram for static CMOS logic, then convert it to a stick-diagram layout (as in question 1).
some equivalent solutions (there is more than one correct answer):

3. Provide a side-view diagram for each of the cuts X and Y through the layout below. Be sure to label each of the strata. Label your endpoints for the X cut, so it is clear which end is which.

well

- via

solution:

4. Consider the function out $=\sim((a+b c) \cdot d)$. Draw the circuit and size the transistors: size all NMOS and PMOS transistors so that the PUN and PDN each has equivalent resistance to a minimum-sized MOSFET, and then take into account the fact that $\mu_{n}=r \cdot \mu_{p}$ where $r=2.5$ (i.e. the resistance of a unit PMOS device is 2.5 times that of a unit NMOS device).

Important: Assume the circuit is implemented in a 60 nm technology and that the dimensions of a minimum-sized MOSFET in this technology are 90 nm width $\times \mathbf{6 0 n m}$ length. Express the dimensions of each MOSFET in the optimized circuit in nanometers ($\mathrm{W} \mathrm{nm} \times \mathrm{Lnm}$).
l.e., what is it that you are scaling?
some equivalent solutions (there is more than one correct answer):
min. device: $\mathrm{WxL}=90 \mathrm{~nm} \times 60 \mathrm{~nm}$

5. You have identified a critical path through a circuit, as shown below. Consider the path up to the jagged line; the 2-input NAND beyond simply represents the load being driven (it can be thought of as the input to a D-latch, for example). That NAND has been scaled by a factor of $7^{3} \div 5^{3}$ which can be approximated by the value 2.8. Thus, the load NAND has $C_{\text {nand }}$ approximately equal to $3.5 \mathrm{C}_{\mathrm{in}}$. Find the scaling terms s_{i} for each gate and the optimized path delay. Assume that gamma=1, that $r=3$, and that the p_{i} terms are all equal (leave as " p ").

Equations you might find useful:

Optimal gate effort $\mathrm{h}=\sqrt[N]{G F B}=\sqrt[N]{H}$
Delay through path $=t_{\mathrm{p} 0} \sum\left(p_{i}+\frac{f_{i} g_{i}}{\gamma}\right)$

$$
\begin{aligned}
& g_{\text {nand }}=\frac{n+r}{1+r} \quad g_{\text {nor }}=\frac{1+n r}{1+r} \quad f_{\mathrm{i}, \mathrm{opt}}=\frac{h}{g_{\mathrm{i}}} \quad \text { Optimal delay }=t_{\mathrm{p} 0}\left(\sum p_{i}+\frac{N^{N} \sqrt{H}}{\gamma}\right) \\
& \text { Sizing for gate } \mathrm{i}=\left(\frac{g_{1} s_{1}}{g_{i}}\right) \prod_{j=1}^{i-1}\left(\frac{f_{j}}{b_{j}}\right) \quad F=\frac{C_{\mathrm{load}}}{C_{\mathrm{in}}} \quad G=\prod_{i} g_{i}
\end{aligned}
$$

$$
\text { Delay }=t_{\mathrm{p} 0}\left(\sum p_{i}+\frac{N^{N} \sqrt{H}}{\gamma}\right)=t_{\mathrm{p} 0}\left(5 p+\frac{35}{4}\right)
$$

