
Eletrial and Computer Engineering DepartmentUniversity of MarylandCollege Park, MD 20742-3285Glenn L. Martin Institute of Tehnology � A. James Clark Shool of Engineering���� Dr. Charles B. Silio, Jr.Telephone 301-405-3668Fax 301-314-9281silio�eng.umd.eduThe Miroarhiteture/Miroprogramming LevelThese notes are based on and extend material in Chapter 4 of A. S. Tanenbaum, StruturedComputer Organization, 3rd Edition, Prentie Hall, 1990. The aumulator based mahine whoseinstrution set arhiteture is alled the Ma-1 has its data path miroarhiteture and its miro-programmed implementation (alled the Mi-1) presented here. This presentation di�ers from thestak oriented IJVM and orresponding Mi-1 in Tanenbaum's 5th Edition textbook.One of the di�erenes between the Mi-1 (miroprogrammed omputer) presented here and theone in the 5th Edition textbook is that all registers in this Mi-1 are onstruted from loked (orgated) D-lathes, as shown in Fig. 1; whereas, registers in the 5th Edition text use edge-triggeredip-ops. Fig. 2 shows how an 8-bit register is built using loked D-lathes and three-state (i.e.,tri-state) bu�ers for onnetion to two output buses.
��

��

��

��
��
��
��

D

CLK

Q

Q’
CLK

D
Q

Q’Figure 1: Cloked D-lath
CLK

D
Q

Q’
CLK

D
Q

Q’
CLK

D
Q

Q’
CLK

D
Q

Q’
CLK

D
Q

Q’
CLK

D
Q

Q’
CLK

D
Q

Q’
CLK

D
Q

Q’

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���� ���� �� ���� �� �� ����
�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

��
��

��
��
��
��
��

�
�
�
�

��
��
��
��

��
��

�
�
�
�

�
�
�
�

����
��

����
��

��
��
��
��
��

�
�
�
�

��
����

��

����

���� �� �� �� �� ���� �� ��

��

A-Bus

B-Bus

OE-A

b7 b6 b5 b4 b3 b2 b1 b0

Load

C-Bus

OE-B

Figure 2: Eight-bit register and bus onnetions

Registers: A register is a devie apable of storing information. Coneptually, registers arethe same as main memory, the di�erene being that the registers are loated physially withinthe proessor itself, so they an be read from and stored into faster than words in main memory,whih is usually o�-hip. Larger and more expensive mahines usually have more registers thansmaller and heaper ones, whih must use main memory for storing intermediate results. On someomputers a set of registers numbered 0; 1; 2; : : : ; n � 1, is available at the miroprogramminglevel and is alled loal storage or srathpad storage.A register an be haraterized by a single number: namely, how many bits an it hold (e.g.,Fig. 2 is an 8-bit register). The bits (binary digits) in an n-bit register ould be numbered fromleft to right or from right to left. The numbering onvention assumed in these notes for the bits inan n-bit register is right to left from 0 to n� 1 in the natural powers of two order of a positionalnumber system for integers. In other words, bit 0 is stored in the rightmost D-lath in Fig. 2 andbit 7 is stored in the leftmost D-lath (whih orresponds to bit n� 1 when n = 8).Information plaed in a register remains there until some other information replaes it. Theproess of reading information out of a register does not a�et the ontents of the register. In otherwords, when a register is read, a opy is made of its ontents and the original is left undisturbed inthe register. Similarly, when information is moved from one register to another, a opy is loadedinto the destination register and the ontents of the soure register remain undisturbed.Buses: A bus is a olletion of wires used to transmit signals in parallel. For example, buses areused to allow the ontents of one register to be opied to another one. A bus may be unidiretional orbidiretional. A unidiretional bus an transfer data only in one diretion; whereas, a bidiretionalbus an transfer data in either diretion but not both simultaneously. Unidiretional buses aretypially used to onnet two registers, one of whih is always the soure and the other of whih isalways the destination. Bidiretional buses are typially used when any of a olletion of registersan be the soure and any other one an be the destination.Many devies have the ability to onnet and disonnet themselves eletrially from the busesto whih they are physially attahed. These onnetions an be made or broken in nanoseonds.A bus whose devies have this property is alled a tri-state (or three-state) bus (the term tri-statebeing a registered trademark of National Semiondutor Corp.). A tri-state bu�er ampli�er is usedto make the onnetions. These tri-state bu�er ampli�ers are shown in Fig. 2 as triangular shapeswhose inputs ome from the output of the D-lath to whih eah is onneted and eah of whoseoutputs is onneted to a single bus wire. The other input to the bu�er ampli�er (labeled eitherOE-A or OE-B) is a ontrol (or enable) input. If this ontrol input is in the logi zero state, thenthe output of its bu�er ampli�er is in the high-impedane state (i.e., disonneted from the buswire to whih it is attahed). If the ontrol input is in the logi one state (also alled ative-high)then the bu�er ampli�er's output value equals its input value (either logi 0 or logi 1), and theD-lath's output state is onneted to the orresponding bus wire.In most miroarhitetures, some registers are onneted to one or more input buses and toone or more output buses. Fig. 2 depits an 8-bit register onneted to one input bus and to twooutput buses. The register has three ontrol inputs: namely, Load, OE-A, and OE-B, where OEstands for \output enable." When \Load" is in the logi zero state, the ontents of the registerare not a�eted by the signals on the C-bus wires. When \Load" is raised to the logi 1 state thevalues on the C-bus wires are opied into their orresponding D-lathes in parallel. After the newvalues are lathed \Load" an be returned to its logi zero state, and the register remembers thebinary value last loaded into it.When \OE-A" is at the logi zero level, the register is disonneted from the A-Bus (andsimilarly for \OE-B" with respet to the B-Bus). When \OE-A" is raised to the logi 1 level, theregister is onneted to the A-Bus wires (and similarly for \OE-B" with respet to the B-bus).In order to transfer data from this register to another register R using the A and C buses. Theinput to register R must be onneted to the C-Bus, and \OE-A" for this register must be raised to2

the logi 1 level in order to plae the register's ontents on the A-Bus. Other iruitry suh as anarithmeti and logi unit (ALU) whih is not shown here must then be used to onnet the A-Buswires to the C-Bus wires. After a short time to allow the signals on the buses to settle down andbeome stable then the Load signal onneted to register R is raised to the logi 1 level and theinformation transfer is aomplished.Beause drawing all of the wires and lathes shown in Fig. 2 requires too muh spae, ashorthand shemati suh as that shown in Fig. 3 is used instead. Fig. 3 depits a 16-bit registerthat would be onstruted internally in the same fashion as the 8-bit register shown in Fig. 2 butwith 8 more lathes, 16 more bu�er ampli�ers, and 24 more bus wires.
16-bit Register

From C-Bus

To A-Bus

To B-Bus

Load Clk OE-A OE-B

16
16

16

Figure 3: Sixteen-bit register shematiDeoders and Multiplexers: Ciruits that have one or more input lines and ompute one ormore output values that are uniquely determined by the present inputs are alled ombinationaliruits. Two important ombinational iruits are deoders and multiplexers. A deoder hasn input lines and 2n output lines numbered 0 to 2n � 1. If the binary number on the input lineshas deimal value k, then output line number k takes the value 1 and all other output lines takethe value 0. A deoder always has exatly one output line whose value is set to 1, with all the restset to 0. A multiplexer has 2n data inputs (either individual lines or buses), one data output ofthe same width as the inputs, and an n-bit ontrol input that is internally deoded to selet one ofthe inputs and route it to the output. The struture of a 2 to 1 multiplexer is shown in Fig. 4. Ifinstead of a single input line one wishes to swith the ontents of one of two n-bit input buses toan n-bit output bus, then one must use n 2 to 1 multiplexers (one per output bit line) all seletedby the same seletion input value S.
��

I0

I1

S

Z

S

I1

Z

I0

2 to 1

MUX

Figure 4: 2 to 1 Multiplexer (one for eah output bit when used with registers)An Example MiroarhitetureThe data path of our example miroarhiteture is shown in Fig. 5. The data path is thatpart of the entral proessing unit (CPU) that ontains the arithmeti and logi unit (ALU) andits inputs and outputs. In this ase it ontains 16 idential 16-bit registers, labeled PC, AC, SP,and so on, that form a srathpad memory aessible only to the the miroprogramming level.The registers labeled 0, +1, and -1 will be used to hold the indiated onstants (with -1 in two'somplement form). The meaning of the other register names will be explained later. Eah registeran output its ontents onto one or both of two internal buses, the A-Bus and the B-Bus, and eahan be loaded from a third internal bus, the C-Bus as shown in the �gure.3

S0
S1

Shifter

ALU

Generator
Clock

4-Phase

T2T3T4 T1

0

A-Latch

A-Bus B-Bus

1

AMUX
I1 I0

MAR

MBR

Memory
Main

RdWr Mar
T4

Mbr F1

N
Z

F0T3

Amux

PC

AC

SP

IR

2

3

4

5

6

7

8

SMASK

AMASK

-1

+1

0

TIR

9

A10

B11

12 C

D13

E14

F15

CPU reg. adr.

