University of Maryland ECE Dept.

## Some Parasitics <br> Prof. Bruce Jacob blj@eng.umd.edu

 \& How to Deal with ThemCredit where credit is due:
Slides contain original artwork (© Jacob 2004) as well as material taken liberally from Irwin \& Vijay's CSE477 slides (PSU), Schmit \& Strojwas's 18-322 slides (CMU), Dally's EE273 slides (Stanford), Wolf's slides for Modern VLSI Design, and/or Rabaey's slides (UCB).

ENEE 359a
Lecture/s $14+15$
Parasitics
Bruce Jacob
University of Maryland ECE Dept.

SLIDE 2

## Overview

- Circuit Integrity — Project-review presentation
- Capacitive Parasitics
- Resistive Parasitics
- Inductive Parasitics

University of Maryland ECE Dept.

## RF and Circuit Integrity in Digital Systems

## Prof. Bruce Jacob

Electrical \& Computer Engineering
University of Maryland blj@umd.edu


AFOSR-MURI Annual Review, October 2004

## Overview

## How Digital Circuits \& Systems Are Built, and Some Ways in Which They Fail

- Components of Digital Systems
- RF- and Temperature-Related Vulnerabilities
- Data Inputs and Networks
- Clock Inputs and Networks
- Power/Ground Inputs and Networks
- Circuit Design: Our Device-Under-Test


## Recent Work

- Comparison of Vulnerability: DUT's Clock/Data Inputs
- [DUT: test chip fabricated in AMI's $0.5 \mu \mathrm{~m}$ process]
- Custom Chip Design \& Fabrication for ESD Studies


## Future Work

## Digital Systems: A Primer

Simple Digital Circuit:


## Simple Digital System:

VDD pad


## Digital Systems: A Primer

## Components of Digital Systems



Most systems are pipelined:

- Multiple logic blocks operating simultaneously
- Highly synchronous: lock-step operation


## Digital Systems: A Primer

## Components of Digital Systems



## Groundplanes play significant role:

- Provide references for input amplifiers
- Allow CMOS circuits to behave as signal repeaters (with high input impedance, low output impedance)

ENEE 359a Lecture/s 14+15 Parasitics

Bruce Jacob
University of Maryland ECE Dept.

## Digital Systems: A Primer

## Components of Digital Systems



## I/O Pads play significant role:

- Enormous capacitances, require enormous gates to drive them (and the pins \& off-chip traces)
- Big gates => big currents; fast clocks => small dt ... VDD/VSS leads have inductance => Ldi/dt noise


## Digital Systems: A Primer

Components of Digital Systems


At the bottom are 'just' a bunch of MOSFETs

University of Maryland ECE Dept.

SLIDE 10

## Digital Systems: A Primer

## Components of Digital Systems



## At the bottom are 'just' a bunch of MOSFETs

- Each register shown holds one bit
- Each I/O pad requires its own ESD, receivers, \& drivers
- Logic blocks can be arbitrarily large/complex

University of Maryland ECE Dept.

SLIDE 11

## Circuit Integrity: Data

## How To Make This System Fail ...



- RF that makes it this far (past initial I/O buffers) has corrupted the system: only solution is to use higher level bus- or packet-encoding techniques
- Corrupted data can lead to incorrect results, software crash/reboot, transmission to remote nodes, etc.


## Sequential Circuits Primer

## SET-UP and HOLD times



- Storage elements (latches, registers) expect data and clock edges to be timed perfectly (e.g., within 20ps)

ENEE 359a Lecture/s 14+15

Parasitics
Bruce Jacob
University of Maryland ECE Dept.

SLIDE 13

## Sequential Circuits Primer

SET-UP and HOLD time, metastability


- Data must not transition near clock edges
- Corollary: Perturbations on clock network (e.g., noise spikes, thermal-related delays) achieve same results

ENEE 359a Lecture/s 14+15

Parasitics
Bruce Jacob
University of Maryland ECE Dept.

