

Glenn L. Martin Institute of Technology \diamond A. James Clark School of Engineering $\begin{array}{c} {\sf Dr.}\\{\sf Tel}\end{array}$

ENEE 244 Problem Set 7

Dr. Charles B. Silio, Jr. Telephone 301-405-3668 FAX 301-314-9281 silio@umd.edu

(Due: Mon., Mar. 31, immediately preceding Class 17, Tues., Apr. 1, 2014)

1. Design a 2-bit (binary) full adder module with 5 inputs a_1 , a_0 , b_1 , b_0 , and c_{in} and with 3 outputs c_{out} , s_1 , and s_0 . The module performs a binary addition of the 2-bit input $A = a_1a_0$ with the 2-bit number $B = b_1b_0$ and with the carry-in c_{in} to form the 2-bit sum $S = s_1s_0$ and the carry-out c_{out} . Specify the truth table and specify the simplified output functions. (Note: this is a 5-variable Karnaugh map problem; so don't try to solve it by hooking together two 1-bit full adders.)

Tabular minimization, known also as the Quine-McCluskey method, proceeds in two steps: (1) find all prime implicants and then (2) use these prime implicants to find a minimal cost cover for the given function. Use tabular minimization to find simplest sum of products expressions for the following functions.

- 2. $f(a, b, c, d) = \Sigma 0, 1, 2, 5, 9, 13, 14, 15 + \Sigma_{\phi} 8, 10, 12$
- 3. $h(a, b, c, d, e, f, g) = \Sigma 20, 28, 52, 60$
- 4. $h(a, b, c, d, e, f, g) = \Sigma 20, 28, 38, 39, 52, 60, 102, 103, 127$
- 5. Read Givone Chapt. 4, Section 4.13, excluding Section 4.13.4 covering Quine-McCluskey and tabular minimization for multiple-output functions; then work Prob. 4.33 a.

Now work the following problems from Givone, Chapt. 5:

- 6. Prob. 5.19.
- 7. Prob. 5.23.
- 8. Prob. 5.24.
- 9. Prob. 5.25.
- 10. Prob. 5.26.