# Electrical and Computer Engineering Department <br> University of Maryland <br> College Park, MD 20742-3285 

Glenn L. Martin Institute of Technology $\diamond$ A. James Clark School of Engineering

## ENEE 244 Problem Set 7

 silio@umd.edu(Due: Class 17, Wed., Oct. 29, 2014)

1. Design a 2 -bit (binary) full adder module with 5 inputs $a_{1}, a_{0}, b_{1}, b_{0}$, and $c_{\text {in }}$ and with 3 outputs $c_{\mathrm{out}}, s_{1}$, and $s_{0}$. The module performs a binary addition of the 2 -bit input $\mathrm{A}=a_{1} a_{0}$ with the 2 -bit number $\mathrm{B}=b_{1} b_{0}$ and with the carry-in $c_{\text {in }}$ to form the 2 -bit sum $\mathrm{S}=s_{1} s_{0}$ and the carry-out $c_{\text {out }}$. Specify the truth table and specify the simplified output functions. (Note: this is a 5 -variable Karnaugh map problem; so don't try to solve it by hooking together two 1-bit full adders.)

Tabular minimization, known also as the Quine-McCluskey method, proceeds in two steps: (1) find all prime implicants and then (2) use these prime implicants to find a minimal cost cover for the given function. Use tabular minimization to find simplest sum of products expressions for the following functions.
2. $f(a, b, c, d)=\Sigma 0,1,2,5,9,13,14,15+\Sigma_{\phi} 8,10,12$
3. $h(a, b, c, d, e, f, g)=\Sigma 20,28,52,60$
4. $h(a, b, c, d, e, f, g)=\Sigma 20,28,38,39,52,60,102,103,127$
5. Read Givone Chapt. 4, Section 4.13, excluding Section 4.13.4 covering Quine-McCluskey and tabular minimization for multiple-output functions; then work Prob. 4.33 a.

Now work the following problems from Givone, Chapt. 5:
6. Prob. 5.19.
7. Prob. 5.23.
8. Prob. 5.24.
9. Prob. 5.25.
10. Prob. 5.26.