B-Latch

C-Bus

C-Bus

Decoder

4

Field
C

Enc T4

16

0

4095

16 A-Bus
Decoder

16

B4

Field

T2

B-Bus
Decoder

4 A
Field

Sequencing
Logic

Micro

C1

C0

To MMUX

Figure 5: The data path for example miroarhiteture (Mi1/Ma1)4

The A and B buses respetively feed the left and right inputs of a 16-bit wide ALU that anperform four funtions: addition (A + B), bitwise logial AND (A.AND.B), left input straight-through (A), and bitwise logial omplement (i.e., 1's omplement) of the ontent of the left input(NOT A). The funtion to be performed is spei�ed by the two ALU ontrol lines F1 and F0. TheALU generates two status bits based on the urrent ALU output: N, whih takes the value 1 whenthe ALU output is negative, and Z, whih takes the value one when the ALU output is zero. TheN bit is just a opy of the high-order (bit position 15) output bit. The Z bit is the NOR of all theALU output bits (namely, bits 0 through 15).The 16-bit ALU output goes into a shifter, whih is a ombinational iruit that an logiallyshift its input 1 bit left or right, or not at all, and gate the result to its 16-bit output. The funtionto be performed by the shifter is spei�ed the the two shifter ontrol lines S1 and S0. It is possibleto perform a 2-bit left shift of a register, R, by using the ALU to ompute R + R (whih is a 1-bitleft shift) and then shifting this sum another bit left using the shifter.The A-Bus deoder is used to deode a 4-bit register designator (A-�eld) that selets one ofthe 16 srathpad registers to be gated onto the A-Bus. The outputs of the deoder are 16 outputenable (OE-A) signals (one for eah register) and one and only one of the OE-A signals takes thevalue 1. The B-Bus deoder is used to deode a 4-bit register designator (B-�eld) that selets oneof the 16 srathpad registers to be gated onto the B-Bus. The outputs of the deoder are 16output enable (OE-B) signals (one for eah register) and one and only one of the OE-B signalstakes the value 1. The C-Bus deoder is used to deode a 4-bit C-�eld register designator thatselets the srathpad register to be loaded from the C-Bus. The outputs of the C-Bus deoderare 16 load lok signals (one for eah register). Beause all 16 possible C-�eld values are assignedto the 16 registers, an additional ontrol input is needed to prevent loading any of the registers.This additional ontrol input is ENC (for enable-C). If ENC = 0, then all 16 of the deoder's loadoutputs remain at logi level zero, and none of the registers is overwritten. If ENC = 1, thenone and only one of the destination registers sees a load lok line = 1 at the appropriate timedetermined by yet another ontrol input alled T4.Neither the A-Bus nor the B-Bus feeds the ALU diretly. Instead, eah one feeds a lath (i.e.,a register) that in turn feeds the ALU. The lathes are needed beause the ALU is a ombinationaliruit { it ontinuously omputes the output for the urrent input and funtion ode. Feedingthe left and right ALU inputs diretly from the A and B buses (without the additional lathes)an ause rae problems. For example, onsider assigning to the destination register A the sumof the ontents of registers A and B, denoted A:= A + B. As A is being written into, the valueon the A-Bus begins to hange, whih auses the ALU output and thus the ontents of the C-Busto hange as well. Consequently, the wrong value may be stored into A. In other words, in theassignment A:= A + B, the old A on the right-hand side is the original A value, not some bit-by-bitmixture of the old and new values. By inserting lathes (namely, the A-lath and B-lath) into theA and B buses, we an freeze the original A and B values there early in the yle, so that the ALUis shielded from hanges on the buses as the new value is being stored into the srathpad.One an think of the A-lath and the B-lath as shared slave lathes for the orrespondinglyseleted soure master lathes in the srathpad. This saves using slave lathes in eah srathpadregister that using master-slave ip-ops to build the registers would require, but it ompliates thetiming somewhat. The A-lath and B-lath are loaded by timing ontrol signal T2 that is generatedby a 4-phase lok generator iruit shown in Fig. 6.Computer iruits are normally driven by a lok, a devie that emits a periodi sequene ofpulses. These pulses de�ne mahine yles. During eah mahine yle, some ativity ours, suhas the exeution of a miroinstrution. It is often useful to divide a yle into subyles so di�erentparts of the miroinstrution an be performed in a well-de�ned order. For example, the inputs tothe ALU must be made available and allowed to beome stable before the output an be stored.5

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

Master Clock
Pulses

Machine
Finite State

Clock Generator
Four Phase

T1

T2

T3

T4

Run/Stop

Reset

Master Clock

T1

T2

T4

T3

CPU Cycle

Subcycle

(Repeats while Run = True)Figure 6: Four Phase Clok CyleMain Memory: Proessors need to be able to read data from memory and write data tomemory. Most omputers have an address bus, a data bus, and a ontrol bus for ommuniationbetween the CPU and memory. To read from memory, the CPU puts a memory address on theaddress bus and sets the ontrol signals appropriately, for example by asserting \Rd" (READ). Thememory then puts the requested item on the data bus. In some omputers memory read/write issynhronous; that is, the memory must respond within a �xed time. This is what we assume forour miroarhiteture; namely, the memory must respond within four lok (subyle) tiks. Onother omputers, the memory may take as long as it wants, signaling the presene of data using a(e.g., READY or memory funtion omplete) ontrol line when it is �nished.Writes to memory are done similarly. The CPU puts the data to be written on the data bus andthe address to be stored into on the address bus and then it asserts \Wr" (WRITE). (An alternativeto having \Rd" and \Wr" is to have MREQ, whih indiates that a memory request is desired, andR/W, whih distinguishes read from write. In either ase two ontrol lines are required.)On most mahines (exept for our example) a memory aess is nearly always onsiderably longerthan the time required to exeute a single miroinstrution. Consequently the miroprogram mustkeep the orret values on the address and data buses for several miroinstrutions (i.e., mahineyles). To simplify this task, it is often onvenient to have two registers, the MAR (MemoryAddress Register) and theMBR (Memory Bu�er Register), that drive the address and data buses,respetively. Both registers sit between the CPU and the system's memory bus. The address busis unidiretional on both sides and is loaded from the CPU side when the \Mar" ontrol line is6

asserted. The output to the system address lines is always enabled (as is the ase here) [or possiblyonly during reads and writes, whih requires an output enable line driven by the OR of \Rd" and\Wr" (not shown)℄. Beause the main memory in our example miroarhiteture has only 409616-bit words, the MAR is a 12-bit register. In our example miroarhiteture the MAR is onnetedto the B-Bus (rather than to the C-Bus) so that both the MAR and the MBR an be loaded inthe same mahine yle (i.e., loaded by the same miroinstrution) Beause the MAR is onnetedto the B-Bus (rather than to the C-Bus) and beause of the way the miroprogram ontrollingthis mahine is written, it is restrited in size to 12-bits. To allow for a 16-bit MAR onnetedin this way would require two mahine yles (i.e., two miroinstrutions) and the use of anothersrathpad register to properly load all 16 bits into the MAR. This is a onsequene of the designhoies made by others; namely, the author of the text from whih this example is derived. A moredetailed shemati of the MAR and its onnetions is shown if Fig. 7.
Load MAR

Memory Address Register

MAR

12
Low Order 16

B-Bus

T3

MAR
12-bits

12

(Control Bit)

OE=1

To Memory
Address
DecoderFigure 7: Memory Address Register (MAR)As shown in Fig. 8, the \Mbr" ontrol line auses the MBR to be loaded from the C-Bus onthe CPU side. The MBR output is always enabled on the CPU side and is presented to a 2 to 1multiplexer (the AMUX) that swithes the input to the left ALU input between the A-lath andthe MBR under ontrol of a signal alled Amux. If Amux = 0, the left input of the ALU sees theontents of the A-lath and if Amux = 1, it sees the ontents of the MBR. The system's memorydata bus is bidiretional, and the \Rd" and \Wr" ontrol signals are used to determine its diretionbetween memory and the MBR (to memory on write and from memory on read).