SLIDE 14

## Circuit Integrity: Clock

## How To Make This System Fail ...



- RF that makes it this far (past initial I/O buffers) has corrupted the system: packet-encoding techniques that might detect data corruption are inapplicable
- Unwanted clock edges likely result in metastability, lead to incorrect results, most likely system crash

University of Maryland ECE Dept.

SLIDE 15

## Circuit Integrity: Clock

## Maximum clock-frequency calculations



- Critical path determines minimum clock period (in this example: 800ps + register overhead + skew/etc. $=1000$ ps total, or 1 GHz [as opposed to $750 \mathrm{ps} / 1.33 \mathrm{GHz}$ ])

ENEE 359a Lecture/s 14+15

Parasitics
Bruce Jacob
University of Maryland ECE Dept.

SLIDE 16

## Circuit Integrity: Clock

## How To Make This System Fail ...



This portion of the system logic heats up, experiences more delay than other areas

- Thermal gradients in synchronous systems disastrous (consider tight timing margins in GHz systems)

University of Maryland ECE Dept.

SLIDE 17

## Circuit Integrity: $V_{D D} \& V_{S S}$

## How To Make This System Fail ...



- Localized (or global) ripples on groundplanes can cause logic to misbehave, inputs to be misinterpreted (e.g. suppose Data/Clk =1, V $>\mathrm{V}_{\mathrm{IL}}$ on gate of 2nd INV)
- Causes same effects as data/clock corruption

ENEE 359a

Bruce Jacob
University of Maryland ECE Dept.

## Circuit Integrity

## DISTINGUISHING CHARACTERISTICS

 of the NETWORKS in DIGITAL SYSTEMS:- CLK: Only Edges Matter
- DATA: Both Timing and Levels Matter
- VDD/GND: Even Small Changes in Level (e.g., 5-10\%) Matter

CLK/DATA: Enter Via ESD Protection
VDD/GND: 1/2 ESD (shunts one to other)

## Our Research Question

Comparing CLK and DATA inputs, which is more important:

- The distinguishing characteristics of the way those inputs will be used in the digital system or circuit?
- The levels and frequencies of injected RF?


## Our Device Under Test (counter):



Just about simplest possible digital system
[Last Year's Results: evaluated vulnerability of CLK input]

ENEE 359a Lecture/s 14+15

Parasitics
Bruce Jacob
University of Maryland ECE Dept.

SLIDE 20

## Our Device Under Test



ENEE 359a Lecture/s 14+15 Parasitics

Bruce Jacob
University of Maryland ECE Dept.

SLIDE 21

## Our Device Under Test



## Points of Interest:

- Digital system built from complementary gate designs (high input impedance, low output impedance).
- CLK only driving MUX, one DFF (see previous slide).
- => CLK and CLKSEL see virtually identical loads.

University of Maryland ECE Dept.

SLIDE 22

## Experimental RF Set-Up



## Power Amp 33dB at 1GHz

Freq 800 MHz - 4.2Ghz with 1.2 W max power

ENEE 359a Lecture/s $14+15$ Parasitics

Bruce Jacob
University of Maryland ECE Dept.

SLIDE 23

## Test Board



ENEE 359a Lecture/s $14+15$ Parasitics

Bruce Jacob
University of Maryland ECE Dept.

SLIDE 24

## Test Scenarios



ENEE 359a Lecture/s 14+15

Parasitics
Bruce Jacob
University of Maryland ECE Dept.

## CLK vs. CLKSEL Inputs

## Power-v-Freq. required to cause incorrect behavior (state change in digital logic)



ENEE 359a Lecture/s $14+15$ Parasitics

Bruce Jacob
University of Maryland ECE Dept.

SLIDE 26

## Input Impedance









ENEE 359a Lecture/s 14+15

Parasitics
Bruce Jacob
University of Maryland ECE Dept.

