Bruce Jacob

University of Maryland ECE Dept.

SLIDE 1

ENEE 359a Digital VLSI Design

Course Overview: Transistors to Systems

Prof. Bruce Jacob blj@eng.umd.edu

Credit where credit is due:

Slides contain original artwork (© Jacob 2004) as well as material taken liberally from Irwin & Vijay's CSE477 slides (PSU), Schmit & Strojwas's 18-322 slides (CMU), Wolf's slides for *Modern VLSI Design*, and/or Rabaey's slides (UCB).

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 2

Why Digital?

Assume noise in your electronics ... (lights flicker for no apparent reason, speakers pop when refrigerator turns on, cable station comes in fuzzy, etc.)

...and you want to eliminate/reduce problem

Analog: noise-induced errors propagate and accumulate (e.g., further noise?); hard to distinguish noisy signal from "true" signal

- Problem arises because the entire range of output values is fair game as input
- Thus, it is hard to distinguish corrupted or noisy signal from "true" signal

• Use a smaller valid-data range so that small errors don't matter

ENEE 359a Lecture/s 1+2 Why Digital? Overview **Bruce Jacob** How would YOU solve the problem? University of Maryland ECE Dept. **INVALID** h() **g()** SLIDE 5 DATA INTERPRET **INVALID** DATA **RANGE OF** each value OUTPUT gravitates PRODUCED to nearest valid datum $\left(\right)$ **VALID DATUM** INVALID DATA ISE VALID VALUES NO

- ECC does this numerically; here, we're talking about interpreting voltage levels
- Relatively straight-forward to do this with various types of amplifiers

These curves are said to be *regenerative* Noise neither *propagates* nor *accumulates*

This is exactly what digital logic does, e.g. chain of inverters:

ENEE 359a Lecture/s 1+2 Overview

Bruce Jacob

University of Maryland ECE Dept.

How Is It Done? (devices)

Implementation: Transistors (switches)

Inverter Function:

Do I connect my output to "1" or "0"?

Each is effectively a signal repeater

Lecture/s 1+2 Overview

ENEE 359a

Bruce Jacob

University of Maryland ECE Dept.

How Is It Done? (devices)

MOS Transistors:

ENEE 359a Lecture/s 1+2 Overview

Bruce Jacob

University of Maryland ECE Dept.

How Is It Done? (devices)

MOS Transistors:

ENEE 359a Lecture/s 1+2 Overview

Bruce Jacob

University of Maryland ECE Dept.

How Is It Done? (devices)

MOS Transistors:

ENEE 359a Lecture/s 1+2 Overview

Bruce Jacob

University of Maryland ECE Dept.

Wafer is a thin slice off a silicon log; Each wafer produces many identical chips

ENEE 359a Lecture/s 1+2 Overview	How? (manufacturing)	
Bruce Jacob	•	Chemical or plasma
University of Maryland ECE Dept.	Si-substrate	Hardened resist SiO ₂
SLIDE 21	Silicon base material	Si-substrate
	Photoresist SiO ₂	4. After development and etching of resist, chemical or plasma etch of SiO ₂
	1&2. After oxidation and deposition of negative photoresist	Si-substrate
	UV-light	5. After etching
	Si-substrate	Si-substrate
UNIVERSITY OF MARYLAND	3. Stepper exposure	removal of resist

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 22

How ...? (manufacturing)

- 1. Create thin oxide in the "active" regions, thick elsewhere
- 2. Deposit polysilicon

- 3. Etch thin oxide from active region (poly acts as a mask for the diffusion)
- 4. Implant dopant

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 23

How ...? (manufacturing)

CMOS Inverter

How ...? (manufacturing)

ENEE 359a Lecture/s 1+2 Overview

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 26

Another view (note: wells/tubs not shown)

How Is It Done? (logic)

CMOS NAND-gate

ENEE 359a Lecture/s 1+2 Overview

Bruce Jacob

University of Maryland ECE Dept.