��

�� ��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

I1
2:1
MUX

I0

(x16)

S

Z
16-bits
MBR

Memory Buffer Register

OE=1Load MBR T4

To AMUX

MBR

RD
(Read)

To/From

Memory

WR
(Write)

16

16

16

16

C-Bus
(From Shifter)

16

To

Memory

Control Bit

Figure 8: Memory Bu�er Register (MBR)7

To ontrol the data path of our miroarhiteture in Fig. 5 requires 60 signals that belong tothe following nine funtional groupings:16 signals to ontrol loading the A-Bus from the srathpad16 signals to ontrol loading the B-Bus from the srathpad16 signals to ontrol loading the srathpad from the C-Bus1 signal to ontrol loading the A and B lathes2 signals to ontrol the ALU funtion2 signals to ontrol the shifter4 signals to ontrol the MAR and MBR2 signals to indiate memory read or memory write1 signal to ontrol the AMUXGiven the values of the 60 signals, we an perform one yle of the data path. A yle onsists ofgating values onto the A and B buses, lathing them in the two bus lathes, running the valuesthrough the ALU and shifter, and �nally storing the results in the srathpad and/or the MBR. Inaddition, the MAR an also be loaded, and a memory yle initiated. As a �rst approximation weould have a 60-bit ontrol register, with one bit for eah ontrol signal. A 1 bit means that thesignal is asserted and a 0 means that it is not asserted (i.e., negated). We also need a multiphaselok generator iruit to ontrol when things happen during the yle.However, at the prie of a small inrease in iruitry, we an greatly redue the number of bitsneeded to ontrol the data path. Using all 16-bits to ontrol the A-Bus would allow 216 ombinationsof signal values, only 16 of whih are valid beause the srathpad has only 16 registers. Therefore,we an enode the A-Bus ontrol information in a 4-bit �eld and use a deoder to generate the 16ontrol signals. The same holds true for the B-Bus.The situation is slightly di�erent for the C-Bus. In priniple, multiple simultaneous storesinto the srathpad are feasible, but in pratie this feature is only infrequently useful, and mosthardware designs do not provide for it. Therefore, we will also enode the C-Bus ontrol into a 4bit �eld. Having enoded some of the ontrol signals into �elds and in turn supplied orrespondingdeoder iruits, we have saved 3 � 12 bits. We now need only 24 bits to ontrol the data path.Beause the A and B lathes are always loaded at a ertain point in time, we an supply a multiphaselok generator iruit and use one of the lok phases (say T2) as this ontrol input, leaving 23ontrol bits needed. After the values in the A and B lathes settle down the MAR an be loked(at subyle time T3) to opy the ontent of the B lath if the \Mar" ontrol bit is set to 1. Moretime is needed, however, for the data signals to propagate through the ALU and shifter iruitrybefore they have settled down and an be opied from the C-Bus into their destination(s) in thesrathpad or MBR at subyle time T4. One additional signal that is not stritly required, but isoften useful, is one to enable/disable storing the C-Bus into the srathpad. In some situations onemerely wishes to perform an ALU operation to generate the N and Z signals, but does not wish tostore the result. With this extra bit, whih we will all ENC (ENable C), we an indiate that theC-Bus ontents are to be stored (ENC = 1) or not (ENC = 0).With ENC inluded we an ontrol the data path with a 24 bit number. Now we note that \Rd"and \Wr" an be used to ontrol the lathing of the MBR from the system's memory data bus andthe enabling of the MBR onto it, respetively (as shown in Fig. 8). This observation redues thenumber of independent ontrol signals needed from 24 down to 22.8

The next step in the design of the miroarhiteture is to invent a miroinstrution formatontaining 22 bits. Fig. 9 shows suh a format with two additional �elds COND and ADDR, whihwill be desribed shortly. The miroinstrution ontains 13 �elds, 11 of whih are as follows:AMUX { ontrols left ALU input: 0 = A-lath, 1 = MBRALU { ALU funtion: 0 = A + B, 1 = A.AND.B, 2 = A, 3 = ASHFT { shifter funtion: 0 = no shift, 1 = right shift, 2 = left shiftMBR { loads MBR from shifter: 0 = don't load MBR, 1 = load MBRMAR { loads MAR from B-lath: 0 = don't load MAR, 1 = load MARRD { requests memory read: 0 = no read, 1 = load MBR from memoryWR { requests memory write; 0 = no write, 1 = write MBR to memoryENC { ontrols storing into srathpad: 0 = don't store, 1 = storeC { selets register for storing into if ENC = 1: 0 = PC, 1 = AC, et.B { selets B-Bus soure: 0 = PC, 1 = AC, 2 = SP, 3 = IR, et.A { selets A-Bus soure: 0 = PC, 1 = AC, 2 = SP, 3 = IR, et.
E
N
C

W
R

R
D

M

R
A

M
B
R

S

F
H

T

O
N

C

D

A
M
U
X

U
L

A

S1 S0F1 F0C1 C0

ADDRC B A

F1 F0
0 0 = A + B
0 1 = A and B
1 0 = A
1 1 = A

ALU
C1 C0
0 0 = No Jump
0 1 = Jump if N=1
1 0 = Jump if Z=1
1 1 = Jump always

CONDAMUX

1 = MBR
0 = A-latch

S1 S0
0 0 = No shift
0 1 = Shift right 1 bit
1 0 = Shift left 1 bit
1 1 = (not used)

SHFT

MBR, MAR, RD, WR, ENC

1 = Yes
0 = No

Number of bits in each field:

1 2 2 2 1 1 1 1 1 4 4 4 8

Microinstruction Format (32-bit word)

Figure 9: Miroinstrution Format (32-bits) for Mi-1/Ma-1 miroarhitetureThe ordering of the �elds is ompletely arbitrary. This ordering has been hosen to minimize linerossings in a subsequent �gure. (Atually, this riterion is not as razy as it sounds; line rossingsin �gures usually orrespond to wire rossings on printed iruit boards or on integrated iruithips, whih ause diÆulties in two-dimensional designs.)Miroinstrution Timing: Although our disussion of how a miroinstrution an ontrolthe data path during one yle is almost omplete, we have mostly negleted one issue up untilnow: timing. A basi ALU yle onsists of setting up the A and B lathes, giving the ALU andshifter time to do their work, and storing the results. It is obvious that these events must happenin that sequene. If we try to store the C-Bus ontents into the srathpad before the A and Blathes have been loaded, garbage will be stored instead of useful data. To ahieve the orret eventsequening, we use a four-phase lok, that is a lok with four subyles, as shown in Fig. 6. Thekey events during eah of the four subyles are as follows:1. Load the next miroinstrution to be exeuted into a register alled MIR, the MiroInstru-tion Register. 9

