Bruce Jacob

University of Maryland ECE Dept.

SLIDE 1

ENEE 359a Digital VLSI Design

Some Parasitics & How to Deal with Them

Prof. Bruce Jacob blj@eng.umd.edu

Credit where credit is due:

Slides contain original artwork (© Jacob 2004) as well as material taken liberally from Irwin & Vijay's CSE477 slides (PSU), Schmit & Strojwas's 18-322 slides (CMU), Dally's EE273 slides (Stanford), Wolf's slides for *Modern VLSI Design*, and/or Rabaey's slides (UCB).

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 2

Overview

- Circuit Integrity Project-review presentation
- Capacitive Parasitics
- Resistive Parasitics
- Inductive Parasitics

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 3

RF and Circuit Integrity in Digital Systems

Prof. Bruce Jacob Electrical & Computer Engineering University of Maryland blj@umd.edu

AFOSR-MURI Annual Review, October 2004

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 4

Overview

How Digital Circuits & Systems Are Built, and Some Ways in Which They Fail

- Components of Digital Systems
- **RF- and Temperature-Related Vulnerabilities**
 - Data Inputs and Networks
 - Clock Inputs and Networks
 - Power/Ground Inputs and Networks
- Circuit Design: Our Device-Under-Test

Recent Work

- Comparison of Vulnerability: DUT's Clock/Data Inputs
- [DUT: test chip fabricated in AMI's 0.5µm process]
- Custom Chip Design & Fabrication for ESD Studies

Future Work

UNIVERSITY OF MARYLAND

- Multiple logic blocks operating simultaneously
- Highly synchronous: lock-step operation

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 7

Digital Systems: A Primer

Components of Digital Systems

Groundplanes play significant role:

- Provide references for input amplifiers
- Allow CMOS circuits to behave as signal repeaters (with high input impedance, low output impedance)

Digital Systems: A Primer

Components of Digital Systems

I/O Pads play significant role:

- Enormous capacitances, require enormous gates to drive them (and the pins & off-chip traces)
- Big gates => big currents; fast clocks => small dt ...
 VDD/VSS leads have inductance => Ldi/dt noise

ENEE 359a Lecture/s 14+15 Parasitics

Bruce Jacob

University of Maryland ECE Dept.

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 9

Digital Systems: A Primer

Components of Digital Systems

At the bottom are 'just' a bunch of MOSFETs

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 10

Digital Systems: A Primer

Components of Digital Systems

At the bottom are 'just' a bunch of MOSFETs

- Each register shown holds one bit
- Each I/O pad requires its own ESD, receivers, & drivers
- Logic blocks can be arbitrarily large/complex

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 11

Circuit Integrity: Data

How To Make This System Fail ...

- UNIVERSITY OF MARYLAND
- RF that makes it this far (past initial I/O buffers) has corrupted the system: only solution is to use higher level bus- or packet-encoding techniques
- Corrupted data can lead to incorrect results, software crash/reboot, transmission to remote nodes, etc.

• Storage elements (latches, registers) expect data and clock edges to be timed perfectly (e.g., within 20ps)

Sequential Circuits Primer

SET-UP and HOLD time, metastability

- Data must not transition near clock edges
- Corollary: Perturbations on clock network (e.g., noise spikes, thermal-related delays) achieve same results

SLIDE 13

ENEE 359a Lecture/s 14+15

Bruce Jacob

University of Maryland ECE Dept.

Parasitics

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 14

Circuit Integrity: Clock

How To Make This System Fail ...

- UNIVERSITY OF MARYLAND
- RF that makes it this far (past initial I/O buffers) has corrupted the system: packet-encoding techniques that might detect data corruption are inapplicable
- Unwanted clock edges likely result in metastability, lead to incorrect results, most likely system crash

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 15

Circuit Integrity: Clock

Maximum clock-frequency calculations

UNIVERSITY OF MARYLAND

 Critical path determines minimum clock period (in this example: 800ps + register overhead + skew/etc. =1000ps total, or 1GHz [as opposed to 750ps/1.33GHz])

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 16

Circuit Integrity: Clock

How To Make This System Fail ...

- UNIVERSITY OF MARYLAND
- Thermal gradients in synchronous systems disastrous (consider tight timing margins in GHz systems)

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 17

How To Make This System Fail ...

