Bruce Jacob

University of Maryland ECE Dept.

SLIDE 1

### ENEE 359a Digital VLSI Design

### CMOS Memories and Systems: Part II, DRAM Circuits

Prof. Bruce Jacob blj@eng.umd.edu



Credit where credit is due:

Slides contain original artwork (© Jacob 1999–2004, Wang 2003/4) as well as material taken from Keeth & Baker's <u>DRAM Circuit Design</u>.

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 2

### **Overview**

### DRAM:

- DRAM systems
- DRAM circuits

### SRAM:

- SRAM systems
- SRAM circuits
- Register files





# Second Generation 1T1C Cell



- Wordline can be polysilicon; MOSFET formed by wordline over n+ active area
- To write full Vcc to storage capacitor, rowline (gate) must be driven to voltage Vccp > Vcc + Vth
- Bitline can be metal or polysilicon
- Charge-sharing: what potential should be at other side of storage capacitor? (e.g. V<sub>0</sub> = 0, V<sub>1</sub> = Vcc)

ENEE 359a Lecture/s 23-25 DRAM Circuits

Bruce Jacob

University of Maryland ECE Dept.



#### **ENEE 359a** Lecture/s 23-25 Wordline **DRAM Circuits Bruce Jacob Bitlines** Wordline University of Maryland ECE Dept. SLIDE 5 $\frac{1}{T}$ ホ ホ T **Wordline Driver** "Row" of DRAM

# Wordline presents large capacitive load; slow, limits t<sub>RC</sub> (time to open & close row)

- Use wordline driver: large FETs (remember scaling?)
- Polysilicon wordline usually topped with silicide ("polycide" wordline); increases conductivity
- Additional drivers can be placed along length

UNIVERSITY OF MARYLAND

- Wordline can be "stitched" with pieces of metal
- Typical organization: 512 wordlines x 512 bitlines

# **DRAM Array: Open Bitline**



- Adjacent cells share connection to bitline
- Note change in orientation (rotated 90°)

ENEE 359a Lecture/s 23-25 DRAM Circuits

Bruce Jacob

University of Maryland ECE Dept.





UNIVERSITY OF MARYLAND

### **Folded Bitline Array & Cell**



Lecture/s 23-25 DRAM Circuits

**ENEE 359a** 

Bruce Jacob

University of Maryland ECE Dept.









### **Passing Logic 0:**

 Capacitor begins to discharge when wordline exceeds Vth





Bruce Jacob

University of Maryland ECE Dept.

SLIDE 12



#### **Circuit diagram:**



- Initially, ACT at Vss (GND) and NLAT\* held at Vcc/2 (both BL1 and BL1\* are at Vcc/2 as well)
  - To read: Wordline pulled to Vcc+Vth, BL1/\* changes
- **To sense:** first, NLAT\* is pulled towards ground
- Then ACT is pulled towards Vcc



Bruce Jacob

University of Maryland ECE Dept.

SLIDE 13

## **Sense Amplifiers II**

**Basic idea:** 













#### Textbook's term: equalization











## **Cells: Trench Capacitor**



Bruce Jacob

**DRAM Circuits** 

ENEE 359a Lecture/s 23-25

> University of Maryland ECE Dept.



Bruce Jacob

University of Maryland ECE Dept.

SLIDE 21

### **Cells: Buried Capacitor**

Interlayer dielectric

n+

p substrate



**Bitline contact** 

n+ active

**ONO dielectric** 

Wordline

Poly3 cellplate

Field poly

/n+

Poly2 storage node

FOX



### **Cells: Buried Bitline/Digitline**



ENEE 359a Lecture/s 23-25 DRAM Circuits

Bruce Jacob

University of Maryland ECE Dept.



Bruce Jacob

University of Maryland ECE Dept.

SLIDE 23



Bitline

Poly strap

Bitline contact

n+ active

Poly storage node

ONO dielectric

Heavily doped substrate region

Wordline

Field poly

FOX











## Cells: eDRAM (logic process)



ENEE 359a Lecture/s 23-25 DRAM Circuits

Bruce Jacob

University of Maryland ECE Dept.













### eDRAM: 2-bit cell (CMU)



ENEE 359a Lecture/s 23-25 DRAM Circuits

Bruce Jacob

University of Maryland ECE Dept.

