ENEE 359a
Lecture/s 9 Transistor Sizing

Bruce Jacob
University of Maryland ECE Dept.

Transistor Sizing \& Logical Effort

Prof. Bruce Jacob blj@ece.umd.edu

Credit where credit is due:
Slides contain original artwork (© Jacob 2004) as well as material taken liberally from Irwin \& Vijay's CSE477 slides (PSU), Schmit \& Strojwas's 18-322 slides (CMU), Dally's EE273 slides (Stanford), Wolf's slides for Modern VLSI Design, and/or Rabaey's slides (UCB).
ENEE 359a
Lecture/s 9
Transistor Sizing

Bruce Jacob
University of
Maryland
ECE Dept.
SLIDE 2

Overview

- Sizing of transistors to balance performance of single inverter
- More on RC time constant, first-order approximation of time delays
- Sizing in complex gates, examples
- Sizing of inverter chains for driving high capacitance loads (off-chip wires)

ENEE 359a
Lecture/s 9 Transistor Sizing

Bruce Jacob
University of Maryland ECE Dept.

SLIDE 4

Resistance

Resistance of MOSFET:

$$
\boldsymbol{R}_{\mathrm{n}}=\frac{1}{\mu_{\mathrm{n}} \boldsymbol{C}_{\mathrm{ox}}\left(\boldsymbol{V}_{\mathrm{GS}}-\boldsymbol{V}_{\mathrm{Tn}}\right)}\left(\frac{\boldsymbol{L}}{\boldsymbol{W}}\right)
$$

- Increasing W decreases the resistance; allows more current to flow

Oxide capacitance $C_{\mathrm{ox}}=\varepsilon_{\mathrm{ox}} / t_{\mathrm{ox}}\left[\mathrm{F} / \mathrm{cm}^{2}\right]$
Gate capacitance $C_{G}=C_{\mathrm{ox}} W L[F]$
Transconductance $\beta_{\mathrm{n}}=\mu_{\mathrm{n}} \boldsymbol{C}_{\mathrm{ox}}\left(\frac{\boldsymbol{W}}{\boldsymbol{L}}\right)=\boldsymbol{k}_{\mathrm{n}}^{\prime}\left(\frac{\boldsymbol{W}}{\boldsymbol{L}}\right)$ (units $\left[\mathrm{A} / \mathrm{V}^{2}\right]$)

Bruce Jacob
University of Maryland ECE Dept.

SLIDE 5

$$
\begin{aligned}
\boldsymbol{R}_{\mathrm{n}}=\frac{1}{\beta_{\mathrm{n}}\left(\boldsymbol{V}_{\mathrm{DD}}-\boldsymbol{V}_{\mathrm{Tn}}\right)} & \beta_{\mathrm{n}}=\mu_{\mathrm{n}} \boldsymbol{C}_{\mathrm{ox}}\left(\frac{\boldsymbol{W}}{\boldsymbol{L}}\right)_{\mathrm{n}} \\
\boldsymbol{R}_{\mathrm{p}}=\frac{1}{\beta_{\mathrm{p}}\left(\boldsymbol{V}_{\mathrm{DD}}-\mid \boldsymbol{V}_{\mathrm{Tp}}\right)} & \beta_{\mathrm{p}}=\mu_{\mathrm{p}} \boldsymbol{C}_{\mathrm{ox}}\left(\frac{\boldsymbol{W}}{\boldsymbol{L}}\right)_{\mathrm{p}} \\
\frac{\mu_{\mathrm{n}}}{\mu_{\mathrm{p}}}=\boldsymbol{r} & \begin{array}{c}
\text { Typically } \\
(2 . .3)
\end{array}
\end{aligned}
$$

(μ is the carrier mobility through device)

ENEE 359a
Lecture/s 9 Transistor Sizing

Bruce Jacob
University of Maryland ECE Dept.

If $(W / L)_{p}=r(W / L)_{n}$ then $B_{n}=\beta_{p}$
(and $\mathrm{R}_{\mathrm{n}}=\mathrm{R}_{\mathrm{p}}$)
... symmetric inverter
Make pFET bigger (wider) by factor of r

ENEE 359a
Lecture/s 9 Transistor Sizing

Bruce Jacob
University of Maryland ECE Dept.

Transistor Sizing

SIMPLE CASE: Inverter

$$
\begin{gathered}
t_{p L H}=\ln (2) R_{p} C_{L}=0.69 R_{p} C_{L} \\
t_{p H L}=\ln (2) R_{n} C_{L}=0.69 R_{n} C_{L} \\
t_{p}=\left(t_{p H L}+t_{p L H}\right) / 2=0.69 C_{L}\left(R_{n}+R_{p}\right) / 2
\end{gathered}
$$

(note: the $\ln (2) R C$ term comes from first-order analysis of simple RC circuit's respose to step input ... time for output to reach 50% value ... more detail on this in a moment, after we discuss capacitance ...)

Sheet Resistance

$R=\rho I /(w h)=I / w \cdot \rho / h$ for rectangular wires Sheet resistance $R_{\text {sq }}=\rho / h \quad$ (h=thickness)

Material	Sheet resistance $\mathbf{R}_{\mathbf{s q}}(\Omega / \mathbf{s q})$
n, p well diffusion	1000 to 1500
$\mathrm{n}+, \mathrm{p}+$ diffusion	50 to 150
polysilicon	150 to 200
polysilicon with silicide	4 to 5
Aluminum	0.05 to 0.1

ENEE 359a Lecture/s 9 Transistor Sizing

Bruce Jacob
University of Maryland ECE Dept.

SLIDE 10

More on Resistance

Sheet resistance $\mathbf{R}_{\text {sq }}$

6 squares

ENEE 359a Lecture/s 9 Transistor Sizing

Bruce Jacob
University of Maryland ECE Dept.

SLIDE 11

More on Resistance

reliability
(it's not just the channel that counts)

ENEE 359a Lecture/s 9 Transistor Sizing

Bruce Jacob
University of Maryland ECE Dept.

SLIDE 12

And Now ... Capacitance (CL)

- intrinsic MOS transistor capacitances
- extrinsic MOS transistor (fanout) capacitances
- wiring (interconnect) capacitance

ENEE 359a
Lecture/s 9 Transistor Sizing

Bruce Jacob
University of Maryland ECE Dept.

SLIDE 13

C_{W}, a Large Example

Given:
$\mathrm{R}=40 \mathrm{~m} \Omega /$
$\mathrm{C}_{\text {tringe }}=0.044 \mathrm{fF} / \mu \mathrm{m}$
$\mathrm{C}_{\text {plate }}=0.031 \mathrm{fF} / \mu \mathrm{m}^{2}$
Determine:
the resistance between A and B , the plate and fringe capacitances to ground.

ENEE 359a
Lecture/s 9 Transistor Sizing

Bruce Jacob
University of Maryland ECE Dept.

SLIDE 14

C_{W}, a Large Example

Given:
$\mathrm{R}=40 \mathrm{~m} \Omega /$
$C_{\text {tringe }}=0.044 \mathrm{fF} / \mu \mathrm{m}$
$\mathrm{C}_{\text {plate }}=0.031 \mathrm{fF} / \mu \mathrm{m}^{2}$

Determine:

the resistance between A and B , the plate and fringe capacitances to ground.
$R=(9+2 * 0.56$ squares $) * 40 \mathrm{~m} \Omega /=404.8 \mathrm{~m} \Omega$
$\mathrm{C}_{\text {tripes }}=$ Perimeter $\mathrm{C}_{\text {thige }}=96.8 \mathrm{FF}$
(Perimeter $=2200 \mu \mathrm{~m}$)
$\mathrm{C}_{\text {pitata. }}=$ Area $\mathrm{C}_{\text {pltat }}=3.41 \mathrm{pF}$
(Area $=110,000 \mu \mathrm{~m}^{2}$)

ENEE 359a Lecture/s 9 Transistor Sizing

Bruce Jacob
University of Maryland ECE Dept.

SLIDE 15

Two Chained Inverters

ENEE 359a
Lecture/s 9 Transistor Sizing

Bruce Jacob
University of Maryland ECE Dept.

SLIDE 16

Gate-Drain Capacitance C_{GD}

Scales with transistor width W

ENEE 359a
Lecture/s 9 Transistor Sizing

Bruce Jacob
University of Maryland ECE Dept.

SLIDE 17

Diffusion Capacitance $C_{D B}$

University of
Maryland
ECE Dept.

- Drain is reverse-biased diode, non-linear C dependent on drain voltage (approx. nonlinearity with linear eqn, using K terms for bottom plate and sidewalls)

ENEE 359a
Lecture/s 9 Transistor Sizing

Bruce Jacob
University of Maryland ECE Dept.

SLIDE 18

Gate/Fan-out Capacitance C_{G}

Scales with both W and L

ENEE 359a
Lecture/s 9 Transistor Sizing

Bruce Jacob
University of Maryland ECE Dept.