## Recent Work: ESD



ESD Test Chip II (layout) for Rodgers \& Firestone


Custom-designed on-chip pads to accommodate input probes

Designed \& fabricated two chips (one on right just back from fab) ... allow probing at various points between PAD and internals

ENEE 359a Lecture/s 14+15 Parasitics

Bruce Jacob
University of Maryland ECE Dept.

SLIDE 28

## Future Work

New Test Structures (e.g., to emulate larger designs, differentiate between CLK \& DATA)


ENEE 359a
Lecture/s 14+15
Parasitics
Bruce Jacob
University of Maryland ECE Dept.

## Future Work

## Using same board, test the power rail

## Design new board that differentiates GND input pin from IC's ground plane, to test the ground pin's susceptibility



ENEE 359a

Bruce Jacob
University of Maryland ECE Dept.

SLIDE 30

## Acknowledgments, etc.

## GRAD STUDENTS:

Vincent Chan, Cagdas Dirik, Samuel Rodriguez, Hongxia Wang

## INVALUABLE AID:

## Todd Firestone and John Rodgers

FOR MORE INFO:
http://www.ece.umd.edu/~blj/integrity blj@umd.edu

University of Maryland ECE Dept.

SLIDE 31

## Capacitive Parasitics

## CROSS TALK

Largely capacitive at current switching speeds ... inductive coupling is major concern in I/O of mixed signal circuits (e.g. RF).
Translation: pay attention to the cut-off frequency.


In general, $\mathrm{V}_{\text {in }} \neq \mathbf{0}$

## Capacitive Coupling

Influenced by impedance of coupled line:

- Wire Y is driven: $\Delta \mathrm{V}_{\mathrm{y}}$ is transient
- Wire Y is floating: $\Delta \mathrm{V}_{\mathrm{y}}$ is persistent

Floating:


$$
\Delta V_{y}=\Delta V_{x} \cdot \frac{C_{x y}}{C_{y+} C_{x y}}
$$

## Capacitive Coupling

Influenced by impedance of coupled line:

- Wire $Y$ is driven: $\Delta V_{y}$ is transient
- Wire Y is floating: $\Delta \mathrm{V}_{\mathrm{y}}$ is persistent


## Driven:



$$
\Delta \mathrm{V}_{\mathrm{y}}=\Delta \mathrm{V}_{\mathrm{x}} \cdot \frac{\mathrm{Z}_{\mathrm{y}} \cdot \mathrm{C}_{\mathrm{xy}}}{\mathrm{t}_{\text {rise }}}
$$

University of Maryland ECE Dept.

## Floating-Coupling Example

X is (logically unrelated) wire crossing over circuit in the metal-1 layer. Because this is a dynamic circuit, the output is floating when PDN=>false.
Example assumes capacitance to poly wire $Y$ (gate for inverter); node Y is precharged during PRE stage to 2.5 V , wire X undergoes 2.5 -> 0 V .

$3 \times 1 \mu \mathrm{~m}$ overlap: 0.19 V disturbance

ENEE 359a Lecture/s $14+15$ Parasitics

Bruce Jacob
University of Maryland ECE Dept.

SLIDE 35


## Driven-Coupling Example



Transient decays with time constant

$$
\tau_{x y}=R_{y}\left(C_{x y}+C_{y}\right)
$$

ENEE 359a Lecture/s $14+15$

Parasitics
Bruce Jacob
University of Maryland ECE Dept.


Black line quiet
Red lines pulsed
Glitches strength vs technology


Bruce Jacob
University of Maryland ECE Dept.

## Some Solutions to Capacitive Crosstalk

- Proportional noise source: Increasing Vdd will not help
- Avoid floating nodes: use "keeper" circuits, e.g.:

- Keep sensitive nodes from full-swing signals
- Make rise/fall time large (but it can increase power)
- Use differential signaling: turns cross-talk into "common-mode" noise source
- Don't have long parallel wires
- Wires on adjacent metal levels: perpendicular
- Shield wires by inserting VDD/GND wires between (works in same plane as well as in vertical dimension)

ENEE 359a Lecture/s $14+15$ Parasitics

Bruce Jacob
University of Maryland ECE Dept.

