Bruce Jacob

University of Maryland ECE Dept.

SLIDE 1

ENEE 359a *Digital Electronics*

Interconnects

Prof. Bruce Jacob blj@eng.umd.edu

Credit where credit is due:

Slides contain original artwork (© Jacob 2004) as well as material taken liberally from Irwin & Vijay's CSE477 slides (PSU), Schmit & Strojwas's 18-322 slides (CMU), Dally's EE273 slides (Stanford), Wolf's slides for *Modern VLSI Design*, and/or Rabaey's slides (UCB).

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 2

Overview

- Wires and their physical properties (MOSFETs, too ...)
- LC/RC/RLC transmission lines, characteristic impedance, reflections
- Dynamic considerations (e.g. skin effect)
- The Bottom Line: propagation delay, transistor sizing, inductive (Ldi/dt) noise, capacitive coupling, signal degradation, various rules of thumb for design

Metal Layers in ICs

IBM's 6-layer copper interconnect

Lecture/s 10+11 Interconnects

ENEE 359a

Bruce Jacob

University of Maryland ECE Dept.

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 6

Wires in Digital Systems

Physically, wires are

- Stripguides on (and *in*) printed circuit-board cards, layed over & sandwiched between groundplanes
- Stripguides on ICs, layered atop each other
- Conductors in cables & cable assemblies
- Connectors

We tend to treat them as IDEAL wires

- No delay (equipotential)
- No capacitance, inductance, or resistance

They are NOT ideal ...

To build reliable systems, must understand properties & behavior

Metal Layers & Capacitances

- On-chip wires run in multiple layers with no explicit return planes (ground is used as implicit return)
- Thus, almost all capacitance of on-chip wire is to other wires (same plane, different plane, etc.)
- Capacitance of MOSFET scales with Vdd

ENEE 359a Lecture/s 10+11 Interconnects

Bruce Jacob

University of Maryland ECE Dept.

Metal Layers & Resistances

- Resistance of conductor proportional to length/width, depends on material (resistivity), causes delay & loss
- Resistance of wire scales with square root of signaling frequency (at high speeds) ("skin effect")
- Process scaling tends to increase resistance

ENEE 359a Lecture/s 10+11 Interconnects

Bruce Jacob

University of Maryland ECE Dept.

ENEE 359a Lecture/s 10+11 Interconnects Bruce Jacob University of Maryland ECE Dept. SLIDE 10

- R = pl/A = pl/(wh) for rectangular wires (on-chip wires & vias, PCB traces)
- $R = \rho I/A = \rho I/(\pi r^2)$ for circular wires (off-chip, off-PCB)

Material	Resistivity ρ (Ω -m)
Silver (Ag)	1.6 x 10-8
Copper (Cu)	1.7 x 10-8
Gold (Au)	2.2 x 10-8
Aluminum (Al)	2.7 x 10-8
Tungsten (W)	5.5 x 10-8

UNIVERSITY OF MARYLAND

Sheet Resistance

 $R = \rho I/(wh) = I/w \cdot \rho/h$ for rectangular wires Sheet resistance $R_{sq} = \rho/h$

Material	Sheet resistance R _{sq} (Ω/sq)
n, p well diffusion	1000 to 1500
n+, p+ diffusion	50 to 150
polysilicon	150 to 200
polysilicon with silicide	4 to 5
Aluminum	0.05 to 0.1

ENEE 359a Lecture/s 10+11 Interconnects

Bruce Jacob

University of Maryland ECE Dept.

Wire Capacitance

Common wire cross-sections/permittivities:

Material Air $2\pi\epsilon$ C = - $2\pi\epsilon$ Teflon Polymide SiO₂

Glass-epoxy (PCB)	4
Alumina	10
Silicon	11.7

٤r

1

2

3

3.9

Permittivity $\varepsilon = \varepsilon_0 \varepsilon_r$

C =

Permittivity of free space $\varepsilon_0 = 8.854 \times 10^{-12}$ F/m •

ENEE 359a Lecture/s 10+11 Interconnects

Bruce Jacob

University of Maryland ECE Dept.

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 13

Inductance

When conductors of transmission line are surrounded by uniform dielectric, capacitance & inductance are related:

CL = εμ

Inductive effects can be ignored

- if the resistance of the wire is substantial enough (as is the case for long AI wires with small cross section)
- if rise & fall times of applied signals are slow enough

So ... inductance must be considered

- for off-chip signals (even power/ground)
- for future even-higher-speed on-chip signalling

Capacitances formed by p/n junctions

Depletion-region capacitances decrease with voltage across region; resistances *increase* with voltage across region

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 16

Wires & Models

Example Wires:

Туре	W	R	С	L
On-chip	0.6 µm	150k Ω /m	200 pf/m	600 nH/m
PC Board	150 µm	5 Ω /m	100 pf/m	300 nH/m
24AWG pair	511 µm	0.08 Ω /m	40 pf/m	400 nH/m

In a situation, use a *model* of wires that captures the properties we need:

- ideal, lumped L, R, or C
- LC, RC, RLC transmission line
- General LRCG transmission line

Appropriate choice of model depends on signaling frequency f_0

(typical assumption: G = 0)

At high frequency (LC lines)

- An infinite length of LRCG transmission line has *impedance* Z₀
- Driving a line *terminated* into Z₀ is same as driving Z₀
- In general, Z₀ is complex and frequency-dependent
- For LC lines (operating at "high" frequencies), Z₀ is real-valued and independent of frequency

- Transmission lines have characteristic frequency f₀
- Below $f_0 \approx RC \mod I$, Above $f_0 \approx LC \mod I$

UNIVERSITY OF MARYLAND

Cut-off Frequency f₀ II

L = 0.6 nH/mm C = 73 nF/mm R_{dc} = 120 Ω /mm f_0 = 32 GHz

~RC Model for on chip interconnects

L = 0.5 nH/mmC = 104 fF/mm $R_{dc} = 0.008\Omega \text{ /mm}$ $f_0 = 2.5 \text{ MHz}$

~LC Model for PC Board traces

$$Z_0 = \left(\frac{L}{C}\right)^2 = \left(\frac{0.5 \text{ nH}}{0.1 \text{ pF}}\right)^2 \sim = 70 \Omega$$

Example from Poulton 1999 ISSCC Tutorial

1 mil = 0.001 inch

ECE Dept.

Maryland

ENEE 359a Lecture/s 10+11

Interconnects

Bruce Jacob

University of

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 22

RC Lines (low frequency) $\frac{\partial^2 V}{\partial x^2} = RGV + (RC + LG)\frac{\partial V}{\partial t} + LC\frac{\partial^2 V}{\partial t^2}$

R >> $j\omega L$, governed by diffusion equation:

$$\frac{\partial^2 V}{\partial x^2} = RC \frac{\partial V}{\partial t}$$

Signal diffuses down line, disperses:

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 23

LC Lines (high frequency) $\frac{\partial^2 V}{\partial r^2} = RGV + (RC + LG)\frac{\partial V}{\partial t} + LC\frac{\partial^2 V}{\partial t^2}$

R << $j\omega$ L, governed by wave equation:

$$\frac{\partial^2 V}{\partial x^2} = LC \frac{\partial^2 V}{\partial t^2} \qquad V_i(x, t) = \left(\frac{Z_0}{Z_0 + R_S}\right) V_S\left(t - \frac{x}{v}\right)$$

Waveform on line is superposition of forward- and reverse-traveling waves:

- UNIVERSITY OF MARYLAND
- Waves travel with velocity v = (LC)^{-1/2}
 What happens when the wave gets to the end of line?

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 24

RLC/G Lines (general case)

$$\frac{\partial^2 V}{\partial x^2} = RGV + (RC + LG)\frac{\partial V}{\partial t} + LC\frac{\partial^2 V}{\partial t^2}$$

Ignoring G, wave propagation equation:

Lossy transmission line, dispersive waves:

Substrate-doping-dependent dispersion of a picosecondscale pulse in propagation of an on-chip transmission line

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 25

RC vs. RLC

Output response of inverter with step input:

In reality, we have a non-zero inductance in series with the RC circuit. (Inductors and capacitors both "have memory")

ENEE 359a
Lecture/s 10+11
Interconnects

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 26

RC vs. RLC

Output response of inverter with step input:

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 27

Impedance and Reflections

Terminating a Transmission Line:

Telegrapher's Equations:

$$k_r = \frac{I_r}{I_i} = \frac{V_r}{V_i} = \frac{Z_T - Z_0}{Z_T + Z_0}$$

Reflection coefficient k_r may be complex for complex impedances Z_T — i.e., the reflected wave may be phase-shifted from the incident wave.

For real-valued Z_T the reflection coefficient is real, and the phase shift is either 0 (k_r positive) or π (k_r negative).

Va

Vb

Vc

$$k_r = \frac{I_r}{I_i} = \frac{V_r}{V_i} = \frac{Z_T - Z_0}{Z_T + Z_0}$$

Matched Termination, k_r = 0

Open-Circuit Termination, k_r = 1

ENEE 359a Lecture/s 10+11 Interconnects

Bruce Jacob

University of Maryland ECE Dept.

ENEE 359a Lecture/s 10+11 Interconnects

Bruce Jacob

University of Maryland ECE Dept.

$$k_{rS} = \frac{Z_T - Z_0}{Z_T + Z_0} = \frac{400 - 50}{400 + 50} = 0.778$$

Values are typical for 8-mA CMOS driver with $1k\Omega$ pullup

Bruce Jacob

ENEE 359a Lecture/s 10+11

Interconnects

University of Maryland ECE Dept.

	Vwave	Vline	time t
Vi1	0.111	0.111	0
Vr1	0.101	0.212	5
Vi2	0.078	0.290	10
Vr2	0.071	0.361	15
Vi3	0.055	0.416	20
Vr3	0.050	0.465	25
Vi4	0.039	0.504	30
Vr4	0.035	0.539	35
Vi5	0.027	0.566	40

ENEE 359a Lecture/s 10+11 Interconnects

Bruce Jacob

University of Maryland ECE Dept.

UNIVERSITY OF MARYLAND

UNIVERSITY OF MARYLAND

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 38

Skin Effect

- At low frequencies, most of conductor's cross-section carries current.
- As frequency increases, current moves to skin of conductor, back-EMF induces counter-current in body of conductor. Result: increased resistance, longer transmission delays.
- Skin effect most important at gigahertz frequencies.

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 39

Propagation Delay

Waves travel with velocity through medium:

$$v = (LC)^{-1/2} = (\epsilon_{di} \mu_{di})^{-1/2} = c_0 (\epsilon_r \mu_r)^{-1/2}$$

 ϵ is the permittivity of dielectric μ is the permeability of dielectric

Relative permittivity ϵ_r and propagation speed (μ_r is typically 1 for most dielectrics):

Dielectric	٤ _r	Speed (cm/ns)
Vacuum	1	30
SiO ₂	3.9	15
PC Board (epoxy glass)	5.0	13
Alumina (ceramic package)	9.5	10

University of Maryland ECE Dept.

SLIDE 41

Propagation Delay

```
Once again, \tau = RC
```

$$C_{\text{wire}} = C_{\text{pp}} + C_{\text{fringe}} + C_{\text{interwire}}$$

= $(\epsilon_{\text{di}}/t_{\text{di}})$ WL
+ $(2\pi\epsilon_{\text{di}})/\log(t_{\text{di}}/\text{H})$
+ $(\epsilon_{\text{di}}/t_{\text{di}})$ HL

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 43

Insights

- For W/H < 1.5, the fringe component dominates the parallel-plate component. Fringing capacitance can increase overall capacitance by a factor of 10 or more.
- When W < 1.75H interwire capacitance starts to dominate
- Interwire capacitance is more pronounced for wires in the higher interconnect layers (further from the substrate)
- Wire delay nearly proportional to L²

Rules of thumb:

- Never run wires in diffusion
- Use poly only for short runs
- Shorter wires lower R and C
- Thinner wires lower C but higher R

ENEE 359a Lecture/s 10+11 Wire Spacing Interconnects **Bruce Jacob** Intel P858 University of Intel P856.5 Al, 0.18μm **IBM CMOS-8S** Maryland Al, 0.25µm CU, 0.18µm ECE Dept. Ω - 0.07 M6 SLIDE 44 Ω - 0.05 M5 Ω - 0.10 Μ7 Ω - 0.08 M5 Ω - 0.10 M6 Ω - 0.12 M4 Ω - 0.17 M4 Ω - 0.50 M5 Ω - 0.33 M3 Ω - 0.49 М3 M4 Ω - 0.50 Ω - 0.50 М3 M2 Ω - 0.33 M2 Ω - 0.49 Ω - 0.70 🔲 🔳 M2 Ω - 1.11 M1 Ω - 1.00 M1 Ω - 0.97 🔲 🚺 M1 Scale: 2,160 nm

from MPR 2000

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 45

Overcoming Interconnect R

Selective technology scaling (scale W while holding H constant)

Use better interconnect materials

Iower resistivity materials like copper

As processes shrink, wires get shorter (reducing C) but they get closer together (increasing C) and narrower (increasing R). So RC wire delay increases and capacitive coupling gets worse.

Copper has about 40% lower resistivity than aluminum, so copper wires can be thinner (reducing C) without increasing R

use silicides (WSi2, TiSi2, PtSi2 and TaSi)

Conductivity is 8-10 times better than poly alone

Use more

interconnect layers

reduces the average wire length L, but beware of extra contacts

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 46

Inductive Noise

L di/dt noise (ground bounce):