- Localized (or global) ripples on groundplanes can cause logic to misbehave, inputs to be misinterpreted (e.g. suppose Data/Clk = 1, V > V_{IL} on gate of 2nd INV)
- Causes same effects as data/clock corruption

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 18

Circuit Integrity

DISTINGUISHING CHARACTERISTICS of the NETWORKS in DIGITAL SYSTEMS:

- CLK: Only Edges Matter
- DATA: Both Timing and Levels Matter
- VDD/GND: Even Small Changes in Level (e.g., 5–10%) Matter

CLK/DATA: Enter Via ESD Protection

VDD/GND: 1/2 ESD (shunts one to other)

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 19

Our Research Question

Comparing CLK and DATA inputs, which is more important:

- The distinguishing characteristics of the way those inputs will be used in the digital system or circuit?
- The levels and frequencies of injected RF?

Our Device Under Test (counter):

Just about simplest possible digital system

[Last Year's Results: evaluated vulnerability of CLK input]

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 20

Our Device Under Test

Points of Interest:

- Digital system built from complementary gate designs (high input impedance, low output impedance).
- CLK only driving MUX, one DFF (see previous slide).
- => CLK and CLKSEL see virtually identical loads.

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 25

CLK vs. CLKSEL Inputs

Power-v-Freq. required to cause incorrect behavior (state change in digital logic)

Recent Work: ESD

INNNANK QU

ESD Test Chip I (die photo) for Rodgers & Firestone ESD Test Chip II (layout) for Rodgers & Firestone

Custom-designed on-chip pads to accommodate input probes

Designed & fabricated two chips (one on right just back from fab) ... allow probing at various points between PAD and internals

ENEE 359a Lecture/s 14+15 Parasitics

Bruce Jacob

University of Maryland ECE Dept.

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 28

Future Work

New Test Structures (e.g., to emulate larger designs, differentiate between CLK & DATA)

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 29

Future Work

Using same board, test the power rail

Design new board that differentiates GND input pin from IC's ground plane, to test the ground pin's susceptibility

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 30

Acknowledgments, etc.

GRAD STUDENTS:

Vincent Chan, Cagdas Dirik, Samuel Rodriguez, Hongxia Wang

INVALUABLE AID:

Todd Firestone and John Rodgers

FOR MORE INFO:

http://www.ece.umd.edu/~blj/integrity blj@umd.edu

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 31

Capacitive Parasitics

CROSS TALK

Largely capacitive at current switching speeds ... inductive coupling is major concern in I/O of mixed signal circuits (e.g. RF). Translation: *pay attention to the cut-off frequency*.

In general, $V_{in} \neq 0$

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 32

Capacitive Coupling

Influenced by *impedance* of coupled line:

- Wire Y is driven: ΔV_y is transient
- Wire Y is floating: ΔV_v is *persistent*

Floating:

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 33

Capacitive Coupling

Influenced by *impedance* of coupled line:

- Wire Y is driven: ΔV_y is transient
- Wire Y is floating: ΔV_v is *persistent*

Driven:

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 34

Floating-Coupling Example

X is (logically unrelated) wire crossing over circuit in the metal-1 layer. Because this is a dynamic circuit, the output is floating when PDN=>false.

Example assumes capacitance to poly wire Y (gate for inverter); node Y is precharged during PRE stage to 2.5V, wire X undergoes 2.5 -> 0V.

Driven-Coupling Example

Transient decays with time constant

$$\tau_{xy} = \mathsf{R}_{y}(\mathsf{C}_{xy} + \mathsf{C}_{y})$$

ENEE 359a Lecture/s 14+15 Parasitics

Bruce Jacob

University of Maryland ECE Dept.

Crosstalk & Technology

Crosstalk vs. Technology

Black line quiet

Red lines pulsed -----

Glitches strength vs technology

ENEE 359a Lecture/s 14+15 Parasitics

Bruce Jacob

University of Maryland ECE Dept.

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 37

Some Solutions to Capacitive Crosstalk

- Proportional noise source: Increasing Vdd will not help
- Avoid floating nodes: use "keeper" circuits, e.g.:

- Keep sensitive nodes from full-swing signals
- Make rise/fall time large (but it can increase power)
- Use differential signaling: turns cross-talk into "common-mode" noise source
- Don't have long parallel wires
- Wires on adjacent metal levels: *perpendicular*
- Shield wires by inserting VDD/GND wires between (works in same plane as well as in vertical dimension)

Capacitance & Wire Delays

Recall rise time:

What if is C is not a constant?

Miller Effect

Both terminals of capacitor are switched in opposite directions

 $(0 \rightarrow Vdd, Vdd \rightarrow 0)$

Effective voltage is doubled and additional charge is needed

(from Q=CV)

Bottom Line:

RC time constant doubles.

ENEE 359a Lecture/s 14+15 Parasitics

Bruce Jacob

University of Maryland ECE Dept.

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 39

Capacitance & Wire Delays

• r is ratio between capacitance to neighbor and to GND:

bit <i>k</i> – 1	bit <i>k</i>	bit <i>k</i> + 1	Delay factor g
↑	\uparrow	\uparrow	1
↑	¢	83 83	1 + <i>r</i>
↑	\uparrow	\downarrow	1 + 2 <i>r</i>
10 <u></u> 01	\uparrow	23 <u>—</u> 21	1 + 2 <i>r</i>
-	\uparrow	\downarrow	1 + 3 <i>r</i>
\downarrow	Ŷ	\downarrow	1 + 4 <i>r</i>

• Wire delay may vary over 500% between worst & best case, due solely to activity on wires

Solutions to Wire-Delay Prob.

S

ŚG

Dense Wire Fabric V S G S V S

Trade-off:

- Cross-coupling capacitance 40x lower, 2% delay variation
- Increase in area and overall capacitance

ENEE 359a Lecture/s 14+15 Parasitics

Bruce Jacob

University of Maryland ECE Dept.

I/O Pad Drivers, revisited

Lecture/s 14+15 Parasitics

Bruce Jacob

ENEE 359a

University of Maryland ECE Dept.

- Enormous capacitances, require enormous gates to drive them (plus the pins & off-chip traces)
- This represents 1000x capacitive load of on-chip gate
- Big gates => big currents; fast clocks => small dt ...
 VDD/VSS leads have inductance => Ldi/dt noise

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 43

Transistor Sizing

Sizing for Large Capacitive Loads

Supose C_{load} large (e.g. bond pads, etc.)

- Scale each *inverter* (both FETs in the circuit) by a factor A (input capacitances scale by A)
- If input C to last inverter * A = C_{load} (i.e., C_{load} looks like N+1th inverter) then we have:

Input C of last inverter = $C_{in1} A^N = C_{load}$

• Rearranging:

$$A = [C_{load} \div C_{in1}]^{1/N}$$

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 44

Transistor Sizing

Sizing for Large Capacitive Loads

- Capacitances increase by factor of A left to right
- Resistances decrease by factor of A left to right

$$(R_{n1}+R_{p1}) \cdot (C_{out1}+AC_{in1}) +$$

 $(R_{n1}+R_{p1})/A \cdot (AC_{out1}+A^{2}C_{in1}) + ...$
 $= N (R_{n1}+R_{p1}) \cdot (C_{out1}+AC_{in1})$

Find optimal chain length:

$$N_{opt} = In(C_{load} \div C_{in1})$$

Load is ~8000x that of single inverter's input capacitance: find optimal solution.

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 47

But Wait!

You don't (necessarily) need the optimal arrangement

You can (perhaps) get away with a slower circuit

Say, for example, you want 1GHz (1ns) ... *0.6ns is overkill*

Minimize (integer) N to obey

 $\frac{t_{p,\max}}{t_{p0}} \ge \ln(\text{Fan-out})\frac{A}{\ln(A)} = N \times \text{Fan-out}^{1/N}$ (requires numerical methods)

Example, revisited

Load is ~8000x that of single inverter's input capacitance: find optimal solution.

If t_{p,max} = 1ns (and not 0.6ns) we can have N=4

Scaling factor A = $(20pF/2.5fF)^{1/4} = 9.46$

ENEE 359a Lecture/s 14+15 Parasitics

Bruce Jacob

University of Maryland ECE Dept.

Designing Large Transistors

ENEE 359a Lecture/s 14+15 Parasitics

Bruce Jacob

University of Maryland ECE Dept.

Designing Large Transistors

GND

ENEE 359a Lecture/s 14+15 Parasitics

Bruce Jacob

University of Maryland ECE Dept.

I/O Pad Drivers, revisited

SLIDE 56

ENEE 359a Lecture/s 14+15

Bruce Jacob

University of

Maryland ECE Dept.

Parasitics

Oh yeah ...

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 57

Resistive Parasitics

Basic Idea: IR drops over long distances

Power Rails

Possible to get relatively large non-zero voltage at input: reduces noise margins

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 59

Resistive Parasitics

IR Drops and RC Delay over long wires

(remember: delay of wire is quadratic w/ its length)

Solution: repeaters or pipelining

Instead of this:

Do this:

Or this:

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 60

Inductive Parasitics

L di/dt noise (ground bounce):

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 62

Inductive Parasitics

Simultaneous Switching Noise:

