
ENEE 350 Notes on Assembly Language Programming C. B. Silio

Call by Value

/ File main.c /

void main() {

int a = 3;

int b = 7;

int c;

c = sum(a, b);

}

gcc -S -m486 main.c

/ File main.s /

.file "main.c"

.version "01.01"

gcc2_compiled.:

.text

.align 16

.globl main

.type main,@function

main:

pushl %ebp

movl %esp,%ebp

subl $12,%esp

movl $3,-4(%ebp)

movl $7,-8(%ebp)

movl -8(%ebp),%eax

pushl %eax

movl -4(%ebp),%eax

pushl %eax

call sum

addl $8,%esp

movl %eax,%eax

movl %eax,-12(%ebp)

.L1:

movl %ebp,%esp

popl %ebp

ret

.Lfe1:

.size main,.Lfe1-main

.ident "GCC: (GNU) 2.7.2.1"

1

ENEE 350 Notes on Assembly Language Programming C. B. Silio

Call by Value Continued

/ File sum.c /

int sum(int x, int y) {

return (x+y);

}

gcc -S -m486 sum.c

/ File sum.s /

.file "sum.c"

.version "01.01"

gcc2_compiled.:

.text

.align 16

.globl sum

.type sum,@function

sum:

pushl %ebp

movl %esp,%ebp

movl 8(%ebp),%edx

addl 12(%ebp),%edx

movl %edx,%eax

jmp .L1

.align 16

.L1:

movl %ebp,%esp

popl %ebp

ret

.Lfe1:

.size sum,.Lfe1-sum

.ident "GCC: (GNU) 2.7.2.1"

2

ENEE 350 Notes on Assembly Language Programming C. B. Silio

Call by Reference

/ File main.c /

void main() {

int a = 3;

int b = 7;

int c;

sum(&a, &b, &c);

}

gcc -S -m486 main.c

/ File main.s /

.file "main.c"

.version "01.01"

gcc2_compiled.:

.text

.align 16

.globl main

.type main,@function

main:

pushl %ebp

movl %esp,%ebp

subl $12,%esp

movl $3,-4(%ebp)

movl $7,-8(%ebp)

leal -12(%ebp),%eax

pushl %eax

leal -8(%ebp),%eax

pushl %eax

leal -4(%ebp),%eax

pushl %eax

call sum

addl $12,%esp

.L1:

movl %ebp,%esp

popl %ebp

ret

.Lfe1:

.size main,.Lfe1-main

.ident "GCC: (GNU) 2.7.2.1"

3

Call by Reference Continued

/ File sum.c /

void sum(int *x, int *y, int *z) {

*z = *x + *y;

}

gcc -S -m486 sum.c

/ File sum.s /

.file "sum.c"

.version "01.01"

gcc2_compiled.:

.text

.align 16

.globl sum

.type sum,@function

sum:

pushl %ebp

movl %esp,%ebp

pushl %ebx

movl 16(%ebp),%eax

movl 8(%ebp),%edx

movl 12(%ebp),%ecx

movl (%edx),%ebx

addl (%ecx),%ebx

movl %ebx,(%eax)

.L1:

movl -4(%ebp),%ebx

movl %ebp,%esp

popl %ebp

ret

.Lfe1:

.size sum,.Lfe1-sum

.ident "GCC: (GNU) 2.7.2.1"

4

ENEE 350 Notes on Assembly Language Programming C. B. Silio

Call by Value for the MAC-1

/ main.c /
void main() { int a = 3; int b = 7; int c; c = sum(a, b); }

The assumed conventions for the MAC-1 are that values are passed on the stack to the called
function \sum" and that the function returns the value it computes in the accumulator (ac)
register. Also it is assumed that the main program has a starting address speci�ed on the
assembler's END directive and also that it must initialize the stack pointer (sp) register.

/Main Program illustrating call by value (version 1)

EXTRN sum /Declare label sum to be externally defined

a 3 /Define variables (symbolic addresses) and

b 7 / their contents

c RES 1 /Reserve a memory location for the answer

start loco 4020 /Initialize stack pointer register contents

swap / to 4020 (base 10)

begin loco b /Put address b into ac

pshi /Push value in address b ([b] = 7) onto stack

loco a /Put address a into ac

pshi /Push value in address a ([a] = 3) onto stack

call sum /Call addition function; result returns in ac

stod c /Put away result in ac into location c

insp 2 /Clear out stack frame; i.e., reset sp to 4020

halt /Stop execution

END start /This main program has starting address start

An alternate way of placing the values on the stack directly is shown below:

/Main Program illustrating call by value (version 2)

