
Summer 2014���� Electrical and Computer Engineering Department

University of Maryland
College Park, MD 20742-3285

Glenn L. Martin Institute of Technology ⋄ A. James Clark School of Engineering Dr. Charles B. Silio, Jr.
Telephone 301-405-3668

FAX 301-314-9281
silio@umd.eduENEE350 Homework Set No. 2

(Due: Class 5, Mon., June 9)

Before making problem assignments we consider some definitions of “bit-by-bit” (or “bitwise”) logical
operations on binary n-tuples that represent the content of n-bit computer registers or memory locations.
These definitions extend the standard logical operations of AND (∧), OR (∨), exclusive-OR (⊕), and NOT
(complement). When the context is clear, logical complement or NOT is usually indicated by an overbar
over the appropriate logical variable. Furthermore, exclusive-OR is also usually abbreviated as XOR.

Notation: A binary n-tuple is denoted: X = (x1, x2, . . . , xn), where xj ∈ {0, 1}, j = 1, 2, . . . , n, and
similarly for any other letter denoting a binary n-tuple (or the contents of a register or a memory location).
(Recall that the notation xj ∈ {0, 1} means that xj takes values in the set {0, 1}.

Definitions: Given binary n-tuples X = (x1, x2, . . . , xn), Y = (y1, y2, . . . , yn), and Z = (z1, z2, . . . , zn),
then

1. AND: Z = X.AND.Y = X ∧ Y if and only if zi = xi ∧ yi, i = 1, 2, . . . , n;
2. OR: Z = X.OR.Y = X ∨ Y if and only if zi = xi ∨ yi, i = 1, 2, . . . , n;
3. XOR: Z = X.XOR.Y = X ⊕ Y if and only if zi = xi ⊕ yi, i = 1, 2, . . . , n;
4. NOT: Z = .NOT.X = X if and only if zi = xi, i = 1, 2, . . . , n.

Problems:

1. The UNIVAC 1100 series computers have 36-bit words and perform 1’s complement arithmetic. Sup-
pose UNIVAC 1100 registers A1 and A2 contain the following bit patterns in octal shorthand (express
appropriate answers in octal shorthand too):

A1 = 572053777777 A2 = 206556400000

a. Perform the following 1’s complement fixed-point integer arithmetic operations and note whether
magnitude overflow has occurred in each case. (Hint: Use 7’s complement arithmetic on the octal
shorthand).

i) A3 = A1 + A2

ii) A3 = A1 − A2

b. Compute the following bit-by-bit logical operations and express your answers as 12-digit octal
numbers:

i) A3 = A1.AND.A2 = A1 ∧ A2
ii) A3 = A1.OR.A2 = A1 ∨ A2

iii) A3 = A1.XOR.A2 = A1 ⊕ A2
iv) A3 = A1.XOR.A1 = A1 ⊕ A1
v) A3 = .NOT.A1 = A1

c. Read sections 5.2, 5.5, and 5.6 of Chapter 5 in the text by A. Tanenbaum, Structured Computer

Organization, 5th ed., Prentice-Hall, 2006. Concentrate on general principles and scan the details
of the machine examples.

2. The 12-bit register A in the DEC PDP-8 computer contains the following bit pattern in octal shorthand

A = 4071

a. Assuming decimal digits in BCD code have been packed into A what decimal number is represented
there?

b. Pack the decimal number 957 into 12-bit register A on this machine using XS-3 (excess three) code,
and specify in octal shorthand the resulting bit pattern.

3. (31302.2023)4 = (?)16

1



ENEE 350 Homeset 2 Continued: Summer 2014

4. Read Chapter 2 of text by A. Tanenbaum, Structured Computer Organization, 5th ed., Prentice-Hall,
2006, and work the following problems from Chapter 2:

a. Problem 2-1.
b. Problem 2-5.
c. Problem 2-7.
d. Problem 2-8.
e. Problem 2-12.
f. Decode the following binary ASCII text: 1001001 0100000 1001100 1001111 1010110 1000101

0100000 1011001 1001111 1010101 0101110.