SLIDE 38

## Capacitance \& Wire Delays

## Recall rise time:




## What if is C is not a constant?



## Miller Effect

Both terminals of capacitor are switched in opposite directions ( 0 -> Vdd, Vdd -> 0 )
Effective voltage is doubled and additional charge is needed
(from Q=CV)

## Bottom Line:

RC time constant doubles.

## Capacitance \& Wire Delays

- $r$ is ratio between capacitance to neighbor and to GND:

| bit $\boldsymbol{k} \mathbf{- 1}$ | bit $\boldsymbol{k}$ | bit $\boldsymbol{k}+\boldsymbol{1}$ | Delay factor $\boldsymbol{g}$ |
| :---: | :---: | :---: | :---: |
| $\uparrow$ | $\uparrow$ | $\uparrow$ | 1 |
| $\uparrow$ | $\uparrow$ | - | $1+r$ |
| $\uparrow$ | $\uparrow$ | $\downarrow$ | $1+2 r$ |
| - | $\uparrow$ | - | $1+2 r$ |
| - | $\uparrow$ | $\downarrow$ | $1+3 r$ |
| $\downarrow$ | $\uparrow$ | $\downarrow$ | $1+4 r$ |

- Wire delay may vary over $500 \%$ between worst \& best case, due solely to activity on wires

University of Maryland ECE Dept.

## Solutions to Wire-Delay Prob.

## Dense Wire Fabric



## Trade-off:

- Cross-coupling capacitance 40x lower, 2\% delay variation
- Increase in area and overall capacitance

| Bruce Jacob |
| ---: |
| University of |
| Maryland |
| ECE Dept. |

SLIDE 41

## Solutions to Wire-Delay Prob.



Bus encoding to reduce "bad" transitions

ENEE 359a Lecture/s 14+15 Parasitics

Bruce Jacob
University of Maryland ECE Dept.

SLIDE 42

## I/O Pad Drivers, revisited



## I/O Pads constrain your design:

- Enormous capacitances, require enormous gates to drive them (plus the pins \& off-chip traces)
- This represents 1000x capacitive load of on-chip gate
- Big gates => big currents; fast clocks => small dt ... VDD/VSS leads have inductance => Ldi/dt noise


## Transistor Sizing

## Sizing for Large Capacitive Loads



Supose $\mathrm{C}_{\text {load }}$ large (e.g. bond pads, etc.)

- Scale each inverter (both FETs in the circuit) by a factor A (input capacitances scale by A)
- If input $\mathbf{C}$ to last inverter * $\mathbf{A}=\mathbf{C}_{\text {load }}$
(i.e., $\mathrm{C}_{\text {load }}$ looks like $\mathrm{N}+1^{\text {th }}$ inverter) then we have:

Input $C$ of last inverter $=C_{\text {in } 1} A^{N}=C_{\text {load }}$

- Rearranging:

$$
A=\left[C_{\text {load }} \div C_{\text {in } 1}\right]^{1 / N}
$$

## Transistor Sizing

## Sizing for Large Capacitive Loads



- Capacitances increase by factor of A left to right
- Resistances decrease by factor of A left to right
- Total delay ( $\mathrm{t}_{\mathrm{pHL}}+\mathrm{t}_{\mathrm{pLH}}$ ):

$$
\begin{gathered}
\left(R_{n 1}+R_{p 1}\right) \cdot\left(C_{o u t 1}+A C_{i n 1}\right)+ \\
\left(R_{n 1}+R_{p 1}\right) / A \cdot\left(A C_{\text {out } 1}+A^{2} C_{i n 1}\right)+\ldots \\
=N\left(R_{n 1}+R_{p 1}\right) \cdot\left(C_{\text {out } 1}+A C_{i n 1}\right)
\end{gathered}
$$

- Find optimal chain length:

$$
N_{\text {opt }}=\ln \left(C_{\text {load }} \div C_{i n 1}\right)
$$

University of Maryland ECE Dept.