How Is It Done? (design)

Divide & Conquer:

Modular, hierarchical design Well-defined interfaces Multiple levels of abstraction EXTENSIVE use of CAD tools ... Back-end integration

ENEE 359a Lecture/s 1+2

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 31

Overview

Increasing clock rates, increasing densities, increasing design complexity, 1000s of I/O, *decreasing* design times ...

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 32

How Is It Done? (design)

Big change in industry, late 1970's:

Mead & Conway introduced design rules

Previous to this, all IC work was by hand, and integration of components was at the chip level (CPU = tons of connected chips)

Design rules enabled CAD tools

Popular (and powerful) tools today:

- Cadence tools (behavioral-to-layout)
- Synopsys tools (synthesis)
- HSPICE (circuit simulation)

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 33

How ...? (tools: verilog)

The Many Faces of NOT (inverter)

Structural Verilog:

wire s; wire sbar; NOT not1(s, sbar);

Behavioral Verilog:

wire s, sbar;
sbar = ~s;

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 34

How ...? (tools: verilog)

The Many Faces of NAND

Β

Structural Verilog:

wire a, b; wire out; NAND nandl(a, b, out);

Behavioral Verilog:

wire a, b, out; out = ~(a & b);

output

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 35

How ...? (tools: synopsys)

Logic synthesis: Behavioral -> Structural

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 36

How ...? (tools: synopsys)

Logic synthesis: *Behavioral -> Structural*

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 37

How ...? (tools: synopsys)

The tool will provide design options ...

Four Adders:

- Ripple
- Brent-Kung
- Carry-Lookahead
- Fast Carry-Lookahead

How ...? (tools: HSPICE)

ENEE 359a Lecture/s 1+2 Overview

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 38

Very accurate simulation of circuits

How ...? (tools: cadence)

ENEE 359a Lecture/s 1+2 Overview

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 39

How Is It Done? (design flow)

Begin with a Behavioral Description:

```
module testcounter(clk2, rst_l, out_w);
```

input clk2, rst_l; output[7:0] out_w;

reg [7:0] src1, out; wire [7:0] out_w = out;

always @(posedge clk2) begin

```
if(!rst_1)
begin
```

out <= 1'd1; end else

src1 <= 1'd0;</pre>

```
begin
    src1 <= out w;</pre>
```

```
out <= src1 + out_w;</pre>
```

end

end

endmodule

ENEE 359a Lecture/s 1+2

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 40

Overview

How Is It Done? (design flow)

Logic synthesis produces gate-level netlist:

ENEE 359a Lecture/s 1+2

Bruce Jacob

University of Maryland ECE Dept.

Overview

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 42

How Is It Done? (design flow)

Instantiation of physical design libraries & place+route yields Physical Layout:

(two views shown: one with black boxes for high-level structures like flip-flops/adders/MUXes, the other showing all transistors and wires)

How Is It Done? (design flow)

Send to fabrication facility, receive Chip:

ENEE 359a Lecture/s 1+2 Overview

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 43

How Is It Done? (system)

Simplest possible system-building scheme:

Sequential—Do One Thing At a Time

Advantages:

Simple, predictable, easy to debug

Disadvantages:

 Slow, wastes hardware (g & h blocks idle while f computes, f & h blocks idle while g computes, etc.)

ENEE 359a Lecture/s 1+2

Bruce Jacob

University of

Maryland

SLIDE 44

ECE Dept.

Overview

Called a *PIPELINE*: extremely common

- Hardware used as fully as possible
- Throughput increases n-fold (n blocks)

Question: How to control this?

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 47

What Are The Gotcha's?

"High-speed digital design, in contrast to digital design at low speeds, emphasizes the behavior of passive circuit elements. These passive elements may include the wires, circuit boards, and integrated-circuit packages that make up a digital product. At low speeds, passive circuit elements are just part of a product's packaging. At higher speeds the directly affect electrical performance."

— opening par. of Johnson & Graham, <u>High-Speed Digital Design</u>

The bottom line:

At high speeds, digital systems (which diverged from analog: simpler, remember?) start to behave *just like analog systems*.