5. Read Section 5.3 of Chapter 5 in text by A. Tanenbaum (actually read the part of Section 5.3 preceding
section 5.3.1., read sections 5.3.1. and 5.3.2. and then scan sections 5.3.3 through 5.3.5) and work the
following problem, which we will first introduce with some text about data representation of machine
instructions using what are called “expanding opcodes”.

Because of short word length and other reasons cited by Tanenbaum in Section 5.3, the instruction
repertoires of many computers take differing formats depending on the type of instruction. For example,
those that refer to memory (called memory reference instructions) must somehow supply a memory
address. Whereas, those that refer to only CPU registers or input/output (I/O) operations and not
to memory locations (called non-memory reference instructions) can take on a different format. This
differs from UNIVAC 1100 instructions which all have the same format. For instance, the IBM 360/370
series machines use a form of expanding instruction length comprising 2, 4, or 6 bytes, depending on
the class of instruction; however, the operation code part of an instruction is always contained in the
first byte (8-bits or octet) and never varies in length. The Digital Equipment Corp. PDP-11 has a basic
16-bit word length, where the length of the operation code (op code) field in an instruction varies with
the type of instruction (e.g., one operand instructions have a different op code length than two operand
instructions, and so on). Within each op code class at least one opcode is usually reserved to point to
the next class of instruction. For example, the DEC PDP-8 computer with a 12-bit word length has
a 3-bit opcode field. Seven opcodes are memory reference instructions that allocate two more bits for
address modification (an indirect bit and a page-zero bit) and use 7-bits for a memory address. The
eighth opcode indicates non-memory reference instructions (called “operate class” instructions) in which
the remaining 9 bits are used for encoding instructions that do not refer to memory.

As the designer of a new computer it is your job to specify a set of “expanding opcodes” for a computer
with a 20-bit instruction word that satisfies simultaneously the following instruction set requirements
with 3 classes of instructions. Clearly indicate the bit patterns you choose to specify each format.
Indicate bits that vary through (almost) all possible combinations with x’s or y’s; you can annotate
them with an asterisk and clearly indicate which combinations among the x’s are reserved for expansion
to indicate the next format (clearly specify which combinations are reserved in format i and show
explicitly how these combinations are used in format i + 1).

Requirements:

1st format: 30 instructions, each with one 3-bit and one 12-bit address field;
2nd format: 12 instructions, each with one 12-bit address field;
3rd format: 64 instructions, each with two 4-bit address fields.

(No provision need be made for any additional address modifier bits, such as those used to indicate
immediate, indirect, indexed, etc., mode addressing.) Note that this is basically a counting problem.
With n-bits one can represent uniquely no more than 2n things, including machine instructions. Address
and register designator fields represent bits in a fixed-length word that are reserved for use by assembly
(and machine) language programmers and are thus not available in a particular format for encoding of
the operation codes by the machine designer.

See p. 3 for yet another problem.

2



ENEE 350 Homeset 2 Continued: Summer 2014

6. The IBM 370 series computers have 32-bit words and perform 2’s complement arithmetic; so too do Intel
80386, 80486, and Pentium computers. The IBM 370 series has sixteen 32-bit general purpose registers
(R0, . . . , R15) and four double length (64-bit) floating point registers in its CPUs. Suppose IBM 370
registers R1 and R2 contain the following bit patterns in hexadecimal shorthand (express appropriate
answers in hexadecimal shorthand too):

R1 = BCDFAF00 R2 = 206E5640

a. Perform the following 2’s complement fixed-point integer arithmetic operations and note whether
magnitude overflow has occurred in each case. (Hint: Use 16’s complement arithmetic on the
hexadecimal shorthand).

i) R3 = R1 + R2

ii) R3 = R1 − R2

b. Compute the following bit-by-bit logical operations and express your answers as 8-digit hexadecimal
numbers:

i) R3 = R1.AND.R2 = R1 ∧ R2
ii) R3 = R1.OR.R2 = R1 ∨ R2

iii) R3 = R1.XOR.R2 = R1 ⊕ R2
iv) R3 = R1.XOR.R1 = R1 ⊕ R1
v) R3 = .NOT.R1 = R1

3


