Bus-Based Multi-Processor System

Shared Memory Model:

CPU cores

Bridge

Memory Controller

Physical Memory (DRAMs)

CPU Bus

Shared Memory Implementation:
Cache Coherence Problem

(Assume writeback caches)

1. P₁ performs ld A
2. P₁ performs st A
 ⇒ A is dirty in P₁'s cache
3. P₂ performs ld A

⇒ P₂ loads stale copy of A from memory.

(Assume write through caches)

1. P₁ performs ld A
2. P₂ performs ld A
3. P₁ performs st A
4. Pₐ performs ld A

⇒ P₂ loads stale copy of A from cache.
Memory Consistency Model

⇒ when sequential consistency is broken.

Sequentially consistent order:

1. \(P_1 \) writes \(A = 1 \)
2. \(P_1 \) writes \(X = 1 \)
3. \(P_2 \) reads \(X = 1 \)
4. \(P_2 \) reads \(A = 1 \)
5. \(P_2 \) writes \(B = A = 1 \)

⇒ Caches reorder writes.

P. order: \(A = 1, X = 1 \)
P. order: \(X = 1, A = 1 \)

Assume write back caches:

1. \(P_1 \) writes \(A = 1 \)
2. \(P_1 \) writes \(X = 1 \)
3. \(X \) is written back to memory
4. \(P_2 \) reads \(X = 1 \)
5. \(P_2 \) reads \(A = 0 \)
6. \(P_3 \) writes \(B = A = 0 \)
Snoopy Cache Coherence Buses

Main Memory

Cache Bus

Snoopy Cache Coherence Hardware
Bus-Based Write Invalidate