Two Chained Inverters: C_{L}

C Term	Expression	$\begin{aligned} & \text { Value (fF) } \\ & H \rightarrow L \end{aligned}$	$\begin{aligned} & \text { Value (fF) } \\ & L \rightarrow H \end{aligned}$
$\mathrm{C}_{\text {GD1 }}$	$2 \mathrm{C}_{\text {on }} \mathrm{W}_{\mathrm{n}}$	0.23	0.23
$\mathrm{C}_{\text {GD2 }}$	$2 \mathrm{C}_{\mathrm{op}} \mathrm{W}_{\mathrm{p}}$	0.61	0.61
$\mathrm{C}_{\text {DB1 }}$	$K_{\text {eqbpn }} A D_{n} \mathrm{C}_{\mathrm{j}}+\mathrm{K}_{\text {eqswn }} \mathrm{PD}_{\mathrm{n}} \mathrm{C}_{\mathrm{jsw}}$	0.66	0.90
$\mathrm{C}_{\text {DB2 }}$	$K_{\text {eqbpp }} A D_{p} C_{j}+K_{\text {eqswp }} P D_{p} C_{j s w}$	1.50	1.15
$\mathrm{C}_{\mathrm{G} 3}$	$2 C_{\text {on }} W_{n}+C_{o x} W_{n} L_{n}$	0.76	0.76
$\mathrm{C}_{\mathrm{G} 4}$	$2 \mathrm{C}_{\text {op }} W_{p}+C_{o x} W_{p} L_{p}$	2.28	2.28
C_{W}	From extraction	0.12	0.12
C_{L}	Sum	6.1	6.0

- Terms in red: under control of designer
- $\quad C_{L}$ split between intrinsic and extrinsic/wire sources

University of Maryland ECE Dept.

MOSFET Switching

Parallel switching (all switch at same time):

$$
\begin{aligned}
& \text { VDD } \rightarrow \text { - } \\
& t_{\text {PLH }}=0.7 \cdot \frac{R_{\mathrm{p}}}{N} \bullet\left(N \cdot C_{\text {oxp }}+C_{\text {load }}\right) \\
& \underset{\underset{I}{I}}{\underline{1}} C_{\text {load }}
\end{aligned}
$$

Series switching (all switch at same time):

ENEE 359a
Lecture/s 9 Transistor Sizing

Bruce Jacob
University of Maryland ECE Dept.

SLIDE 21

RC Delay, Two Inverters

- VDD=2.5V, 0.25mm
- $W / L_{n}=1.5, W / L_{p}=4.5$
- $R_{\text {eqn }}=13 \mathrm{k} \Omega(\div 1.5)$
- $R_{\text {eqp }}=31 \mathrm{k} \Omega(\div 4.5)$
$\mathrm{t}_{\mathrm{pHL}}=0.69 \mathrm{R}_{\mathrm{n}} \mathrm{C}=36 \mathrm{ps}$
$\mathrm{t}_{\mathrm{pLH}}=0.69 \mathrm{R}_{\mathrm{p}} \mathrm{C}=29 \mathrm{ps}$
From SPICE simulation:
$\mathrm{t}_{\mathrm{pHL}}=39.9 \mathrm{ps}, \mathrm{t}_{\mathrm{pLH}}=31.7 \mathrm{ps}$

Bruce Jacob
University of Maryland ECE Dept.

SLIDE 22

Transistor Sizing I

The electrical characteristics of transistors determine the switching speed of a circuit

- Need to select the aspect ratios $(W / L)_{n}$ and $(W / L)_{p}$ of every FET in the circuit

Define Unit Transistor ($\mathbf{R}_{1}, \mathrm{C}_{1}$)

- $L / W_{\text {min }}->$ highest resistance (needs scaling)
- $R_{2}=R_{1} \div 2$ and $C_{2}=2 \cdot C_{1}$
- Separate nFET and pFET unit transistors
- Unit devices are not restricted to individual transistors

ENEE 359a
Lecture/s 9 Transistor Sizing

Bruce Jacob
University of Maryland ECE Dept.

Sizing I: Complex Gates

Critical transistors: those in series

- $\quad \mathbf{N}$ FETs in series => scale each by factor of \mathbf{N}
- Ignore FETs in parallel (assume worst case: only 1 on)
- Ultimate goal: total resistance of net =1 square

ENEE 359a
Lecture/s 9 Transistor Sizing

Bruce Jacob
University of Maryland ECE Dept.

Sizing I: Complex Gates

Critical transistors: those in series

- $\quad \mathbf{N}$ FETs in series => scale each by factor of \mathbf{N}
- Ignore FETs in parallel (assume worst case: only 1 on)
- Ultimate goal: total resistance of net =1 square

ENEE 359a Lecture/s 9 Transistor Sizing

Bruce Jacob
University of Maryland ECE Dept.

SLIDE 26

Examples

ENEE 359a

Bruce Jacob
University of Maryland ECE Dept.

Ways to Improve Gate Delay

$$
t_{p} \approx\left(t_{p H L}+t_{p L H}\right) \approx\left[C_{L} \div\left(k^{\prime} W / L V_{D D}\right)\right]
$$

Reduce C_{L}

- internal diffusion capacitance of the gate itself (keep the drain diffusion as small as possible)
- other terms: interconnect capacitance \& fanout

Increase W/L ratio of the transistor

- the most powerful and effective performance optimization tool in the hands of the designer
- watch out for self-loading! - when the intrinsic capacitance dominates the extrinsic load

$$
\text { Increase } \mathrm{V}_{\mathrm{DD}}
$$

- can trade-off energy for performance
- increasing V_{DD} above a certain level yields only very minimal improvements
- reliability concerns enforce a firm upper bound on $V_{D D}$

Bruce Jacob
University of Maryland ECE Dept.

Gate Delay, Revisited

LH scenario

$t_{p} \approx\left(t_{p H L}+t_{p L H}\right) \approx 0.7 R_{\text {ref }} C_{\text {ref }}\left(1+C_{e x t} / S C_{\text {iref }}\right)$

- widening the PMOS improves $\mathrm{t}_{\mathrm{pLH}}\left(\mathrm{R}_{\mathrm{p}}\right.$ is lower) but degrades $\mathrm{t}_{\mathrm{pHL}}$ (increases intrinsic capacitance G_{GD} and G_{DB})
- widening the NMOS improves $\mathrm{t}_{\mathrm{pHL}}$ (R_{n} is lower) but degrades $\mathrm{t}_{\mathrm{pLH}}$ (increases intrinsic capacitance G_{GD} and G_{DB})

ENEE 359a
Lecture/s 9 Transistor Sizing

Bruce Jacob
University of Maryland ECE Dept.

Gate Delay, Revisited

So far have sized the PMOS and NMOS so

 that the R_{eq} 's match (ratio between 2 \& 3.5)- symmetrical VTC
- equal high-to-low and low-to-high propagation delays

If speed is the only concern, reduce the width of the PMOS device!

- widening the PMOS degrades $\mathrm{t}_{\mathrm{pHL}}$ due to larger parasitic capacitance (intrinsic capacitance)

$$
B=\left(W / L_{p}\right) /\left(W / L_{n}\right)
$$

- $r=R_{\text {eqp }} / R_{\text {eqn }}$ (resistance ratio of identically-sized PMOS and NMOS)
- $\quad B_{\mathrm{opt}} \approx \sqrt{ }$ if wiring capacitance negligible

ENEE 359a
Lecture/s 9 Transistor Sizing

Bruce Jacob
University of Maryland ECE Dept.

SLIDE 32

Gate Delay, Revisited

- B of $2.4\left(R_{p} / R_{n}=31 \mathrm{k} \Omega / 13 \mathrm{k} \Omega\right)$ [what we've looked at] gives symmetric response
- B of 1.6 to 1.9 gives optimal performance

ENEE 359a
Lecture/s 9 Transistor Sizing

Bruce Jacob
University of Maryland ECE Dept.

Inverter Delay

$$
\begin{gathered}
\mathrm{t}_{\mathrm{p}}=0.7 \mathbf{R}_{\mathrm{ref}} \mathrm{C}_{\mathrm{ref}}\left(1+\mathrm{C}_{\mathrm{ext}} / \mathrm{SC}_{\text {iref }}\right) \\
C_{\mathrm{int}}=\gamma C_{\mathrm{g}} \\
t_{\mathrm{p}}=t_{\mathrm{po} 0}\left(1+\frac{C_{\mathrm{ext}}}{\gamma C_{\mathrm{g}}}\right) \\
t_{\mathrm{p}}=t_{\mathrm{po}}\left(1+\frac{f}{\gamma}\right)
\end{gathered}
$$

Propagation time is function of ratio of external to internal capacitance

This ratio is called fan-out, f

Gamma term is function of technology, $\gamma \approx 1$

Bruce Jacob
University of Maryland ECE Dept.

Sizing \& Big Gates

Sizing for Large Capacitive Loads

Supose $\mathrm{C}_{\text {load }}$ large (e.g. off-chip wires)

- Scale each inverter (both FETs in the circuit) by a factor A (input capacitances scale by A)
- if input C to last inverter * $A=C_{\text {load }}$
(i.e., $\mathrm{C}_{\text {load }}$ looks like $\mathrm{N}+1^{\text {th }}$ inverter) then we have:

Input C of last inverter $=C_{\text {in } 1} A^{N}=C_{\text {load }}$

- Rearranging:

$$
A=\left[C_{\text {load }} \div C_{\text {in } 1}\right]^{1 / N}
$$

Bruce Jacob
University of Maryland ECE Dept.

Sizing \& Big Gates

Sizing for Large Capacitive Loads

- Capacitances increase by factor of A left to right
- Resistances decrease by factor of A left to right
- Total delay ($\mathrm{t}_{\mathrm{pHL}}+\mathrm{t}_{\mathrm{pLH}}$):

$$
\begin{gathered}
\left(R_{n 1}+R_{p 1}\right) \cdot\left(C_{o u t 1}+A C_{i n 1}\right)+ \\
\left(R_{n 1}+R_{p 1}\right) / A \cdot\left(A C_{\text {out } 1}+A^{2} C_{i n 1}\right)+\ldots \\
=N\left(R_{n 1}+R_{p 1}\right) \cdot\left(C_{\text {out1 }}+A C_{i n 1}\right)
\end{gathered}
$$

- Find optimal chain length:

$$
N_{\text {opt }}=\ln \left(C_{\text {load }} \div C_{\text {in } 1}\right)
$$

ENEE 359a Lecture/s 9 Transistor Sizing

Bruce Jacob
University of Maryland ECE Dept.

SLIDE 36

Sizing \& Big Gates

Logic Symbol		Truth Table			
		PAD OE DI DO X 1 X In 1 0 1 X 0 0 0 X			

I/O Pad: large structures are ESD diodes and inverter chains (scale: pad is ~65 $\mu \mathrm{m}$)

ENEE 359a
Lecture/s 9
Transistor Sizing

Bruce Jacob
University of Maryland ECE Dept.

SLIDE 39

Generalize: Logical Effort

Want to find minimum delay for chains:

Main Points:

- Path length is (maybe) fixed; find scaling
- Want constant scaling factor along path [this gives same gate effort at each stage]
- RC delay of a gate uses sum of internal C (its own $\mathrm{C}_{\text {out }}$) and input of next gate (C_{in})

ENEE 359a
Lecture/s 9 Transistor Sizing

Bruce Jacob
University of Maryland ECE Dept.

Definitions

Total Path Effort H = GFB

Optimal gate effort $\mathrm{h}=\sqrt[N]{H}$
Redefine inverter delay:

$$
t_{\mathrm{p}}=t_{\mathrm{p} 0}\left(1+\frac{f}{\gamma}\right) \quad \Rightarrow \quad t_{\mathrm{p}}=t_{\mathrm{p} 0}\left(p+\frac{f g}{\gamma}\right)
$$

Total delay through path:

$$
D=t_{\mathrm{p} 0} \sum\left(p_{i}+\frac{f_{i} g_{i}}{\gamma}\right)
$$

Minimum delay through path:

$$
D=t_{\mathrm{p} 0}\left(\sum p_{i}+\frac{N^{N} \sqrt{H}}{\gamma}\right)
$$

ENEE 359a
Lecture/s 9 Transistor Sizing

Bruce Jacob
University of Maryland ECE Dept.

SLIDE 46

Analysis

Find minimum delay for chain (assume r=2):

Bruce Jacob
University of Maryland ECE Dept.

SLIDE 47

Analysis

Find minimum delay for chain (assume $r=2$):

$f_{1}=2.53$
$\mathrm{f}_{2}=2.53 \cdot 3 / 4=1.9$
$f_{3}=2.53 \cdot 3 / 4=1.9$
$\mathrm{f}_{4}=2.53 \cdot 3 / 7=1.1$
$f_{5}=2.53$
$s_{1}=1$
$\mathbf{s}_{2}=\mathrm{f}_{1} \cdot \mathrm{~g}_{1} / \mathrm{g}_{2}=1.9$
$s_{3}=f_{1} f_{2} \cdot g_{1} / g_{3}=3.6$
$s_{4}=f_{1} f_{2} f_{3} \cdot g_{1} / g_{4}=3.9$
$\mathrm{S}_{5}=\mathrm{f}_{1} \mathrm{f}_{2} \mathrm{f}_{3} \mathrm{f}_{4} \cdot \mathrm{~g}_{1} / \mathrm{g}_{5}=10.0$