2. Gate seleted srathpad registers onto the A and B buses and apture them in the A and Blathes.3. Now that the inputs are stable, give the ALU and shifter time to produe a stable outputand load the MAR if required.4. Now that the shifter output is stable, store the C-Bus ontents into the srathpad and loadthe MBR, if either is required.Fig. 10 presents a detailed blok diagram of the omplete miroarhiteture of our example ma-hine. It may look imposing initially, but it is worth studying arefully. When you fully understandevery box and every line on it, you will be well on your way to understanding the miroprogram-ming level. The blok diagram has two parts, the data path on the left, whih we have alreadydisussed in detail, and the ontrol setion on the right, whih we will now examine.The largest and most important item in the ontrol portion of the mahine is the ontrol store.This speial, high-speed memory is where the miroinstrutions are kept. On some mahines it isread-only memory (ROM); on others it is read/write memory. In our example, miroinstrutionsare 32 bits wide and the miroinstrution address spae onsists of 256 words, so the ontrol storeoupies a maximum of 256� 32 = 8192 bits. By omparison, the Digital Equipment Corporation(DEC) PDP-11/40 was a popular and ommerially suessful miroprogrammed miniomputer inthe mid 1970's that also had a 256 word ontrol store, but its miroinstrutions were 56 bits wide.Like any other memory, the ontrol store needs an MAR and an MBR. In this ase we willall the MAR the MPC (MiroProgram Counter) beause its only funtion is to point to the nextmiroinstrution to be fethed from the memory for exeution. The MBR is just the MIR asmentioned above. In this miroarhiteture the ontrol store and the main memory are di�erententities; the ontrol store holds the miroprogram and the main memory holds the onventionalmahine language program.From Fig. 10 it is lear that the ontrol store ontinuously tries to opy the miroinstrutionaddressed by the MPC into the MIR. However, the MIR is loaded only during subyle 1, asindiated by the dashed line from lok output T1 to it. During the other three subyles of thelok, it is not a�eted, no matter what happens to the MPC.During subyle 2 (whih lasts between the rising edge of T1 and the rising edge of T2) theMIR beomes stable, and the various �elds begin ontrolling the data path. In partiular the Aand B �elds selet the srathpad registers to be gated onto the A and B buses, respetively. TheA and B deoder boxes provide for the 4-to-16 deoding of eah �eld needed to drive the OE-Aand OE-B lines at the srathpad registers (see Fig. 3). Clok signal T2 loads the A and B lathes,whih after their outputs settle, provide stable ALU inputs for all remaining subyles during therest of the yle. While data are being gated onto the A and B buses, the inrement unit in theontrol setion of the mahine omputes MPC + 1, in preparation for loading the next sequentialmiroinstrution during the next yle. By overlapping these two oprations, instrution exeutionan be speeded up.In subyle 3, the ALU and shifter are given time to produe valid results. The AMUX mi-roinstrution �eld determines the left input to the ALU; the right input always omes from theB-lath. Although the ALU is a ombinational iruit, the time it takes to ompute the sum isdetermined by the arry-propagation time, not the normal gate delay. The arry-propagation timeis proportional to the number of bits in the word. While the ALU and shifter are omputing, theMAR is loaded from the output of the B-lath at T3 if the MAR �eld in the miroinstrution is 1.
10

16 Load-Reg
4

MBR

PC

15 F

A-Bus B-Bus

I1 I0
AMUX

ALU

Shifter

1
0

16 OE-A

16 OE-B

2 SP
AC

N
Z

I1I0
MMUX

MPC
Increment
MPC + 1

2

4

4

C-Bus

Registers
CPU16

MIR

Rd
Wr

C B A ADDR

(ROM, PROM, EPROM, EEPROM)
256 wds X 32 bits Control Store

2

4 4 4 8

2

B-Latch

Micro
Seq.

Logic

A
M
U
X

C
O
N
D

A
L
U

S
H
F
T

M
B
R

M
A
R

R
D
W
R

E
N
C

Generator
Clock

4-PhaseT4
T3
T2
T1

C-Bus
Decoder

A-Bus

B-Bus

Decoder

Decoder

MAR

A-Latch

Reset

Run/
Stop

Figure 10: The omplete blok diagram for example miroarhiteture (Mi-1/Ma-1)
11

During the fourth and �nal subyle, the C-Bus may be stored bak into the srathpad andMBR, depending on ENC and MBR. The box labeled \C deoder" takes ENC, T4, and the C �eldfrom the miroinstrution as inputs and generates the one (or none) of the 16 register load signals.Internally it performs a 4-to-16 deode of the C �eld and then ANDs eah of these 16 signals witha signal derived from ANDing subyle 4 line T4 with ENC. Thus, a srathpad register is loadedonly if three onditions prevail:1. ENC = 1.2. It is subyle 4 with T4 = 1.3. The register has been seleted by the C �eld.The MBR is also loaded during subyle 4 if MBR = 1.Miroinstrution Sequening: The only remaining issue is how the next miroinstrution ishosen. Although some of the time it is suÆient just to feth the next miroinstrution in sequene,some mehanism is needed to allow onditional jumps in the miroprogram in order to enable it tomake deisions. For this reason two �elds are provided in eah miroinstrution; namely, ADDR,whih is the 8-bit address of a potential suessor to the urrent miroinstrution, and COND,whih determines whether the next miroinstrution is fethed from the ontrol store address thatis one greater than the ontents of the urrent MPC (i.e., MPC + 1) or from the loation spei�edby the ADDR �eld. Every miroinstrution potentially ontains a onditional jump. The deisionto allow for this in the miroinstrution format was made beause onditional jumps are veryommon in miroprograms, and allowing every miroinstrution to have two possible suessorsmakes them run faster than the alternative of setting up some ondition in one miroinstrutionand then testing it in the next.The hoie of address from whih the next miroinstrution will be fethed is determined bythe box labeled \Miro Sequening Logi" during subyle 4, when the ALU output signals N andZ are valid. The output of this box ontrols the M multiplexer (MMUX), whih routes either MPC+ 1 or ADDR to the MPC (loaded by lok signal T4) where it will diret the fething of the nextmiroinstrution. The desired hoie is indiated by the setting of the COND �eld as follows:0 = Do not jump: next miroinstrution is taken from MPC + 11 = Jump to ADDR if N = 12 = Jump to ADDR if Z = 13 = Jump to ADDR unonditionallyThe Miro Sequening Logi ombines the two ALU bits, N and Z, and the two COND bits C1and C0 to generate an output that is then used as the seletion input to the MMUX. The Booleanexpression for generating the seletion signal (Mmux) is:Mmux = C1C0N _ C1C0Z _ C1C0 = C0N _C1Z _ C1C0where _" means logial OR. In words, the seletion ontrol signal to the MMUX is 1 (routingADDR to MPC) if C1C0 is 012 and N = 1, or C1C0 is 102 and Z = 1, or C1C0 is 112. Otherwise,it is 0 and the next miroinstrution in sequene is fethed.Beause the MAR is loaded at time T3, the memory ontrol unit will not have enough time todeode the address spei�ed and either read from or write to it when lok pulse T4 omes along.In fat, during a memory read the MBR will be loaded with garbage by the �rst T4 lok pulsefollowing the loading of the MAR at T3. Hene, if a miroinstrution starts a main memory read,by setting \Rd" to 1, it must also have Rd = 1 in the next miroinstrution exeuted (whih may or12

may not be loated at the next ontrol store address). In other words, \Rd" must be set to 1 in twoonseutive miroinstrutions in order for the MBR to be loaded with orret data (returning frommain memory) by the seond T4 lok pulse following the loading of the MAR at T3. A full fourlok tiks (orresponding to a full miroinstrution yle time) are needed for the main memory torespond with valid data. Thus, the data beome available two miroinstrutions after the read wasinitiated. If the miroprogram has nothing else useful to do in the miroinstrution following theone that initiated a memory read (or write), that miroinstrution's only task is then to keep Rd =1 (or for writes Wr = 1). In the same way, a memory write also takes two miroinstrution times toomplete. In the miroinstrution initiating the write the MAR is typially loaded with the addressinto whih data will be written at lok pulse T3, and the data to be written are loaded into theMBR at lok pulse T4. The main memory again needs four lok tiks to deode the address andomplete the write. Thus, \Wr" must be set equal to 1 in two onseutive miroinstrutions (theone initiating the write and the one following it in time).An Example Maroarhiteture, the Ma-1We now onsider the instrution set arhiteture of the onventional mahine level to be sup-ported by the miroprogrammed interpreter running on the mahine of Fig. 10. For onveniene,we will all the arhiteture of the level 2 or 3 mahine the maroarhiteture to ontrast it withlevel 1, the miroarhiteture. (We will basially ignore level 3 at this point beause its instrutionsare largely those of level 2 and the di�erenes are not important here.) Similarly, we will all thelevel 2 instrutions maroinstrutions. Thus, the normal ADD, MOVE, and other instrutionsof the onventional mahine level will be alled maroinstrutions. (The point of repeating thisremark is that some assemblers have a faility to de�ne assembly-time \maros" that are in no wayrelated to what we mean by maroinstrutions.) We will sometimes refer to our example level 1mahine as Mi-1 and the level 2 mahine as Ma-1.Staks: A modern maroarhiteture should be designed with the needs of high-level languagesin mind. One of the most important design issues is addressing. A mehanism must be providedfor saving a urrent address pointer when a proedure (or funtion) is alled and then returningbak to where it ame from in the alling program when exiting the proedure. In some high-levellanguages these alled proedures are alled subprograms, subroutines, or funtions, and we will usethese terms interhangably. A way of passing parameters to the alled proedure where the alledproedure will know to look for them also must be made available. The alled proedure itself mayneed to alloate some memory spae for loal temporary variables in order to do its work and then beable to release the alloated spae when returning to the alling program. Furthermore, a hardwaremehanism that will onveniently support reursive alls (i.e., proedures alling themselves) is alsodesirable. Blok strutured languages (like Pasal and others) are normally implemented in suh away that when a proedure is exited, the storage it has been using for loal variables is released.The easiest way to ahieve this goal is by using a data struture alled a stak.A stak is a ontiguous blok of memory ontaining some data that operates on a last-in�rst-out basis muh like a stak of afeteria trays on a spring loaded base. A pointer (usuallyimplemented by a CPU register) alled the stak pointer (SP) is used to point to the urrenttop of stak loation in the region of main memory where the stak is loated. Just like with theafeteria trays, when a new tray is plaed on the stak, its weight pushs down on the spring in thesuporting base. Thus, staks are sometimes alled push-down staks, and the mahine instrutionused to plae a new data item or address on the stak is usually alled a PUSH instrution. Onthe other hand, the instrution used to remove the top item from a stak (and plae it elsewhere)is variously alled by di�erent manufaturers a POP instrution or a PULL instrution. With theafeteria tray analogy POP likely refers to the spring in the base popping up a noth when theweight of the top tray is removed. In other ontexts PULL is obviously the opposite of PUSH. Inthe maroarhiteture desribed here we will inlude the instrutions PUSH and POP for putting13

data items on the stak or getting them o� the stak. The register �le in Fig. 5 already ontains aregister alled SP that we an use as the stak pointer register to point to the urrent top of stakloation in memory. It also has a PC register that we an use as a program ounter to point towhere the next mahine instrution will be found in memory. The instrution CALL will �rst pushthe ontent of the PC register onto the stak before jumping o� to the alled proedure. The jumpto the alled proedure is aomplished by overwriting the PC register with a new value, alledthe target address (or the entry point of the proedure) and then letting the omputer feth itsnext instrution for exeution from there. By �rst saving the PC register ontents on the stakbefore overwriting the PC with a new target address, the alled proedure will be able to returnto the alling program where it left o�. The instrution RETURN, when exeuted by the alledproedure, will simply pop the top of stak entry into the PC register, thus pointing the programounter bak to a loation (the return point) in the alling program, and will in e�et ause ajump bak to the alling program. The CALL and RETURN instrutions then provide a meansfor saving and then restoring the ontents of the PC register using the stak when entering andexiting from alled proedures.Although one ould name any register in the PUSH and POP instrutions as the soure of thedata for a push and the destination for the data from a POP, our example mahine will impliitlyuse only the AC register as the soure of data for a PUSH and the destination for a POP. Nowa PUSH must advane the stak pointer by one memory loation before writing the ontents ofthe AC register into the memory loation at the top of the stak. One ould hoose either of thefollowing options for how to advane the stak pointer: (1) allow the stak to grow upward fromlow memory addresses to high memory addresses by inrementing SP on a PUSH; or (2) allow thestak to grow downward from high memory addresses to low memory addresses by derementingSP on a PUSH. Intel has hosen option (2) for the 80X86 arhitetures and so will we. Beausethe stak pointer points to the urrent top of stak loation, a PUSH must �rst derement (theontents of) SP and then opy the ontents of the AC to the memory loation whose address is inthe SP register. A POP will �rst opy the ontents of the top of stak loation into the AC registerand then inrement (the ontent of) the SP register.In order to permit programs to reserve (or delete) spae on the stak for temporary loal vari-ables, instrutions are needed for inrementing (or derementing) the ontents of the SP register byvariable amounts. Hene, the instrution set will have instrutions for inrementing SP (INSP) andderementing SP (DESP) whih allow the level 2 programmer to speify the variable amount withan 8-bit onstant. Furthermore, instrutions for getting at loal variables or inoming parameterson the stak relative to where the SP (or some other register) urrently points are also useful;thus, instrutions providing a form of stak relative indexed addressing are also needed so that onedoesn't have to keep moving the stak pointer to get at these items. In other words, the Ma-1needs an addressing mode that fethes or stores a word at a known distane relative to the stakpointer (or some equivalent addressing mode). In the Ma-1 these stak pointer relative indexedaddressing mode instrutions will be known as load loal (LODL), store loal (STOL), add loal(ADDL) and subtrat loal (SUBL); they will allow the level 2 programmer to speify a 12-bito�set (or base) value and, hene, they will have a memory referene format.The Maroinstrution Set: The instrution set (or repertoire) is the set of all instrutionsthat the Ma-1 is apable of exeuting. The Ma-1's arhiteture onsists of a memory with 409616-bit words and three registers visible to the level 2 programmer. The registers are the programounter (PC), the stak pointer (SP), and the aumulator (AC) whih is used for moving dataaround, for arithmeti, and for other purposes. Three addressing modes are provided: diret,indiret, and loal. Instrutions using diret addressing ontain a 12-bit absolute memory addressin their low-order 12 bits; and instrutions using this format are usually alled \memory refereneinstrutions". Indiret addressing allows the programmer to ompute a memory address, put it inthe AC, and then read or write the word pointed at by the ontents of the AC register; this mode14

