ENEE 350 ©C. B. Silio, Jan., 2000
FLOATING POINT REPRESENTATIONS

It is assumed that the student is familiar with the discussion in Appendix B of the text by A. Tanenbaum,
Structured Computer Organization, 4th Ed., Prentice-Hall, 1999. Here we are concerned in particular with
the discussion of floating-point numbers and normalization in pp. 643-651.

In the notation used here floating point representations for real numbers have the form:
+M x RTF

where M is a signed mantissa, R is the radiz of normalization, and E is a signed ezponent. It is the signed
values M and E that are typically packed into computer “words” of varying length to encode single, double,
and extended precision (short, long, and extended) floating point numbers. The number of bits used in the
representation of M determines the precision of the representation. The number of bits used to represent
the signed value E determines the range of the representation. Only a finite number of values among those
in the representable range can be encoded in the n bits available, and this number is determined by the
precision.

To facilitate fixed-point comparisons of floating-point data representations such as might occur in sorting
applications three things are usually done. The first is to place the sign of the mantissa M denoted Sj; on the
left in the same location as in the sign representation for fixed point numbers. This provides easy detection
of the sign of the floating-point data in the same manner as for fixed-point data. The second thing is to
place the signed exponent representation between Sy and M just to the left of M as packed in the high
order word, and the third thing is to bias the k-bit representation of the signed exponent so as to shift the
represented range. In a k-bit field the range of signed exponents is:

—(2F 1 1) < E< (2 —1).

One of the more common ways of biasing the exponent (but not the only way as we shall see in the examples)
is to add to the signed exponent a bias of 2¥—! This bias is appropriately subtracted in unpacking for output
conversion and other arithmetic operations. The biased exponent is called the characteristic (Ep) of the
representation. Biasing the number in this way alleviates the need to examine the sign of the exponent
explicitly in making fixed point comparisons such as in sorting. The range of the characteristic (or biased
exponent) is then:

okl pok=l L1 < Ep okt <okl Lokl g

which is equivalent to

1< E,<2F_—1.
The term usually used is that the characteristic represents the exponent ezcess 2¥~'. Some computer
manufacturers do not use a symmetric range and permit one more negative exponent in the representation
of the characteristic by allowing a zero characteristic to be a valid representation.

A floating point number packed into a single word would then have the following form:

Sy | CHARACTERISTIC | MANTISSA
1 ki j

The purpose of normalization is to preserve as many significant digits in the representation as possible
in the j bits available to represent the normalized mantissa. The greatest number of significant bits are
preserved (j of them) when the radix of normalization is binary (R = 2). When R = 16, the most significant
non-zero hexadecimal digit in the normalized mantissa may have as many as three leading zeros in the j-bit
binary representation in a binary computer.

Some representations assume a normalized fraction, in which case the radix point is assumed to lie at
the boundary between the characteristic and the mantissa. Other representations assume the mantissa is
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normalized as an integer (e.g., the CDC 6600, CYBER 70 and successor series machines) so that the radix
point is assumed to lie immediately to the right of the mantissa.

In the case of binary normalization some representations assume the number to be normalized only if
the most significant binary digit is a one. If this digit is always a one, there is no uncertainty and therefore
no need to devote a bit in the j bits available to represent this digit; it can thus be represented implicitly
as a hidden-bit so that the remaining lower order j binary digits (in which there is some uncertainty from
number to number) can be represented. By using a hidden bit the representation permits a precision of
j + 1 bits for the mantissa, but at the expense of possibly giving up an explicit representation for zero. For
example, hidden bits are used in the DEC PDP-11 series floating point number representations and in the
IEEE Standard Floating Point representations. In other representations zero is usually handled as a special
case by letting a word with all zeros represent the value zero (or equivalently, in one’s complement machines
letting a vector of all one’s represent minus zero).

The portion of the real line represented by floating point formats appears as follows:

Negative Expressible Negative Positive Expressible Positive
Over flow Negative Under flow Under flow Positive Over flow
‘ Region ‘ Numpbers ‘ Region ‘ Region ‘ Numbers ‘ Region ‘
—00 Zero — 400

Using an n-bit word to represent a single precision floating-point word, we note that there are exactly
2™ values in the sets of Positive and Negative Expressible Numbers that can be represented (including zero).

Positive and negative floating point numbers are usually represented in one of two ways depending on the
computer’s choice of arithmetic circuitry and representation for fixed point numbers. Machines that use one’s
complement representations for fixed point numbers and have one’s complement adders in their arithmetic
units typically pack the positive floating point number into one (or more) word(s) and then complement
all bits in this (these) word(s) to represent the negative floating point number. Examples of these one’s
complement representations include the UNIVAC 1100 series machines and the CDC 6600, CYBER. 70 series
and successor machines.

Machines that represent fixed point numbers in two’s complement form and have two’s complement
adders in their arithmetic units typically use a sign magnitude representation for positive and negative
floating point numbers with Sy, = 0 for positive numbers and Sp; = 1 for negative numbers. The negative
mantissas are typically converted to their two’s complement representation(s) when the floating point number
is unpacked for floating point arithmetic operations; the result’s mantissa is then converted back to a sign-
magnitude format when it is repacked into the floating point representation after an arithmetic operation
or upon input conversion. Machines that use this sign magnitude representation for floating point numbers
include the IBM 360/370 and compatible instruction set architectures, the DEC PDP-11 series and upward
compatible machines, the Cray-1 and successors and machines that use the IEEE Floating Point Standard
representation.

We now consider specific examples to illustrate the concepts. Floating point formats used on machines
of various manufacturers are considered; namely, the UNIVAC 1100 series, the IBM 360/370 series, the DEC
PDP-11/VAX-11 series, the CDC 6600/CYBER 70 series, and the IEEE Floating Point Standard series such
as the Intel 8087 series numeric data processors.For each machine format considered we shall present floating-
point representations of the numbers +29.219 and —29.2¢ , and of the numbers 4+0.03125,¢pand — 0.031251, .
Recall that

29.2,9 = 35.1463g = 1D.3,5 = 11101.0011; .

Furthermore, recall that

1
0.03125,0 = (ﬁ)w = 0.000015 = 0.025 = 0.08y5 .



UNIVAC 1100

The UNIVAC 1100 series machines use 36-bit words to represent instructions and fixed point data and a
one’s complement representation for negative numbers with one’s complement arithmetic circuitry. A single
precision floating point datum is packed into a single 36-bit word, and a double precision floating point datum
is packed into two consecutive 36-bit words with the second 36-bit word representing a continuation of the low
order bits in the mantissa. The mantissa is a binary normalized fraction of the form 0.1zzxzzxs Or is either
all zeros or all ones. A single precision datum has an 8-bit characteristic that represents a signed exponent
with bias (excess) 128;9 = 200g, and a double precision datum has an 11-bit characteristic that represents
the signed exponent excess 10249 = 2000s. Negative floating-point numbers are represented by packing
the positive representation into the single (or double) word(s) and then taking the one’s complement of this
(these) word(s) by logically complementing each of the 36 (72) bit positions (including the characteristic
field). A word(s) with all zeros represents floating-point +0, and a word(s) with all ones represents floating-
point —0.

These two formats appear as follows:

Single Precision:

35 34 27 26 0
Sm CHARACTERISTIC MANTISSA
1 8 27
Double Precision:
35 34 wordl 24 23 0,35 word2 0
S CHARACTERISTIC MANTISSA
1 11 60

UNIVAC 1100 examples: After first performing binary normalization on the binary representation of the
number, computing the biased exponent and packing the Sy, CHARACTERISTIC, and MANTISSA fields of
the word(s) in the corresponding floating point format, we represent the resulting 36-bit (or 72-bit) floating-
point word(s) in octal shorthand with 12 octal digits for each word. The representation for negative values is
then formed by taking the seven’s complement of the octal shorthand representation for the positive number.
A positive representation can be detected in the octal shorthand by noting that the first (i.e., leftmost) octal
digit is 0, or 1, or 2, or 3; each of these when converted to binary has a leftmost binary digit of zero,
which corresponds to the bit in the Sy position. Octal shorthand representations of negative floating-point
numbers, therefore, have first (i.e., leftmost) octal digit of 7, or 6, or 5, or 4; each of these when converted
to binary has a leftmost binary digit of one, which corresponds to the bit in the Sy; position. We consider
the single-precision case in detail first, and then present the double-precision result.

We first consider representations for +29.21¢ .

(1) Normalize:

+29.219 = +11101.0011y = +0.111 010 011 001 100 110 011 001 100 110011, x 2+5 .
A g N e Vet Y g P

(2) Compute biased exponent:

Exponent = 459 = +5s, and Bias = 281 = 27 = 128,35 = 200s. Therefore, the Characteristic
E, = (128 + 5)10 =13319 = (200 + 5)8 = 20553 .

(3) Convert to octal shorthand and pack result into floating-point format:
+29.219 = 205|723146314 .

(4) For negative number take diminished radix complement of representation for positive number:
—29.219 = 572|054631463 .
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The double precision representation follows the same steps, except that a second 36-bit word is generated
and the exponent bias differs.

(1d) Normalize as in step 1 above but continue writing out fraction bits and grouping them in groups of three
after normalization to obtain 60 fraction bits (or equivalently 20 octal digits) instead of the 27 fraction
bits (or 9 octal digits) obtained for the single precision case.

(2d) Compute biased exponent:

Exponent = +519 = +5g, and Bias = 211! = 210 = 1024, = 20005. Therefore, the Characteristic
By = (1024 + 5)10 = 102959 = (2000 + 5)s = 2005 .

(3d) Convert to octal shorthand and pack result into floating-point format comprising two consecutive 36-bit
words each of whose bit patterns is represented by a 12-digit octal number:

+29.2;9 = 2005|72314631 and 463146314631 .
(4d) For negative number take diminished radix complement of representation for positive number:

—29.219 = 5772|05463146 and 314631463146 .

We next consider representations for +0.031251 .