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 48

What Are The Gotcha's?

HIGH-SPEED DESIGN exposes problems:

- Even small amounts of NOISE
- Even small amounts of DELAY
- Even small amounts of CURRENT
- ... can cause a circuit to misbehave.
- At high speeds, signal levels are small (small noise levels become significant)
- At high speeds, event timing is tight (small errors in time become significant)
- At high speeds, current changes quickly (even if *di* is small, L*di/dt* can be large)

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 49

Gotcha's? (noise)

Typical noise sources:

Inductive coupling

Capacitive coupling

Groundplane noise

Implicit/explicit circuits (current return) make great radiators and antennae

ENEE 359a
Lecture/s 1+2
Overview

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 50

Gotcha's? (delay)

Though we like to imagine that it is, signal propagation is not instantaneous

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 51

Gotcha's? (delay)

Argument for source-synchronous clocking:

Gotcha's? (current)

Ideal Scenario vs. Reality (ground bounce):

ENEE 359a Lecture/s 1+2 Overview

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 52

Gotcha's? (current)

Bruce Jacob

ENEE 359a Lecture/s 1+2

Overview

University of Maryland ECE Dept.

SLIDE 53

Simultaneous Switching Noise:

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 54

IN GENERAL:

Prevent the Problem

- Design as if the problem doesn't exist (continue using same old techniques as you did with low-speed designs)
- Use mechanism to counteract problem
 Design Around the Problem
- Re-think the way you design systems: assume the problem happens; ensure that it doesn't affect design (design makes no assumptions re: problem)
- Don't need to counteract problem

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 55

What Are Some Solutions?

One solution to delay problem: *heroic routing*

What Are Some Solutions?

(clock trees work, but may be better sol'ns?)

ENEE 359a Lecture/s 1+2 Overview

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 57

What Are Some Solutions?

One solution to noise problem (shielding):

ENEE 359a Lecture/s 1+2 Overview

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 58

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 59

What Are Some Solutions?

Another solution to the noise problem:

Single Ended Transmission Line

Differential Pair Transmission Line

What Are Some Solutions?

(differential signaling works quite well)

ENEE 359a Lecture/s 1+2 Overview

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 60

UNIVERSITY OF MARYLAND

Couples extremely well with previous sol'n (less effective if used for single-ended transmission)

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 62

IN GENERAL:

Prevent the Problem

- Requires no change in design practice; no learning curve, no increase in NRE design costs
- The mechanism might be expensive or skittish, or both

Design Around the Problem

- Requires engineering creativity, willingness to be unconventional
- First attempt might not succeed
- Cost/reliability *might* be better (long run)

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 63

Historical

Digital design has been an enormously successful paradigm, driven largely by the ability to use CAD tools to verify designs

Result: *exponential increases* in design complexity that were predicted in 1965* and have continued for *FOUR DECADES*

* **Moore's Law**. 1965: transistors on chip doubles every year. Revised in 1975: number of transistors doubles every two years.

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 64

Historical

Intel 4004

1971 1000 transistors 800 KHz operation

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 65

Historical

Intel 8086

1978 29K trans. 10 MHz

UNIVERSITY OF MARYLAND

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 67

Historical

Intel 80386

1985/89 275K trans. 16/33 MHz

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 68

Historical

Intel 80486

1992 1.6M trans. 100 MHz

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 69

Historical

Intel Pentium

1993/99 3.1/4.5M trans. 60/300 MHz

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 70

Historical

Intel Pentium Pro

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 71

Historical

Intel Pentium IV

2000/04 42/178M trans. 1.4/3.6 GHz

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 72

Big Picture

Digital vs. Analog:

- simple vs. complex
- robust vs. fragile

BUT: *This is Only True at Low Speeds* (And Nothing is Low-Speed Any More)

Analogy of Architect and the Carpenter:

- Architect does a better job if he knows carpentry
- Digital systems design can't be done without using analog concepts