SLIDE 45

## Example



Load is $\sim 8000 x$ that of single inverter's input capacitance: find optimal solution.

| ENEE 359a |
| ---: |
| Lecture/s 14+15 <br> Parasitics |
| Bruce Jacob |
| University of |
| Maryland |
| ECE Dept. |

SLIDE 46

## Example


$N_{\text {opt }}=\ln (20 \mathrm{pF} / 2.5 \mathrm{fF})=8.98=>9$ stages
Scaling factor $A=(20 \mathrm{pF} / 2.5 \mathrm{fF})^{1 / 9}=2.7$
Total delay $=\left(t_{p H L}+t_{p L H}\right)$
$=N\left(R_{n 1}+R_{p 1}\right) \cdot\left(C_{o u t 1}+A C_{i n 1}\right)$
$=N\left(R_{n 1}+R_{p 1}\right) \cdot\left(C_{\text {out } 1}+\left[C_{\text {load }} \div C_{i n 1}\right]^{1 / N} C_{i n 1}\right)$
(assume $\mathrm{C}_{\mathrm{in} 1}=1.5 \mathrm{C}_{\text {out1 }}=2.5 \mathrm{fF}$ )
$=9 \cdot(31 / 9+13 / 3) \cdot(1.85 f F+2.7 \cdot 2.5 f F)$
$=602 \mathrm{ps}(0.6 \mathrm{~ns})$

Bruce Jacob
University of Maryland ECE Dept.

## But Wait!

> You don't (necessarily) need the optimal arrangement
> You can (perhaps) get away with a slower circuit

Say, for example, you want 1 GHz (1ns) ... $0.6 n s$ is overkill

Minimize (integer) $\mathbf{N}$ to obey

$$
\frac{t_{\mathrm{p}, \max }}{\boldsymbol{t}_{\boldsymbol{p} 0}} \geq \ln (\text { Fan-out }) \frac{\boldsymbol{A}}{\ln (\boldsymbol{A})}=N \times \text { Fan-out }^{1 / N}
$$

(requires numerical methods)

ENEE 359a

Bruce Jacob
University of Maryland ECE Dept.

## Example, revisited



Load is ~8000x that of single inverter's input capacitance: find optimal solution.

If $t_{p, \max }=1 \mathrm{~ns}$ (and not 0.6 ns ) we can have
$\mathrm{N}=4$
Scaling factor $A=(20 \mathrm{pF} / 2.5 \mathrm{fF})^{1 / 4}=9.46$

| ENEE 359a |
| ---: |
| Lecture/s 14+15 <br> Parasitics |
| Bruce Jacob |
| University of <br> Maryland <br> ECE Dept. |

SLIDE 49

## Example, revisited



$$
\mathrm{N}_{\mathrm{opt}}=>4 \text { stages }
$$

Scaling factor $A=(20 p F / 2.5 f F)^{1 / 4}=9.46$
Total delay $=\left(t_{p H L}+t_{p L H}\right)$
$=N\left(R_{n 1}+R_{p 1}\right) \cdot\left(C_{o u t 1}+A C_{i n 1}\right)$
$=N\left(R_{n 1}+R_{p 1}\right) \cdot\left(C_{\text {out } 1}+\left[C_{\text {load }} \div C_{i n 1}\right]^{1 / N} C_{i n 1}\right)$
(assume $\mathrm{C}_{\mathrm{in} 1}=1.5 \mathrm{C}_{\text {out } 1}=2.5 \mathrm{fF}$ )
$=4 \cdot(31 / 9+13 / 3) \cdot(1.85 f F+9.46 \cdot 2.5 f F)$
= 793 ps (0.8 ns)

Bruce Jacob
University of Maryland ECE Dept.