(1) Normalize:

+0.0312519 = +0.000015 = +0.100 000 000 000 000 000 000 000 000 x 2~ % .
AN AN AN A A A

(2) Compute biased exponent:

Exponent = —4;9 = —4s, and Bias = 2871 = 27 = 128,35 = 200s. Therefore, the Characteristic
Ey = (128 — 4)1p = 12410 = (200 — 4)g = 1745 .

(3) Convert to octal shorthand and pack result into floating-point format:
+0.03125,¢ = 174]/400000000 .
(4) For negative number take diminished radix complement of representation for positive number:

—0.0312519 = 603|377777777 .
The double precision representation follows the same steps, except that a second 36-bit word is generated
and the exponent bias differs.

(1d) Normalize as in step 1 above but continue writing out fraction bits and grouping them in groups of three
after normalization to obtain 60 fraction bits (or equivalently 20 octal digits) instead of the 27 fraction
bits (or 9 octal digits) obtained for the single precision case; trailing zeros can obviously handled by
inspection.

(2d) Compute biased exponent:

Exponent = —4;9 = —4g, and Bias = 21171 = 219 = 1024, = 20005. Therefore, the Characteristic
By = (1024 — 4)19 = 102010 = (2000 — 4)g = 1774g .

(3d) Convert to octal shorthand and pack result into floating-point format comprising two consecutive 36-bit
words each of whose bit patterns is represented by a 12-digit octal number:

+0.03125;¢ = 1774|40000000 and 000000000000 .
(4d) For negative number take diminished radix complement of representation for positive number:

—0.0312519 = 6003|37777777 and TTTTTTTTTIIT .
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CDC 6600/7600

The CDC 6600 series machines use 60-bit words to represent instructions and fixed point data and a
one’s complement representation for negative numbers with one’s complement arithmetic circuitry. A single
precision floating point datum is packed into a single 60-bit word, and a double precision floating point
datum is packed into two consecutive 60-bit words with the second 60-bit word having a format identical
to that of the first with Sy, Characteristic, and Mantissa fields; the mantissa field in this second word
contains a continuation of the low order bits in the mantissa field in the first word; and the characteristic
field (for the positive number representation) contains a value that is 4819 = 60s less than the value in the
characteristic field in the first word. The mantissa in the first word is a 48-bit binary normalized integer (of
the form lzzz---x.), and the remaining 48 bits of mantissa in the second word are unnormalized. Each
word in the floating point format(s) has an 11-bit characteristic that represents the signed exponent excess
10241 = 2000g if the original exponent is non-negative and excess 1023,p = 1777s if the original exponent
is negative. The reason for this is the way in which exponents are packed into the characteristic field.
The original signed exponent is represented as an 11-bit one’s complement binary integer, and then the high
order bit (the exponent’s sign bit position) is complemented. For a non-negative exponent with a zero in this
exponent sign bit position this corresponds to adding 2000g to the exponent. For a negative exponent with
a one in this exponent sign bit position, complementing only the sign bit corresponds to the representation
of an 11-bit binary integer resulting from the addition of 17775 to the original negative exponent value; for
example, if the original exponent were —4,9 = —4g, then computing the characteristic by adding 17775 to
—4g results in 1774g which corresponds to the bit pattern obtained by first representing —4 as an 11-bit
one’s complement integer (namely, 11111111011) and then complementing (flipping) only the high order bit
(resulting in the bit pattern 01111111011 = 1773g). This exponent sign dependent use of different biases to
represent the characteristic differs from the single excess biased exponent representations of the UNIVAC,
IBM, and DEC PDP-11 formats; by comparison these latter three can be viewed as representing the 2’s
complement of the binary signed exponent in the k-bit characteristic field and then complementing (i.e.,
flipping) the high order bit (i.e., the bit in the exponent sign bit position). Negative floating-point numbers
in CDC machines are represented by packing the positive representation into the single (or double) word(s)
and then taking the one’s complement of this (these) word(s) by logically complementing each of the 60
(120) bit positions (including the characteristic field). A word(s) with all zeros represents floating-point +0,
and a word(s) with all ones represents floating-point —0.

The format for a floating point word is as follows:

99 58 48 47 0
Sm CHARACTERISTIC MANTISSA
1 11 48

CDC 6600/7600/CYBER-series examples: In order to illustrate the binary normalization process to 48
bit integers we will first consider a simple example in addition to the two example numbers used above.
This simple example is £0.519 = £0.15 = £100000000 - - -000000.05 x 2~ . Here we have normalized 0.1
to a 48-bit binary integer comprising a one followed by 47 zeros. Because the exponent is negative (i.e.,
—4819 = —60g), the characteristic is (1777 — 60)s = 1717s. Thus,

+0.5 = 1717]4000000000000000 ; and
—0.5 = 6060|37777TTTTTT77777 .

We now consider the other two examples from above, but in reverse order. We present the representation
of £0.03125,¢9 = +0.00001» first. Normalizing to a 48-bit binary integer requires shifting the binary point
48 + 4 = 52 positions to the right; thus,

0.000015 = 100000 - - - total 47 zeros ---000.05 x 2752 .

Because the exponent is negative (namely, —5219 = —64g) we use a bias of 1777s. The characteristic for the
magnitude 0.031251¢ and its positive representation is thus (1777 — 64)s = 1713g . Thus,

+0.03125 = 1713]4000000000000000 ; and
—0.03125 = 6064|377777TTTTTTTTIT .
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Now consider both the single and double precision representations of +29.2,p = +11101.0011, . If a
binary fraction starting with 0.1, must be shifted 48 positions to the left during normalization, and the
binary integer 1.02 must be shifted 47 positions to the left, then the integer 11101.02 is binary normalized
to a 48 bit integer by shifting it left 43 positions relative to the binary point. Thus,

+29.2;0 = +£111010011001100110011001100110011001100110011001.10011, x 2% .

The exponent is again negative (i.e., —4319 = —53g) so the characteristic becomes (1777 — 53)s = 17245 .
The single precision representation is the same as the first (leftmost) word in the two consecutive words of
the double precision representation; so below are the double-precision representations.

+29.2 = 1724|7231463146314631 & 1644|4631463146314631 ; and
—29.2 = 6053]0546314631463146 & 6133]|3146314631463146 .

We now consider one more example, a very large decimal number that we shall not bother to write down
except for its value as a power of two; namely, £2°° = +1000---total of 50 zeros---00.0, . Binary
normalization of this number to a 48-bit binary integer requires that we shift the binary point three positions
to the left. Thus, 2°° = 100---total of 47 zeros---000.0o x 2+ . Representing this exponent as a one’s
complement number in the characteristic’s 11-bit field results in (00000000011)5, and complementing the
leftmost bit produces (10000000011),, which is the same as adding a bias of 20005 to the positive exponent
of +319 = 433 to produce the characteristic 2003g. Finally, the single precision representations are:

+25° = 2003|4000000000000000 ; and
—250 = 5TT4|3TTTTTTTTTIITINT

Digital Equipment Corp. (DEC) PDP-11

The DEC PDP-11 series machines use 16-bit words to represent instructions and fixed point data and a
two’s complement representation for negative integers with two’s complement arithmetic circuitry. A single
precision floating point datum is packed into two consecutive 16-bit words and is viewed as a single 32-bit
representation. A double precision floating point datum is packed into four consecutive 16-bit words with
the second pair of 16-bit words (treated as a 32-bit quantity) representing a continuation of the low order
bits in the mantissa. The mantissa is a binary normalized fraction of the form 0.1zzzs. A single precision
datum has an 8-bit characteristic that represents a signed exponent with bias (excess) 12819, and a double
precision datum has the same 8-bit characteristic, so there is no increase in range by using double-precision.
The designers must have taken the term “double-precision” literally. Negative floating-point numbers are
represented in a sign-magnitude format by packing the positive representation into the single (or double)
word(s) and then setting the Sy, bit only to one. Of the 32-bits used to represent single precision numbers
only 23 remain in which to represent the normalized fraction. Because every number is assumed normalized
in the form 0.1zzzzs x 2+, there is no need to represent the leading one and so only the x’s in the fraction
are put into the 23 remaining bits in the word, resulting in 24 bits of precision. We imagine that the leading
one lies under and is hidden by an opaque characteristic field; it is therefore, called a “hidden bit.” When
unpacking a floating-point number for output conversion or for arithmetic manipulation, the hidden bit must
be inserted at its rightful place in order to become visible again. A word(s) with all zeros is taken to mean
floating-point +0, although (because of the hidden bit assumption) it is really (27128)y,.

These two formats appear as follows:

Single Precision (two consecutive 16-bit words):

31 30 23 22 0
Sm CHARACTERISTIC MANTISSA
1 8 23




Double Precision (four consecutive 16-bit words):

31 30  word pairl 23 22 0, 31 word pair2 0
Sn CHARACTERISTIC MANTISSA
1 8 55

DEC PDP-11 examples: After first performing binary normalization on the binary representation of the num-
ber, computing the biased exponent and packing the Sy, CHARACTERISTIC, and (hidden-bit)-MANTISSA
fields of the word(s) in the corresponding floating point format, we represent the resulting consecutive 16-bit
word(s) in octal shorthand with 6 octal digits for each word (appending leading binary zeros as necessary
to the left end of each word to make the number of bits divisible by three for octal shorthand). The rep-
resentation for negative values is then formed by changing the leftmost bit in the first 16-bit word of the
representation for the positive number from zero to Sy = 1; so only the leftmost octal digit in the first
word’s shorthand representation changes from Og to 1g. We consider the single-precision case in detail first,
and then present the double-precision result.

We first consider representations for +29.2q¢ .

(1) Normalize:

+29.219 = +11101.0011; = +0.111010011, x 27 .
(2) Compute biased exponent:

Exponent = +5;9 = +1015, and Bias = 287! = 27 = 128,5 = 10000000,. Therefore, the Characteristic
E, = (128 + 5)19 = 13319 = (10000000 4+ 101)> = 100001015 .

(3) Pack result into two 16-bit word floating-point format in binary:
+29.215 = (0/10000101|1101001] |1001100110011001| .

Now treating each of the two words separately as right justified 16-bit binary integers, we start at
the right of each word and work left grouping the bits three at a time to obtain the octal shorthand
representation of the two consecutive 16-bit words. The result (as would be printed out by a dump of
the corresponding memory locations) is:

wordl : 041351 and
word2 : 114631 .

(4) For negative numbers simply set Sy = 1 in the positive representation; thus,
—29.2,5 = |1]10000101]1101001| |1001100110011001| ,
and the octal shorthand representation is

wordl : 141351 and
word2 : 114631 .

The double precision representation follows the same steps, except that a second 32-bit word comprising
two more consecutive 16-bit words with the continuation of the mantissa fraction bits is appended. These
continuation bits in this case have the same form as shown in binary in the second 16-bit word in the single
precision format. Therefore, we can write the octal shorthand representation of the four consecutive words
by inspection. +29.2;¢ is represented by the four words:

wordl : 041351
word2 : 114631
word3 : 114631
word4 : 114631 ,and
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—29.219 is represented by the four words:

wordl : 141351
word2 : 114631
word3 : 114631
word4 : 114631 .

We next consider representations for +0.03125 .

(1) Normalize:
+0.03125;9 = +0.000015 = +0.100000000000000000 - - - 00000, x 2~* .

(2) Compute biased exponent:

Exponent = —419 = —100,, and Bias = 28! = 27 = 128,7 = 10000005. Therefore, the Characteristic
By = (128 — 4)19 = 12410 = (10000000 — 100)5 = 01111100, .

(3) Pack result into two 16-bit word floating-point format in binary:
+0.03125;¢ = |0/01111100]0000000| |0000000000000000] .
The octal shorthand representation of these two 16-bit words is:

wordl : 037000 and
word?2 : 000000 .

(4) For negative numbers simply set Sy; = 1 in the positive representation; thus,
—0.03125, = |1|01111100]0000000| |0000000000000000| ,

with octal shorthand representation:

wordl : 137000 and
word2 : 000000 .

The double precision representation follows the same steps, except that two more consecutive 16-bit words
containing all zeros are appended in each case.

IEEE Floating Point Standard 754

The IEEE Floating Point Standard uses four (or eight) 8-bit bytes to represent floating point numbers in
machines whose fixed-point data use a two’s complement representation for negative integers and that have
two’s complement arithmetic circuitry. A single precision floating point datum is packed into four consecutive
8-bit bytes viewed as a single 32-bit representation. A double precision floating point datum is packed into
eight consecutive 8-bit bytes viewed as a single 64-bit representation, where the bits in the second 32-bits
(or second set of four bytes) is continuation of the low order bits in the mantissa (called the significand).
The mantissa (or significand) is a binary normalized mixed number (with integer and fraction parts) of the
form l.zzzzs. A single precision datum has an 8-bit characteristic that represents a signed exponent with
bias (excess) (128 — 1)19 = 12719, and a double precision datum has an 11-bit characteristic that represents
the signed exponent excess (1024 — 1);9 = 1023;9. Negative floating-point numbers are represented in a
sign-magnitude format by packing the positive representation into the single (or double) precision format
and then setting the Sps bit only to one. Of the 32-bits used to represent single precision numbers only
23 remain in which to represent the binary normalized mixed number. Because every number is assumed
normalized in the form 1.zzzzs x 25, there is no need to represent the leading one and so only the x’s in the
fraction are put into the 23 remaining bits in the word, resulting in 24 bits of precision. We imagine that the
leading one lies under and is hidden by an opaque characteristic field; it is therefore, called a “hidden bit.”

8



When unpacking a floating-point number for output conversion or for arithmetic manipulation, the hidden
bit must be inserted at its rightful place in order to become visible again. A 32-bit (or 64-bit) floating-point
word comprising four (or eight) bytes with all zeros is the representation for floating-point +0 by definition.
In addition to defining formats for normalized floating point representations and zero, the standard also
specifies valid formats for denormalized numbers, infinity, and quantities that are not a number (e.g., see A.
Tanenbaum, Structured Computer Organization, 3rd Ed., Prentice-Hall, 1990, pp.565-572).

The two formats for single and double precision appear as follows:

Single Precision (four consecutive 8-bit bytes):

31 30 23 22 0
Sm CHARACTERISTIC MANTISSA
1 8 23

Double Precision (eight consecutive 8-bit bytes):

31 30 high order 4 bytes 20 19 0, 31 low order 4 bytes 0
Sm CHARACTERISTIC MANTISSA
1 11 52

IEEFE Floating Point Standard 75/ examples: After first performing binary normalization on the binary
representation of the number, computing the biased exponent and packing the Sy, CHARACTERISTIC,
and (hidden-bit)-MANTISSA fields of the word(s) in the corresponding floating point format, we represent
the resulting consecutive 32-bit word(s) in hexadecimal shorthand with 8 hexadecimal digits for each 32-bit
word The representation for negative values is then formed by changing the leftmost bit in the first 32-bit word
of the representation for the positive number from zero to Sys = 1; so only the leftmost hexadecimal digit
in the first word’s shorthand representation changes. For non-negative numbers this leftmost hexadecimal
digit is between 016 and 714, inclusive, because Sy; = 0. For negative numbers this leftmost hexadecimal
digit is between 816 and Fig, inclusive, because in this case Sy; = 1. We consider the single-precision case
in detail first, and then present the double-precision result.

We first consider representations for +29.24¢ .

(1) Normalize:
+29.2,9 = +11101.0011; = +1.11010011,, x AR

(2) Compute biased exponent:

Exponent = +419 = +100, and Bias = 2571 —1 = 27 — 1 = 1279 = 01111111,. Therefore, the
Characteristic By = (127 + 4)1 = (128 + 3)10 = 1310 = (01111111 + 100)2 = 10000011 .

(3) Pack result into the 32-bit word floating-point format in binary:
+29.2,9 = |0/10000011|11010011001100110011001] .
The hexadecimal shorthand representation of the bit pattern in these 32-bits is
+29.2;9 = |41E99999|16 -
(4) For negative numbers simply set Sy, = 1 in the positive representation; thus,

—29.279 ={1]/10000011|11010011001100110011001| = |C1E99999|16 -

The double precision representation follows the same steps, except that a second 32-bit word comprising four
more consecutive 8-bit bytes with the continuation of the mantissa fraction bits is appended. Furthermore,
the first 32-bit word in the first four bytes is modified to include 3 more characteristic bits and, therefore, 3
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fewer mantissa bits, and an exponent bias of 102319 = 011111111115 is used. The characteristic for +29.2;,
is then (10234 4)10 = (10244 3)10 = (01111111111 + 100)2 = (100000000004 011)5 = 100000000115 . Thus

+29.21()E
|0]10000000011|11010011001100110011|00110011001100110011001100110011|
= |403D3333|16 |33333333)16 , and

—29.210 =
|1/10000000011|11010011001100110011|00110011001100110011001100110011|
= |C03D3333|16 3333333315 .

We next consider representations for +0.031251g .

(1) Normalize:
+0.0312519 = +0.00001> = +1.00000000000000000 - - - 00000, x 275 .

(2) Compute biased exponent:

Exponent = —5;9 = —101», and Bias = 27 — 1 = (128 — 1);p = 12759 = 011111115. Therefore, the
Characteristic B, = (127 — 5)10 = (128 — 6)10 = 12219 = (01111111 — 101); = (100000000 — 110), =
011110104 .

(3) Pack result into two 32-bit word floating-point format in binary:
+0.031251¢ = |0/01111010/00000000000000000000000] = |3D000000| 16 -
(4) For negative numbers simply set Sy, = 1 in the positive representation; thus,

—0.03125, = |1|01111010/00000000000000000000000] = |BD000000|6 -

The double precision representation follows the same steps, except that the characteristic field in the first 32-
bit word is expanded by 3 bits using a bias of 1023,¢ and one more consecutive 32-bit word containing all zeros
is appended in each case. Thus, the characteristic is (1023 — 5);9 = (01111111111 — 101)5 = 011111110102 ,

and

0/01111111010/0000000000000000000000000000000000000000000000000000|
I3FA00000]; |00000000|; , and

—0.0312510

|1]01111111010/0000000000000000000000000000000000000000000000000000|
| BF A00000| ;6 |00000000]16 -

IBM 360/370 series

The IBM 360/370 series machines use two, four, or six 8-bit bytes to represent instructions, 32-bit words
comprising four bytes to represent fixed-point data, and a two’s complement representation for negative
integers with two’s complement arithmetic circuitry. A single precision floating point datum is packed into
four consecutive bytes and is viewed as a single 32-bit full word representation (called “floating-point short”.
A double precision floating point datum is packed into eight consecutive bytes viewed as a single 64-bit word
(called “floating-point long”) with the low order 32-bits representing a continuation of the low order bits in
the mantissa. The mantissa is a hexadecimally normalized fraction of the form 0.yzzzs x 16TF, where y
is a non-zero hexadecimal digit. A single precision datum has a 7-bit characteristic that represents a signed
exponent with bias (excess) 6419 = 4014, and a double precision datum has the same 7-bit characteristic, so
there is no increase in the already large range by using double-precision. Negative floating-point numbers
are represented in a sign-magnitude format by packing the positive representation into the single (or double)
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word(s) and then setting the Sys bit only to one. A 32-bit (or 64-bit) word with all zeros is the representation
for floating-point zero.

These two formats appear as follows:

Single Precision (four bytes):

31 30 24 23 0
Sm CHARACTERISTIC MANTISSA
1 7 24

Double Precision (eight bytes):

31 30 wordl 24 23 0, 31 word2 0
S CHARACTERISTIC MANTISSA
1 7 56

IBM 360/370 series examples: After first performing hexadecimal normalization on the hexadecimal rep-
resentation of the number, computing the biased exponent and packing the Sy;, CHARACTERISTIC, and
MANTISSA fields of the word(s) in the corresponding floating point format, we represent the resulting
consecutive 32-bit word(s) in hexadecimal shorthand with 8 hexadecimal digits for each 32-bit word The
representation for negative values is then formed by changing the leftmost bit in the first 32-bit word of the
representation for the positive number from zero to Sy; = 1; so only the leftmost hexadecimal digit in the
first word’s shorthand representation changes. For non-negative numbers this leftmost hexadecimal digit is
between 014 and 71¢, inclusive, because Sys = 0. For negative numbers this leftmost hexadecimal digit is
between 81 and Fig, inclusive, because in this case Sp; = 1. We consider the single-precision case in detail
first, and then present the double-precision result.

We first consider representations for +29.24¢ .

(1) Normalize:
29.210 = 1D.3,6 = 0.1D33333, x 162 .

Note, that because the most significant digit of the hexadecimal fraction is 0.1y = 0.00015, the nor-
malized hexadecimal fraction is not equivalent to a binary normalized fraction because of the three
leading zeros in the binary representation. Thus, depending on the datum being represented, the use of
three bytes (or 24-bits) to represent the IBM single-precision format hexadecimally normalized fraction
provides only 21-bits of precision. The tradeoff, however, is that by using hexadecimal normalization
one achieves a range using only 7-bits to represent the signed exponent of 16+63 = (24)63 = 2252 that
would require a 9-bit characteristic if binary normalization were used.

(2) Compute biased exponent:

Exponent = +2ip = +2i5, and Bias = 277! = 26 = 64,, = 40;65. Therefore, the Characteristic
By = (64 + 2)10 = 6610 = (40 + 2)16 = 4216 .

(3) Pack result into floating-point format (in hexadecimal):
+29.2,9 = 42|1D3333 .

(4) For negative numbers simply set Sy = 1 in the positive representation; thus, the bit pattern in the
register or memory is (in hexadecimal shorthand):

—29.2,0 = C2|1D3333 .

The double precision representation follows the same steps, except that a second 32-bit word comprising four
more consecutive 8-bit bytes with the continuation of the mantissa fraction bits is appended. We can write

11



the hexadecimal shorthand representation of these additional four consecutive bytes by inspection. +29.21¢
is represented by the following eight bytes, shown separated into two 32-bit words:

+29.2,0 = [42]1D3333|1 [33333333|16 ,and
—29.2,0 = |C2|1D3333|;5 |33333333| .

We next consider representations for +0.031251g .

(1) Normalize:
+0.03125,0 = 0.08;6 = 0.845 x 167 .

(2) Compute biased exponent:

Exponent = —1yp = —1i4, and Bias = 277! = 26 = 64,, = 40;65. Therefore, the Characteristic
By = (64— 1)10 = 6310 = (40 — 1)15 = 3Fis .

(3) Pack result into floating-point format (in hexadecimal):
+0.03125;¢ = 3F|800000 .

(4) For negative numbers simply set Sps = 1 in the positive representation; thus, the bit pattern in the
register or memory is (in hexadecimal shorthand):

—0.03125,¢ = BF'|800000 .

The double precision representation follows the same steps, except that a second 32-bit word of all zeros in
each of these cases is appended. Thus

+0.0312510 = |3F|800000|15 0000000055 ,and
—0.03125,9 = | BF|800000|15 |00000000| .

IBM has also defined an extended precision floating-point format comprising 128 bits in 16 consecutive
bytes that has a 112 bit hexadecimally normalized fraction, but we shall defer discussion of this case to
another time.
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Addition of Floating Point Numbers

In order to reduce the number of bits to be processed in the examples we consider the following hypo-
thetical 2’s complement machine single precision 14-bit word floating point format:

Hypothetical Machine:

13 12 7 6 0
Sm CHARACTERISTIC SIGNIFICAND
1 6 7

Here the SIGNIFICAND (or MANTISSAA) is a binary normalized fraction with no hidden bits, and negative
numbers are represented in sign-magnitude format by simply setting the sign bit to 1. The CHARACTER-
ISTIC is a biased exponent with exponent bias equal to 26~ = 2% = 32,,.

We first consider representations for +10.751 .

(1) Normalize:
+10.7519 = +1010.115, = +0.101011, x 2+* .

(2) Compute biased exponent:

Exponent = 44,9 = +1005, and Bias = 26=1 = 25 = 32,5 = 100000,. Therefore, the Characteristic
Ey = (32 + 4)10 = 3610 = (100000 + 100)2 = 1001005 .

(3) Pack result into the 14-bit word floating-point format in binary:
+10.7519 = |0/100100/1010110| .
(4) For negative numbers simply set Sy, = 1 in the positive representation; thus,

—10.7510 = |1]100100/1010110) .

We next consider representations for +(11/32)1¢ .

(1) Normalize:
+(11/32)10 = +1011, x 275 = +0.01011, = +0.1011, x 27" .

(2) Compute biased exponent:

Exponent = —119 = —1s, and Bias = 2671 = 2% = 32,5 = 100000,. Therefore, the Characteristic
By = (32 + (=1))10 = 31,0 = (100000 + (=1)) = 011111, .

(3) Pack result into the 14-bit word floating-point format in binary:
+(11/32)10 = [0[011111[1011000| -
(4) For negative numbers simply set Sy = 1 in the positive representation; thus,

—(11/32)10 = [1]011111[1011000] .

Floating Add Algorithm:

1. Unpack each operand into two registers (one for the characteristic (C) and one for the signed significand
(S)). If the significand is negative, convert it to its fixed-point 2’s complement representation.

2. Compare the characteristics of the two operands and, if they are not equal, right shift the significand
corresponding to the algebraically smaller characteristic while incrementing its characteristic for each
right shift until the two characteristics are equal. This is called aligning the significands with respect to
the radix point.

13



3. Prevent overflow of subsequent add by shifting both significands right one position and increment by
one both characteristics. Because the two characteristics are now equal, assign one of them to be the
characteristic of the result (Cr). Also, assume significand registers have one extra guard bit to prevent
loss of precision in carrying out this step. (This step guarantees that renormalization of the result will
require either no shifting or only left shifting; whereas, if magnitude overflow is allowed to occur during
the add, one must also deal with right shifting and sign correction of the sum.)

4. Add the two significands.

5. If the sum is negative, set the sign bit to one in the final single precision format result and take the
2’s complement of the sum significand so that the renormalization process works with the positive
magnitude. (This is because there are some special case representations of 2’s complement numbers
that must otherwise be taken care of during renormalization.) If the sum is positive, set the sign bit to
zero, and proceed to the next step.

6. Renormalize the binary fraction representing the sum by (if necessary) shifting it left until the high
order fraction bit differs from its sign bit. (Recall we are now working with a positive signed magnitude;
so the sign bit is a zero and the high order fraction bit should be a 1 for a non-zero sum.) For each left
shift decrement by one the characteristic of the result. If after seven left shifts the high order fraction
bit is still equal to the zero sign bit, then set the result to zero.

7. Repack the resulting characteristic and normalized significand into their fields in the final single precision
floating-point format register. (Recall that the sign bit field was set already in step 5.)

Example: Floating add -10.75 to +(11/32).

—10.7510 = |1/100100|1010110]
+(11/32)10 = |0]011111]1011000|

1. Unpack
C1 = |100100| S1=[1]0101010|z] <+ 2's complement; = = guard bit

C2 = |011111] S$2 = 0/1011000||

2. Compare characteristics: Recall C1 = (E1 + bias) and C2 = (E2 + bias), where E1 and E2 are signed
integers. Thus, C1 - C2 = E1 + bias - E2 - bias = E1 - E2 = signed integer result. Therefore, take
2’s complement of C2 and add it to C1. The leftmost bit of the result is the sign of the result. If this
sign bit = 0, the result is positive and C1 > C2; if this sign bit = 1, the result is negative and C1 <
C2 but it is sitting in its 2’s complement form. In this case write down the minus sign and take the 2’s
complement to find the magnitude of the difference and thus the number of places to shift the contents
of S1 to the right.

C1 — C2 =100100

+ 100001
000101 = +5

(Note that in using 2’s complement arithmetic to compute the difference of the contents of these two
6-bit fixed length registers, a 7/* carry bit of 1 came out the left end and was discarded according to the
rules of 2’s complement arithmetic.) Now we see that C1 > C2; so we algebraically shift the content of
S2 right 5 positions and increment C2 by 5, making its content equal to the content of C1 and thus align
the fractions relative to the radix point. (Recall that an algebraic (or arithmetic) right shift preserves
the sign of complement number representations by bringing in zeros on the left if the sign bit is a zero
and bringing in ones if the sign bit is a one.) Thus, after shifting S2 we have:

€2 = 100100| S2 = |0/0000010]1|

Note that the 1 now in the guard bit position has already fallen off the end of our finite length 7 bit
significand (plus 1 sign bit) register. The guard bit position is there to prevent loss of precision in this
case for the zero to its left in the next step.
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. Overflow prevention: Algebraically shift right the contents of both S1 and S2 and increment by 1 both
C1 and C2 (either of which is CR now).

C1 = |100101] S1 = [1/1010101|0]|
C2 = |100101| $2 = {0]0000001|0]

. 2’s complement fixed-point add the contents of the two 9-bit registers S1 and S2:

S1+S2 = |1/1010101[0]
+ 10/0000001|0|
[111010110|0] = SR < Result is negative

. Result is negative so first repack sign bit into final sum register:
SUM = [lzzzzez|yyyyyyy|
and in this case take the 2’s complement of the content of SR.

CR = |100101| SR = |0/0101010]0|

. Note that the content of SR is not normalized. Normalize it by shifting it left one position and decre-
menting by 1 the content of CR. (Note that for 2’s complement numbers an algebraic (or arithmetic) left
shift is the same as a logical left shift in which zeros are brought in from the right.) The renormalized
result is then:
CR = |100100| SR =0]{1010100/0|
——

. Repack: The content of the CR register replaces the six x’s in the CHARACTERISTIC field in the final
SUM and the seven bits indicated by an underbrace replace the seven y’s in the SIGNIFICAND field
of the final SUM. Thus,

SUM = [1/100100|1010100|

is the final packed single precision result in its sign-magnitude form. Note that round-off (i.e., truncation)
error has occurred during the computation of the result. It happened in the step that aligned the
significands with respect to the radix point during which some bits were shifted out of the fixed length
register and were lost. With infinite precision the result should be —10;—3; however, the finite precision
result in the SUM register is —10.5, off by a difference of %
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