EXTRN sum /Declare label sum to be externally defined

a 3 /Define variables (symbolic addresses) and

b 7 / their contents

c RES 1 /Reserve a memory location for the answer

start loco 4020 /Initialize stack pointer register contents

swap / to 4020 (base 10)

begin lodd b /Put value in address b ([b] = 7) into ac

push /Push it onto the stack

lodd a /Put value in address a ([a] = 3) into ac

push /Push it onto the stack

call sum /Call addition function; result returns in ac

stod c /Put away result in ac into location c

insp 2 /Clear out stack frame; i.e., reset sp to 4020

halt /Stop execution

END start /This main program has starting address start

5

ENEE 350 Notes on Assembly Language Programming C. B. Silio

Call by Value for the MAC-1 Continued

/ sum.c /

int sum(int x, int y) {return (x+y);}

Note that the variables x and y are sometimes called \dummy variables" because they refer
only to the parameters passed to the function subprogram and not to actual memory loca-
tions. x refers to the �rst parameter and y refers to the second parameter. Parameters are
sometimes called arguments. The assumed convention is that the parameters are passed on
the stack in the order placed there by the calling program. Upon entry the stack pointer
register (sp) points to the memory location containing the return address (i.e., the program
counter register contents when the call instruction in the calling program was executed).
Thus, the return address is currently in the top of stack location. The second parameter
pushed on the stack is underneath it at location sp+1 and the �rst parameter pushed on
the stack is underneath the �rst parameter at location sp+2. (Recall that the sp register is
decremented by a push or call and is incremented by a pop or return). Upon entry to the
function subprogram the stack appearss as follows:

sp ---> 4017 |Return address |

4018 | 3 |

4019 | 7 |

4020 | ? |

/Function subprogram sum

ENTRY sum /Declare label sum as entry point

x EQU 1 /Define absolute constant values for

y EQU 2 / symbols x and y (not really necessary)

sum lodl x /Pick up first parameter value; ac:=m[sp+1]

addl y /Add to ac second parameter value ac:=ac+m[sp+2]

retn /Leave result in ac register and return

END

Assembly, linking, and execution of the above main program and sum function would be
carried out by the following sequence of statements (assuming that the main program is in
�le \prog" and that the function is in �le \sub":

tap ee350

assem prog

assem sub

load prog sub

sim prog.abs $EE350/halt $EE350/halt.pascal

tsim prog.abs $EE350/halt $EE350/halt.pascal

6

ENEE 350 Notes on Assembly Language Programming C. B. Silio

Call by Reference for the MAC-1

/ main.c /

void main() {int a = 3; int b = 7; int c; sum(&a, &b, &c);}

Call by reference passes addresses as parameters to the called procedure. This called proce-
dure is sometimes called a subroutine. FORTRAN distinguishes two types of subprograms:
(1) subroutines, and (2) functions. Furthermore, FORTRAN compilers typically use call by
reference for parameter passing in both types of subprograms. In C everything is a func-
tion; however, those declared to be void do not return a value in some register such as the
accumulator register and essentially act like FORTRAN subroutines if call by reference is
used.

/Main Program illustrating call by reference

EXTRN sum /Declare label sum to be externally defined

a 3 /Define variables (symbolic addresses) and

b 7 / their contents

c RES 1 /Reserve a memory location for the answer

start loco 4020 /Initialize stack pointer register contents

swap / to 4020 (base 10)

begin loco c /Put address value c into ac

push /Push it onto the stack

loco b /Put address value b into ac

push /Push it onto the stack

loco a /Put address value a into ac

push /Push it onto the stack

call sum /Call addition function; result returns in ac

insp 3 /Clear out stack frame; i.e., reset sp to 4020

halt /Stop execution

END start /This main program has starting address start

7

ENEE 350 Notes on Assembly Language Programming C. B. Silio

Call by Reference for the MAC-1 Continued

/ sum.c /

void sum(int *x, int *y, int *z) { *z = *x + *y;}

Upon entry to subroutine sum the stack (area of memory) appears as follows:

4014 | |

4015 | |

sp ---> 4016 |Return address |

4017 | Address a |

4018 | Address b |

4019 | Address c |

4020 | ? |

/Subroutine sum(*x, *y, *z)

ENTRY sum /Declare label sum as entry point

x EQU 2 /Define absolute constant offset values for

y EQU 4 / symbols x and y (not really necessary)

sum lodl x /Pick up first parameter value; address b

pshi /Push content of address b onto stack; [b]=7

lodl x /Pick up second parameter value; address a

pshi /Push content of address a onto stack; [a]=3

pop /Get content of address a into ac

addl 0 /Add to ac content of address b; note 0 = zero

stol 0 /Put sum onto stack immediately above ret. addr.

lodl y /Get address c into ac

popi /Pop the resulting sum off the stack into location c

retn /Return

END

8