## Example, revisited



## Versus:



Reduced area, reduced current, reduced capacitance, nearly same speed
(better parasitics, ground bounce effects)

Bruce Jacob
University of Maryland ECE Dept.

## Can we do better?



$$
\mathbf{N}_{\mathrm{opt}}=>3 \text { stages }
$$

Scaling factor $A=(20 p F / 2.5 f F)^{1 / 3}=20$
Total delay $=\left(t_{\mathrm{pHL}}+\mathrm{t}_{\mathrm{pLH}}\right)$
$=N\left(R_{n 1}+R_{p 1}\right) \cdot\left(C_{o u t 1}+A C_{i n 1}\right)$
$=N\left(R_{n 1}+R_{p 1}\right) \cdot\left(C_{\text {out } 1}+\left[C_{\text {load }} \div C_{i n 1}\right]^{1 / N} C_{i n 1}\right)$
(assume $\mathrm{C}_{\mathrm{in} 1}=1.5 \mathrm{C}_{\text {out } 1}=2.5 \mathrm{fF}$ )
$=3 \cdot(31 / 9+13 / 3) \cdot(1.85 \mathrm{fF}+20 \cdot 2.5 \mathrm{fF})$
$=1210 \mathrm{ps}(1.2 \mathrm{~ns})$

| Bruce Jacob |
| ---: |
| University of |
| Maryland |
| ECE Dept. |

SLIDE 52

## Tri-State Buffers



Increased output drive
Inverting tri-state buffer


Non-inverting tri-state buffer


ENEE 359a
Lecture/s $14+15$
Parasitics

| Bruce Jacob |
| ---: |
| University of |
| Maryland |
| ECE Dept. |

SLIDE 53

## Designing Large Transistors

D(rain)


ENEE 359a
Lecture/s $14+15$
Parasitics

| Bruce Jacob |
| ---: |
| University of |
| Maryland |
| ECE Dept. |

SLIDE 54

## Designing Large Transistors

GND


Out

ENEE 359a
Lecture/s $14+15$
Parasitics
Bruce Jacob
University of Maryland ECE Dept.

SLIDE 55

## I/O Pads, again



Where have you seen this before?

ENEE 359a
Lecture/s 14+15
Parasitics
Bruce Jacob
University of Maryland ECE Dept.

SLIDE 56

## I/O Pad Drivers, revisited



## Oh yeah ...

## Resistive Parasitics

Basic Idea: IR drops over long distances
Power Rails


Possible to get relatively large non-zero voltage at input: reduces noise margins

ENEE 359a Lecture/s $14+15$

Parasitics

| Bruce Jacob |
| ---: |
| University of |
| Maryland |
| ECE Dept. |

SLIDE 58

## Power/Ground Distribution


(a) Finger-shaped network

(b) Network with multiple supply pins

## Resistive Parasitics

## IR Drops and RC Delay over long wires

- (remember: delay of wire is quadratic w/ its length)


## Solution: repeaters or pipelining

Instead of this:

Do this:


Or this:


ENEE 359a Lecture/s 14+15 Parasitics

| Bruce Jacob |
| ---: |
| University of |
| Maryland |
| ECE Dept. |

SLIDE 60


## Inductive Parasitics

L di/dt noise (ground bounce):


REALISTIC

ENEE 359a Lecture/s 14+15 Parasitics

Bruce Jacob
University of Maryland ECE Dept.

SLIDE 61

## Inductive Parasitics

L di/dt noise (ground bounce):


REALISTIC

ENEE 359a Lecture/s $14+15$ Parasitics

Bruce Jacob
University of Maryland ECE Dept.

SLIDE 62

## Inductive Parasitics

## Simultaneous Switching Noise:



