Bruce Jacob

University of Maryland ECE Dept.

SLIDE 1

ENEE 359a Digital VLSI Design

Transistor Sizing & Logical Effort

Prof. Bruce Jacob blj@ece.umd.edu

Credit where credit is due:

Slides contain original artwork (© Jacob 2004) as well as material taken liberally from Irwin & Vijay's CSE477 slides (PSU), Schmit & Strojwas's 18-322 slides (CMU), Dally's EE273 slides (Stanford), Wolf's slides for *Modern VLSI Design*, and/or Rabaey's slides (UCB).

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 2

Overview

- Sizing of transistors to balance performance of single inverter
- More on RC time constant, first-order approximation of time delays
- Sizing in complex gates, examples
- Sizing of inverter chains for driving high capacitance loads (off-chip wires)

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 4

Resistance

Resistance of MOSFET:

$$\boldsymbol{R}_{n} = \frac{1}{\mu_{n} \boldsymbol{C}_{ox} (\boldsymbol{V}_{GS} - \boldsymbol{V}_{Tn})} \left(\frac{\boldsymbol{L}}{\boldsymbol{W}}\right)$$

 Increasing W decreases the resistance; allows more current to flow

Oxide capacitance $C_{ox} = \epsilon_{ox} / t_{ox}$ [F/cm²]

Gate capacitance $C_{\rm G} = C_{\rm ox} WL$ [F]

Transconductance $\beta_n = \mu_n C_{ox} \left(\frac{W}{L} \right) = k'_n \left(\frac{W}{L} \right)$

(units [A/V²])

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 5

Resistance

nFET vs. pFET

$$R_{n} = \frac{1}{\beta_{n}(V_{DD} - V_{Tn})} \qquad \beta_{n} = \mu_{n}C_{ox}\left(\frac{W}{L}\right)_{n}$$
$$R_{p} = \frac{1}{\beta_{p}(V_{DD} - |V_{Tp}|)} \qquad \beta_{p} = \mu_{p}C_{ox}\left(\frac{W}{L}\right)_{p}$$

 μ_{p}

(µ is the carrier mobility through device)

(2..3)

RC circuit's respose to step input ... time for output to reach 50% value ... more detail on this in a moment, after we discuss *capacitance* ...)

UNIVERSITY OF MARYLAND

ENEE 359a Lecture/s 9 Transistor Sizing Bruce Jacob University of Maryland ECE Dept. SLIDE 8

- R = pl/A = pl/(wh) for rectangular wires (on-chip wires & vias, PCB traces)
- $R = \rho I/A = \rho I/(\pi r^2)$ for circular wires (off-chip, off-PCB)

Material Resistivity ρ (Ω	
Silver (Ag)	1.6 x 10-8
Copper (Cu)	1.7 x 10-8
Gold (Au)	2.2 x 10-8
Aluminum (Al)	2.7 x 10-8
Tungsten (W)	5.5 x 10-8

UNIVERSITY OF MARYLAND

Sheet Resistance

 $R = \rho l/(wh) = l/w \cdot \rho/h$ for rectangular wires Sheet resistance $R_{sq} = \rho/h$ (*h=thickness*)

Material	Sheet resistance R _{sq} (Ω/sq)	
n, p well diffusion	1000 to 1500	
n+, p+ diffusion	50 to 150	
polysilicon	150 to 200	
polysilicon with silicide	4 to 5	
Aluminum	0.05 to 0.1	

ENEE 359a Lecture/s 9 Transistor Sizing

Bruce Jacob

University of Maryland ECE Dept.

More on Resistance

(it's not just the channel that counts)

SLIDE 11

ENEE 359a Lecture/s 9

Bruce Jacob

University of ________ Maryland

ECE Dept.

Transistor Sizing

And Now ... Capacitance (C_L)

- intrinsic MOS transistor capacitances
- extrinsic MOS transistor (fanout) capacitances
- wiring (interconnect) capacitance

ENEE 359a Lecture/s 9 Transistor Sizing

Bruce Jacob

University of Maryland ECE Dept.

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 13

C_W, a Large Example

Given: R = 40 mΩ/□ C_{tringe} = 0.044 fF/μm C_{plate} = 0.031 fF/μm²

Determine:

the resistance between A and B, the plate and fringe capacitances to ground.

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 14

C_W, a Large Example

Given: R = 40 mΩ/□ C_{tringe} = 0.044 fF/μm C_{plate} = 0.031 fF/μm²

Determine:

the resistance between A and B, the plate and fringe capacitances to ground.

```
\label{eq:response} \begin{array}{l} \mathsf{R} = (9+2*\ 0.56\ \text{squares}) *\ 40\ \text{m}\Omega/\Box = \ 404.8\ \text{m}\Omega \\ \mathsf{C}_{\text{tringe,g}} = \mathsf{Perimeter}\ \mathsf{C}_{\text{tringe}} = 96.8\text{fF} \\ (\mathsf{Perimeter} = 2200\ \mu\text{m}) \\ \mathsf{C}_{\text{plate,g}} = \mathsf{Area}\ \mathsf{C}_{\text{plate}} = 3.41\text{pF} \\ (\mathsf{Area} = 110,000\ \mu\text{m}^2) \end{array}
```


Drain is reverse-biased diode, non-linear C dependent on drain voltage (approx. nonlinearity with linear eqn, using K terms for bottom plate and sidewalls)

UNIVERSITY OF MARYLAND

ENEE 359a
Lecture/s 9
Transistor Sizing

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 19

Two Chained Inverters: CL

C Term	Expression	Value (fF) H \rightarrow L	Value (fF) L \rightarrow H
C _{GD1}	2 C _{on} W _n	0.23	0.23
C _{GD2}	2 C _{op} W _p	0.61	0.61
C _{DB1}	$K_{eqbpn}AD_nC_j + K_{eqswn}PD_nC_{jsw}$	0.66	0.90
C _{DB2}	$K_{eqbpp}AD_pC_j + K_{eqswp}PD_pC_{jsw}$	1.50	1.15
C _{G3}	$2 C_{on} W_{n} + C_{ox} W_{n} L_{n}$	0.76	0.76
C _{G4}	$2 C_{op} W_{p} + C_{ox} W_{p} L_{p}$	2.28	2.28
C _W	From extraction	0.12	0.12
CL	Sum	6.1	6.0

- Terms in red: under control of designer
- C_L split between intrinsic and extrinsic/wire sources

MOSFET Switching

Parallel switching (all switch at same time):

Series switching (all switch at same time):

ENEE 359a Lecture/s 9 Transistor Sizing

Bruce Jacob

University of Maryland ECE Dept.

Bruce Jacob

University of Maryland ECE Dept.

The electrical characteristics of transistors determine the switching speed of a circuit

 Need to select the aspect ratios (W/L)_n and (W/L)_p of every FET in the circuit

Define Unit Transistor (R₁, C₁)

- L/W_{min}-> highest resistance (needs scaling)
- $R_2 = R_1 \div 2 \text{ and } C_2 = 2 \bullet C_1$
- Separate nFET and pFET unit transistors
- Unit devices are not restricted to individual transistors

ENEE 359a Lecture/s 9 Transistor Sizing

Bruce Jacob

University of Maryland ECE Dept.

ENEE 359a Lecture/s 9 **Examples** Transistor Sizing **Bruce Jacob** VDD University of Maryland ECE Dept. VDD 6 7b-— в 6 В Α 2 ୶**ୗୄୄୄ**୳ SLIDE 26 C -— E D --12 -dl OUT Ε 2 2 A В D D 4 OUT Assuming Wp = 3Wn 2 Ε Α В D 2 UNIVERSITY OF MARYLAND

Ways to Improve Gate Delay

ENEE 359a Lecture/s 9 Transistor Sizing

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 29

$t_p \approx (t_{pHL} + t_{pLH}) \approx [C_L \div (k'W/LV_{DD})]$ Reduce C_L

- internal diffusion capacitance of the gate itself (keep the drain diffusion as small as possible)
- other terms: interconnect capacitance & fanout

Increase W/L ratio of the transistor

- the most powerful and effective performance optimization tool in the hands of the designer
- watch out for self-loading! when the intrinsic capacitance dominates the extrinsic load

Increase V_{DD}

- can trade-off energy for performance
- increasing V_{DD} above a certain level yields only very minimal improvements
- reliability concerns enforce a firm upper bound on V_{DD}

Gate Delay, Revisited

$t_{p} \approx (t_{pHL} + t_{pLH}) \approx 0.7 R_{ref} C_{ref} (1 + C_{ext}/SC_{iref})$

- widening the PMOS improves t_{pLH} (R_p is lower) but degrades t_{pHL} (increases intrinsic capacitance G_{GD} and G_{DB})
- widening the NMOS improves t_{pHL} (R_n is lower) but degrades t_{pLH} (increases intrinsic capacitance G_{GD} and G_{DB})

ENEE 359a Lecture/s 9 Transistor Sizing

Bruce Jacob

University of Maryland ECE Dept.

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 31

Gate Delay, Revisited

So far have sized the PMOS and NMOS so that the R_{eq} 's match (ratio between 2 & 3.5)

- symmetrical VTC
- equal high-to-low and low-to-high propagation delays

If speed is the only concern, reduce the width of the PMOS device!

 widening the PMOS degrades t_{pHL} due to larger parasitic capacitance (intrinsic capacitance)

 $\mathsf{B} = (\mathsf{W}/\mathsf{L}_p)/(\mathsf{W}/\mathsf{L}_n)$

- r = R_{eqp}/R_{eqn} (resistance ratio of identically-sized PMOS and NMOS)
- $B_{opt} \approx \sqrt{r}$ if wiring capacitance negligible

• ß of 1.6 to 1.9 gives optimal performance

UNIVERSITY OF MARYLAND

Inverter Delay

 $t_p = 0.7R_{ref}C_{ref} (1 + C_{ext}/SC_{iref})$

 $C_{int} = \gamma C_{g}$ $t_{p} = t_{p0} \left(1 + \frac{C_{ext}}{\gamma C_{g}} \right)$ $t_{p} = t_{p0} \left(1 + \frac{f}{\gamma} \right)$

Propagation time is function of ratio of external to internal capacitance

This ratio is called fan-out, f

Gamma term is function of technology, $\gamma \approx 1$

ENEE 359a Lecture/s 9 Transistor Sizing

Bruce Jacob

University of Maryland ECE Dept.

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 34

Sizing & Big Gates

Sizing for Large Capacitive Loads

Supose C_{load} large (e.g. off-chip wires)

- Scale each *inverter* (both FETs in the circuit) by a factor A (input capacitances scale by A)
- if input C to last inverter * A = C_{load}
 (i.e., C_{load} looks like N+1th inverter) then we have:

Input C of last inverter = $C_{in1} A^N = C_{load}$

• Rearranging:

$$A = [C_{load} \div C_{in1}]^{1/N}$$

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 35

Sizing & Big Gates

Sizing for Large Capacitive Loads

- Capacitances increase by factor of A left to right
- Resistances decrease by factor of A left to right
- Total delay (t_{pHL} + t_{pLH}):

$$(R_{n1}+R_{p1}) \cdot (C_{out1}+AC_{in1}) +$$

 $(R_{n1}+R_{p1})/A \cdot (AC_{out1}+A^{2}C_{in1}) + ...$
 $= N (R_{n1}+R_{p1}) \cdot (C_{out1}+AC_{in1})$

Find optimal chain length:

$$N_{opt} = In(C_{load} \div C_{in1})$$

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 36

Sizing & Big Gates

I/O Pad: large structures are ESD diodes and inverter chains (scale: pad is ~65 µm)

Example

Load is ~8000x that of single inverter's input capacitance: find optimal solution.

ENEE 359a Lecture/s 9 **Transistor Sizing**

Bruce Jacob

University of Maryland ECE Dept.

Generalize: Logical Effort

Want to find minimum delay for chains:

Main Points:

- Path length is (maybe) fixed; find scaling
- Want constant scaling factor along path
 [this gives same gate effort at each stage]
- RC delay of a gate uses sum of internal C (its own C_{out}) and input of next gate (C_{in})

Bruce Jacob University of Want to

University of Maryland ECE Dept.

ENEE 359a Lecture/s 9

Transistor Sizing

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 40

Definitions

g = Gate-level logical effort

= ratio of its input capacitance to that of INVERTER

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 41

Definitions

Total Path Effort H = GFB

Optimal gate effort $h = \frac{N}{H}$

G = Path Logical Effort

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 42

Definitions

Total Path Effort H = GFB

Optimal gate effort $h = \frac{N}{H}$

F = Effective Fan-Out of Chain

Also called *Electrical Effort*

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 43

Definitions

Total Path Effort H = GFB

Optimal gate effort $h = \frac{N}{H}$

B = Path Branching Effort

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 44

Definitions

Total Path Effort H = GFB

Optimal gate effort $h = \frac{N}{H}$

Redefine inverter delay:

$$t_{\rm p} = t_{\rm p0} \left(1 + \frac{f}{\gamma}\right) \implies t_{\rm p} = t_{\rm p0} \left(p + \frac{fg}{\gamma}\right)$$

Total delay through path:

$$D = t_{p0} \sum \left(p_i + \frac{f_i g_i}{\gamma} \right)$$

Minimum delay through path: $D = t_{p0} \left(\sum p_i + \frac{N^N \sqrt{H}}{\gamma} \right)$

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 45

Definitions

Total Path Effort H = GFB

Optimal gate effort $h = \frac{N}{H}$

Gate effort **h**_i = **g**_i**f**_i

Sizing s_i for gate i in chain:

$$\mathbf{s}_{i} = \left(\frac{\mathbf{g}_{1}\mathbf{s}_{1}}{\mathbf{g}_{i}}\right) \prod_{j=1}^{i-1} \left(\frac{f_{j}}{b_{j}}\right)$$

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 46

Analysis

Find minimum delay for chain (assume r=2):

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 47

Analysis

Find minimum delay for chain (assume r=2):