is sometimes alled register indiret addressing. Loal addressing spei�es an o�set from wherethe SP points, and is used (among other things) to aess loal variables. Together, these threeaddressing modes provide a simple but adequate addressing system.MAC-1 Instrution RepertoireOpCode OpCode Assembly MeaningBinary Hex Mnemoni Instrution or Ation0000xxxxxxxxxxxx 0xxx lodd Load diret a:=m[x℄0001xxxxxxxxxxxx 1xxx stod Store diret m[x℄:=a0010xxxxxxxxxxxx 2xxx addd Add diret a:=a+m[x℄0011xxxxxxxxxxxx 3xxx subd Subtrat diret a:=a�m[x℄0100xxxxxxxxxxxx 4xxx jpos Jump if positive if a�0 then p:=x0101xxxxxxxxxxxx 5xxx jzer Jump if zero if a=0 then p:=x0110xxxxxxxxxxxx 6xxx jump Jump p:=x0111xxxxxxxxxxxx 7xxx loo Load onstant a:=x (0�x�4095)1000xxxxxxxxxxxx 8xxx lodl Load loal a:=m[x+sp℄1001xxxxxxxxxxxx 9xxx stol Store loal m[x+sp℄:=a1010xxxxxxxxxxxx axxx addl Add loal a:=a+m[x+sp℄1011xxxxxxxxxxxx bxxx subl Subtrat loal a:=a�m[x+sp℄1100xxxxxxxxxxxx xxx jneg Jump if negative if a<0 then p:=x1101xxxxxxxxxxxx dxxx jnze Jump if nonzero if a6=0 then p:=x1110xxxxxxxxxxxx exxx all Call proedure sp:=sp�1;m[sp℄:=p;p:=x1111000000000000 f000 pshi Push indiret sp:=sp�1;m[sp℄:=m[a℄1111001000000000 f200 popi Pop indiret m[a℄:=m[sp℄;sp:=sp+11111010000000000 f400 push Push onto stak sp:=sp�1;m[sp℄:=a1111011000000000 f600 pop Pop from stak a:=m[sp℄;sp:=sp+11111100000000000 f800 retn Return p:=m[sp℄;sp:=sp+11111101000000000 fa00 swap Swap a, sp tmp:=a;a:=sp;sp:=tmp11111100yyyyyyyy fyy insp Inrement sp sp:=sp+y (0�y�255)11111110yyyyyyyy feyy desp Derement sp sp:=sp�y (0�y�255)1111111111111111 ffff halt Halt mahine stops fething instrutionsxxxxxxxxxxxx is a 12-bit mahine address (or onstant); in olumn 2 it is alled xxx and in olumn 5 it isalled x.yyyyyyyy is an 8-bit onstant; in olumn 2 it is alled yy and in olumn 5 it is alled y.Figure 11: Table of Ma-1 InstrutionsThe Ma-1 instrution set is shown in Fig. 11. Eah instrution ontains an operation ode(opode) and sometimes a memory address or onstant. The opode spei�es the operation to beperformed and is shown in binary in the �rst olumn of the table. The 12 x's in the instrutionshaving a memory referene format reserve a 12-bit �eld for a memory address (or in the aseof LOCO a onstant) to be spei�ed by the level 2 programmer. The same is true of the 8 y'sin the INSP and DESP instrutions that reserve an 8-bit onstant �eld to be spei�ed by thelevel 2 programmer. Column two gives the instrution enoding in hexadeimal shorthand, andolumn three spei�es the assembly language mnemoni for eah instrution's opode. Although theassembler program for this instrution set is ase sensitive and wants to see the mahine instrution15

mnemonis in all lower-ase letters, we will use upper-ase in this text for emphasis when talkingabout spei� instrutions. Column four gives a short desription of what the instrution doesand olumn �ve spei�es the ation performed in a register transfer language notation. In olumn�ve, if there is more than one ation ouring, then eah part of the ation sequene is separatedfrom the next by a semiolon, and the sequene of ations ours in left to right order. Column�ve spei�es the register transfers and ations using a pseudo-Pasal language fragment. In thesefragments, \m[x℄" refers to memory word \x."LODD loads the aumulator (AC register) from the memory word spei�ed in its low-order12 bits. LODD thus spei�es diret addressing; whereas, LODL loads the aumulator from theword at a distane \x" from where the SP register points and thus spei�es indexed addressingwith the SP register ating as an index register. LODD, STOD, ADDD, and SUBD perform fourbasi funtions using diret addressing, and LODL, STOL, ADDL, and SUBL perform the samefuntions using indexed (or loal relative to the SP) addressing.Five jump instrutions are provided, one unonditional jump (JUMP) and four onditionalones (JPOS, JZER, JNEG, and JNZE). JUMP always opies its low-order 12 bits into the programounter (PC); whereas, the other four do so only if the spei�ed ondition is met.LOCO loads a 12-bit onstant in the range 0 to 4095 (inlusive) into the AC. PSHI pushes onthethe stak the word whose address is present in the AC register. The inverse operation is POPI,whih pops a word from the stak and stores it in the memory word whose address is in the ACregister. PUSHI and POPI thus spei�y register indiret addressing using the impliit AC registeras the holder of the indiret address. PUSH and POP are useful for manipulating the stak in avariety of ways. SWAP exhanges the ontents of AC and SP, whih provides a way of loading theSP register with a new value. It is also useful for initializing SP at the start of exeution. INSPand DESP are used to hange SP by amounts known at ompile time. Beause the number ofinstrutions to be enoded is more than a 16-bit word with a 12-bit address �elds will allow, it hasbeen neessary to tradeo� bits in the address �eld with bits in the op ode �eld and use \expandingop odes" to enode all of the instrutions. The o�sets for INSP and DESP are limited to 8 bitsin the (inlusive) range of 0 to 255. Finally, CALL alls a proedure, saving the return address onthe stak, and RETN returns from a proedure by popping the return address and putting it inthe PC register.Input/Output: The Ma-1 does not have any expliit input or output instrutions. Instead,it uses memory-mapped I/O. A read from address 4092 will yield a 16-bit word with the nextASCII harater from the standard input devie in the low-order 7 bits and zeros in the high-order9 bits of the AC register. When a harater is available in the data register whose address is 4092,the standard input devie will set to 1 the high-order bit of the input status register at memoryaddress 4093. The ation of loading the ontent of the input data register at memory address4092 into the AC register lears (i.e., sets to zero) the ontent of ip-ops in the status register atmemory address 4093. The input routine will normally sit in a tight loop waiting for the ontentof 4093 to go negative. When it does, the input routine will load the AC from 4092 and return.Output is aomplished using a similar sheme. A write (i.e., store) to the output data registerat memory address 4094 opies the low-order 7 bits in the AC register to the standard outputdevie and at the same time lears (i.e., sets to 0) the high-order bit of the output status registerat memory address 4095. The high-order bit in the output status register at memory address 4095is later set to 1 by the standard output devie when it is again ready to aept another haraterin its data register. Standard input and output may be a terminal keyboard and visual display,or a ard reader and printer, or some other ombination. (Unfortunately, the simulators used toexeute level 2 programs on this maroarhiteture have not as yet implemented the input/outputdata and status registers; so input and output are not simulated.)
16

An Example MiroprogramHaving spei�ed both the miroarhiteture and the maroarhiteture in detail, the remainingissue is the implementation: What does a program running on the former and interpreting the latterlook like, and how does it work? Here we will examine how the hardware omponents are ontrolledby the miroprogram and how the miroprogram interprets the onventional mahine level. Earlyomputers were not miroprogrammed at all and had instrutions for arithmeti, Boolean oprations,shifting, omparing, looping, and so on, that were all diretly exeuted by the hardware. Modernday redued instrution set omputers (RISC) do likewise, but their level 2 mahine instrutions aremerely highly enoded miroinstrutions; so in this ase ompilers translate the high level languagestatements into sequenes of miroinstrutions that are easy to deode and diretly ontrol themiroarhiteture's data path. Miroprogrammed mahines, on the other hand, interpret the level2 mahine instrutions using a miroprogram stored in ontrol memory. The miroprogram iswritten by a miroprogrammer (an individual who writes miroprograms and not merely a smallprogrammer). The ompilers for miroprogrammed mahines usually translate high-level languagesinto sequenes of level 2 mahine language statements that are in turn fethed and deoded by themiroprogram that diretly ontrols the data path's miroarhiteture.We ould write the miroprogram to feth, deode and exeute the level 2 mahine instrutionsby diretly speifying the sequenes of 32-bit binary numbers (to be stored in ontrol memory)that eah diretly ontrol the hardware for one mahine yle omprising the four lok tiks ofthe four-phase yle. This tedious task is what ultimately must be done, but having a higher levelsymboli language notation that is then translated into the 32-bit numbers will make the taskeasier.The Miro Assembly Language (MAL): One possible notation is to have the miropro-grammer speify one miroinstrution per line, naming eah nonzero �eld and its value. For exam-ple, to add (the ontents of the) AC to (the ontents of the) A register and store the result in theAC register, we ould write ENC = 1, C = 1, B = 1, A = 10Many miroprogramming languages look like this; however, this notation is awful.A muh better idea is to use a high-level language notation, while retaining the basi onept ofone soure line per miroinstrution. Coneivably, one ould write miroprograms in an ordinaryhigh-level language, but beause eÆieny is ruial in miroprograms, we will stik to assemblylanguage, whih we de�ne as a symboli language that has a one-to-one mapping onto mahineinstrutions. Our high-level Miro Assembly Language will be alled \MAL," the Frenh wordfor \sik." In MAL, stores into the 16 srathpad registers or MAR and MBR are denoted byassignment statements. Thus, the above example in MAL beomes: a:=a + a. (Beause theintention is to make MAL Pasal-like, we adopt the usual Pasal onvention of lower-ase namesfor identi�ers.)To indiate the use of the ALU funtions 0, 1, 2, and 3, we an write, for example,a:=a + a, a:=band(ir,smask), a:=a, and a:=inv(a),respetively, where \band" stands for \Boolean AND" and \inv" stands for \invert" (i.e., bitwiselogial omplement). Shifts an be denoted by the funtions \lshift" for left shifts and \rshift" forright shifts, as in tir:=lshift(tir + tir)whih puts the ontents of the TIR register on both the A and B buses, auses the ALU to performan addition, and left shifts the sum 1 bit left before storing it bak into the TIR register.17

Unonditional jumps an be handled with goto statements; onditional jumps an test ALUoutputs N and Z; for example, if n then goto 27Assignments and jumps an be ombined on the same line. However, a slight problem arises ifwe wish to test a register but not make a store. How do we speify whih register is to be tested?To solve this problem, we introdue the pseudo variable \alu," whih an be used in the language toform a valid assignment statement but whih in reality has no destination farther than the ALU'soutput. (Reall that the ALU is made of only ombinational logi omponents and ontains noregisters or other memory devies.) For example,alu:=tir; if n then goto 27means that the ontent of the TIR register is to be run through the ALU unhanged on the A-bus(ALU ode = 2) so its high-order bit an be tested. Note that this use of \alu" means that ENC= 0.To indiate memory reads and writes, we will just put \rd" and \wr" in the soure program.The order of the various parts of the soure statement is, in priniple, arbitrary but to enhanereadability we will try to arrange them in the order that they are arried out. Fig. 12 gives a fewexamples of MAL statements along with the translated �elds of the orresponding miroinstrutions(shown in deimal shorthand for eah �eld).A C S AM O A H M M E DU N L F B A R W N DStatement X D U T R R D R C C B A Rmar:=p; rd 0 0 2 0 0 1 1 0 0 0 0 0 00rd 0 0 2 0 0 0 1 0 0 0 0 0 00ir:=mbr 1 0 2 0 0 0 0 0 1 3 0 0 00p:=p + 1 0 0 0 0 0 0 0 0 1 0 6 0 00mar:=ir; mbr:=a; wr 0 0 2 0 1 1 0 1 0 0 3 1 00alu:=tir; if n then goto 15 0 1 2 0 0 0 0 0 0 0 0 4 15a:=inv(mbr) 1 0 3 0 0 0 0 0 1 1 0 0 00tir:=lshift(tir); if n then goto 25 0 1 2 2 0 0 0 0 1 4 0 4 25alu:=a; if z then goto 22 0 2 2 0 0 0 0 0 0 0 0 1 22a:=band(ir, amask); goto 0 0 3 1 0 0 0 0 0 1 1 8 3 00sp:=sp + (-1); rd 0 0 0 0 0 0 1 0 1 2 2 7 00tir:=lshift(ir + ir); if n then goto 69 0 1 0 2 0 0 0 0 1 4 3 3 69Figure 12: Some MAL statements and their orresponding miroinstrutions.The Example Miroprogram: We have �nally reahed the point where we an put all thepiees together. Fig. 13 is the miroprogram that runs on the Mi-1 and interprets the Ma-1. Itis a surprisingly short program { only 81 lines. By now the hoie of names for the srathpadregisters in Fig. 5 is obvious: PC, AC, and SP are used to hold the three Ma-1 registers. IR is theinstrution register and holds the maroinstrution urrently being exeuted. TIR is a temporaryopy of the IR, used for deoding the opode. The next three registers hold the indiated onstants.AMASK is the address mask 0FFF16, and is used to separate out opode and address bits. SMASKis the stak mask, 00FF16, and is used in the INSP and DESP instrutions to isolate the 8-bit o�setvalue. The remaining six registers have no assigned funtion and an be used as srath registersfor whatever the miroprogrammer wishes. 18

Like all interpreters, the miroprogram in Fig. 13 has a main loop that fethes, deodes, andexeutes instrutiions from the program being interpreted, in this ase level 2 instrutions. Itsmain loop begins on line 0, where it begins fething the maroinstrution whose memory addressis in the PC register. While waiting for this instrution to arrive, the miroprogram inrementsthe ontent of the PC and ontinues to assert the \Rd" bus signal. When it arrives, in line 2, it isstored in the IR register and simultaneously the high-order bit (bit 15) is tested. If bit 15 is a 1,deoding proeeds to line 28; otherwise, it ontinues on line 3. Assuming for the moment that theinstrution is a LODD, bit 14 is tested on line 3, and the TIR register is loaded with the originalinstrution shifted left 2 bit positions, one shift using the adder and one using the shifter. Notethat the ALU status bit N is determined by the ALU output in whih bit 14 is the high-order bit,beause IR + IR shifts the IR ontents left 1 bit position. The shifter output does not a�et theALU status bit.All instrutions having 00 in their two high-order bits eventually ome to line 4 to have bit 13tested, with the instrutions beginning with 000 going to line 5 and those beginning with 001 goingto line 11. Line 5 is an example of a miroinstrution with ENC = 0; it just tests the ontent of theTIR register, but does not hange it. Depending on the outome of this test, the ode for LODDor STOD is seleted.For LODD, the miroode must �rst feth the word diretly addressed by loading the low-order12 bits of the IR into the MAR. In this ase, the high-order 4 bits are all zero, but for STOD andother instrutions they are not. However, beause the MAR is only 12 bits wide and onneted toonly the low-order 12 bits on the B-bus, the opode bits do not a�et the hoie of the word to beread. In line 7, the miroprogram has nothing to do, so it just waits. When the word arrives, itis opied into the AC register and the miroprogram jumps bak to the top of the loop where theinstrution feth yle begins. STOD, ADDD, and SUBD are similar. The only noteworthy pointonerning them is how subtration is done.Reall that in radix r the radix omplement (RC) of a number x is de�ned to be RC(x) = rn�x.Similarly, the diminished radix omplement (DRC) of x (also alled the r � 1's omplement) isde�ned to be DRC(x) = rn�r�m�x. When m = 0 so that we are dealing only with n-bit registersontaining integers, then the 1's omplement of x is 1's(x) = 2n � 20 � x = 2n � 1 � x. The 2'somplement of x is then 2's(x) = 2n � x = 10s(x) + 1, where the 1's omplement of x is the sameas the bitwise logial omplement of the n-bit number x. Thus, SUBD makes use of the fat thatx� y = x+ (�y) = x+ (y + 1) = x+ 1 + yin two's omplement. The addition of 1 to the ontent of the AC is done on line 16 (using theommutativity of additiion); otherwise line 16 would be wasted like line 13.The miroode for JPOS begins on line 21. If the ontent of the AC < 0, the branh failsand JPOS is terminated immediately by jumping bak to the main loop and fething the nextinstrution in sequene. If, however, the ontent of the AC � 0, the low-order 12 bits of the IR areextrated by ANDing them with the 0FFF16 mask in the AMASK register and storing the resultin the PC register. It does not ost anything extra to remove the opode bits here, so we mightas well do it. If it had ost an extra miroinstrution, however, we would have had to look veryarefully to see if having garbage in the high-order 4 bits of the PC ould ause trouble later.In a ertain sense, JZER (line 23) works the opposite of JPOS. With JPOS, if the test onditionis met, the jump fails and ontrol returns to the main loop. With JZER, if the test ondition is met,the jump is taken. Beause the ode for performing the jump is the same for all jump instrutions,we an save miroode by just going to line 22 whenever feasible. This style of programminggenerally would be onsidered unouth in an appliation program, but in a miroprogram no holdsare barred. Performane is everything. 19

Miroprogram to feth, deode, and exeute Ma-1 instrutionsAdr: Miroinstrution Comment Adr: Miroinstrution Comment0: mar:=p; rd; feth instr 41: alu:=tir; if n then goto 44; deode ir121: p:=p + 1; rd; inrement p 42: alu:=a; if n then goto 22; 1100 = JNEG2: ir:=mbr; if n then goto 28; deode ir15 43: goto 0;3: tir:=lshift(ir + ir); if n then goto 19; deode ir14 44: alu:=a; if z then goto 0; 1101 = JNZE4: tir:=lshift(tir); if n then goto 11; deode ir13 45: p:=band(ir,amask); goto 0;5: alu:=tir; if n then goto 9; deode ir12 46: tir:=lshift(tir); if n then goto 50; deode ir126: mar:=ir; rd; 0000 =LODD 47: sp:=sp + (-1); 1110 = CALL7: rd; 48: mar:=sp; mbr:=p; wr;8: a:=mbr; goto 0; 49: p:=band(ir,amask); wr; goto 0;9: mar:=ir; mbr:=a; wr; 0001 = STOD 50: tir:=lshift(tir); if n then goto 65; deode ir1110: wr; goto 0; 51: tir:=lshift(tir); if n then goto 59; deode ir1011: alu:=tir; if n then goto 15; deode ir12 52: alu:=tir; if n then goto 56; deode ir912: mar:=ir; rd; 0010 = ADDD 53: mar:=a; rd; 1111-0000 = PSHI13: rd; 54: sp:=sp + (-1); rd;14: a:=mbr + a; goto 0; 55: mar:=sp; wr; goto 10;15: mar:=ir; rd; 0011 = SUBD 56: mar:=sp; sp:=sp + 1; rd; 1111-0010 = POPI16: a:=a + 1; rd; 57: rd;17: a:=inv(mbr); 58: mar:=a; wr; goto 10;18: a:=a + a; goto 0; 59: alu:=tir; if n then goto 62; deode ir919: tir:=lshift(tir); if n then goto 25; deode ir13 60: sp:=sp + (-1); 1111-0100 = PUSH20: alu:=tir; if n then goto 23; deode ir12 61: mar:=sp; mbr:=a; wr; goto 10;21: alu:=a; if n then goto 0; 0100 = JPOS 62: mar:=sp; sp:=sp + 1; rd; 1111-0110 = POP22: p:=band(ir,amask); goto 0; perform jump 63: rd;23: alu:=a; if z then goto 22; 0101 = JZER 64: a:=mbr; goto 0;24: goto 0; else don't jump 65: tir:=lshift(tir); if n then goto 73; deode ir1025: alu:=tir; if n then goto 27; deode ir12 66: alu:=tir; if n then goto 70; deode ir926: p:=band(ir,amask); goto 0; 0110 = JUMP 67: mar:=sp; sp:=sp + 1; rd; 1111-1000 = RETN27: a:=band(ir,amask); goto 0; 0111 = LOCO 68: rd;28: tir:=lshift(ir + ir); if n then goto 40; deode ir14 69: p:=mbr; goto 0;29: tir:=lshift(tir); if n then goto 35; deode ir13 70: a:=a; 1111-1010 = SWAP30: alu:=tir; if n then goto 33; deode ir12 71: a:=sp;31: a:=ir + sp; 1000 = LODL 72: sp:=a; goto 0;32: mar:=a; rd; goto 7; 73: tir:=lshift(tir); if n then goto 76; deode ir933: a:=ir + sp; 1001 = STOL 74: a:=band(ir,smask); 1111-1100 = INSP34: mar:=a; mbr:=a; wr; goto 10; 75: sp:=sp + a; goto 0;35: alu:=tir; if n then goto 38; deode ir12 76: alu:=tir; if n then goto 80; deode ir836: a:=ir + sp; 1010 = ADDL 77: a:=band(ir, smask); 1111-1110 = DESP37: mar:=a; rd; goto 13; 78: a:=inv(a);38: a:=ir + sp; 1011 = SUBL 79: a:=a + 1; goto 75;39: mar:=a; rd; goto 16 ; 80: halt; goto 80; 1111-1111 = HALT40: tir:=lshift(tir); if n then goto 46; deode ir13The exeution yle for eah deoded MAC-1 instrution begins at the ontrol store address whose lineis labeled with a omment showing the assembly language mnemoni for the orresponding instrution(apitalized for emphasis). \Adr:" is the ontrol store address. The instrution feth yle begins at ontrolstore address zero.Figure 13: Miroinstrutions to feth, deode, and exeute Ma-1 instrutions on the example Mi-1miroarhiteture
20

JUMP and LOCO are straightforward, so the next interesting exeution routine is for LODL.First the absolute memory address to be referened is omputed by adding the o�set ontained inthe instrution to the ontent of the SP register. Then the memory read is initiated. Beause therest of the ode is the same for LODL and LODD, we might as well use lines 7 and 8 for bothof them. Not only does this save ontrol store spae with no loss of exeution speed but it alsomeans fewer routines to debug. Analogous ode is used for STOL, ADDL, and SUBL. The ode forJNEG and JNZE is similar to JZER and JPOS, respetively (not the other way around). CALL�rst derements the ontent of the SP register, then pushes the return address (whih is the urrentontent of the PC register) onto the stak, and �nally jumps to the alled proedure. Line 49 isalmost idential to line 22; if it had been exatly the same, we ould have eliminated line 49 byputting an unonditional jump to 22 in 48. Unfortunately, we must ontinue to assert \Wr" foranother miroinstrution.The rest of the maroinstrutions all have 1111 as their high-order 4 bits, so deoding of (atleast some of) the low-order 12 bits in these instrutions is required to tell them apart. The atualexeution routines are straightforward so we will not omment on them further.A few more points are worth making. In Fig. 13 we inrement the ontent of the PC registerin line 1. It ould equally well have been done in line 0, thus freeing line 1 for something else whilewaiting for memory to respond. In this mahine there is nothing else to do, but in a real mahinethe miroprogram might use this opportunity to hek for I/O devies awaiting servie, refreshdynami RAM, or something else.If we leave line 1 the way it is , however, we ould speed up the mahine by modifying line 8 toread mar:= p; a:= mbr; rd; goto 1;In other words, we an start fething the next instrution before we have really �nished with theurrent one. This apability provides a primitive form of instrution pipelining. The same trikan be applied to other exeution routines as well.It is lear that a substantial amount of the exeution time of eah maroinstrution is devotedto deoding it bit by bit. This observation suggests that it might be useful to be able to loadthe MPC register under miroprogram ontrol. On many existing omputers the miroarhiteturehas hardware support for extrating maroinstrution opodes and stuÆng them diretly into theMPC to e�et a multiway branh. If, for example, we ould shift the IR 9 bits to the right andput the resulting number into the MPC, we would have a 128-way branh to loations 0 through127. Eah of these words would ontain the �rst miroinstrution in the exeution sequene forthe orresponding maroinstrution. Although this approah wastes ontrol store spae, it greatlyspeeds up the mahine, so something like it is nearly always used in pratie.By using memory-mapped I/O, the CPU is not aware of the di�erene between true memoryaddresses and I/O devie registers. The miroprogram handles reads and writes to the top fourwords of the address spae the same way it handles any other reads and writes.Designing a mahine as a series of levels is done for eÆieny and simpliity beause eah leveldeals only with another level of abstration. The level 0 designer worries about how to squeeze thelast few nanoseonds out of the ALU by using some means to redue arry-propagation time. Themiroprogrammer worries about how to get the most mileage out of eah miroinstrution, typiallyby exploiting as muh of the hardware's inherent parallelism as possible. The maroinstrution setdesigner worries about how to provide an interfae that both the ompiler writer and miropro-grammer an learn to love, and be eÆient at the same time. Clearly, eah level has di�erent goals,problems, tehniques, and in general, a di�erent way of looking at the mahine. By splitting thetotal mahine design problem into several subproblems, we an attempt to master the inherentomplexity in designing a modern omputer. 21

