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Notation and conventions

Throughout, we use R to denote the set of all real numbers, or equivalently, the
real line (−∞,∞). The set of all non-negative real numbers is denoted by R+.
The set of {0, 1, . . .} of all non-negative integers is denoted N. The notation N0

will be used for the set {1, 2, . . .} of all positive integers.

With p a positive integer, let Rp denote the pth cartesian product of R. An ele-
ment x in Rp, whose p components are denoted x1, . . . , xp, is always interpreted
as a column vector (x1, . . . , xp)

′ (with ′ denoting transpose).
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Part I

DETECTION THEORY
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Chapter 1

Simple binary hypothesis testing

A decision has to be made as to which of two hypotheses (or states of nature) is
the correct one. The states of nature are encoded in a rv H and a decision has to
be made on the basis of an observation Y which is statistically related to H .

1.1 Motivating examples
Control process A machine produces circuit boards. It is either fully function-
ing (H = 1) or worn out (H = 0). Checking the state of the machine is not feasi-
ble as it would require that the production be stopped, incurring a loss of revenue
for the manufacturer if the machine were indeed shown to be fully functionally.
Instead, a batch of circuits is collected and tested for a number of performance
parameters, say Y1, . . . , Yk. It is known that

A simple communication example

Testing means

1.2 The probabilistic model
These examples can be cast as binary hypothesis testing problems: Nature is in
either of two states, say H = 0 or H = 1 for sake of concreteness, and the obser-
vations are organized into an Rk-valued rv Y . We assume given two probability
distribution functions F0, F1 : Rk → [0, 1] on Rk; they will act as conditional
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probability distribution of Y givenH = 0 andH = 1, respectively. This situation
is summarized by

H1 : Y ∼ F1

H0 : Y ∼ F0.
(1.1)

In the statistical literature the hypothesis H0 is called the null hypothesis and hy-
pothesis H1 is referred to as the non-null hypothesis or the alternative.

Probabilistically, the symbolic statement (1.1) is understood as follows: Given
some probability triple (Ω,F ,P) (whose existence is discussed shortly), consider
rvs H : Ω → {0, 1} and Y : Ω → Rk. The probability distribution functions F0

and F1 being interpreted as conditional probability distribution of Y given H = 0
and H = 1, respectively, we must have

Fh(y) = P [Y ≤ y|H = h] ,
y ∈ Rk,
h = 0, 1.

The probability distribution of the rv H is specified by p in [0, 1] with

p = P [H = 1] = 1− P [H = 0] .

We refer to the pmf (1− p, p) on {0, 1}, or just to p, as the prior.
Because

P [Y ≤ y, H = h] = P [Y ≤ y|H = h]P [H = h]

=


(1− p)F0(y) if h = 0, y ∈ Rk

pF1(y) if h = 1, y ∈ Rk,
(1.2)

the law of total probability shows that

P [Y ≤ y] =
1∑

h=0

P [Y ≤ y|H = h]P [H = h]

= pF1(y) + (1− p)F0(y), y ∈ Rk. (1.3)

In other words, the conditional probability distributions of the observations given
the hypothesis and the probability distribution of H completely specify the joint
distribution of the rvs H and Y .
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1.3 A construction
The existence of the model described in Section 1.2 can be guaranteed through the
following construction: Take Ω = {0, 1} × Rk with generic element ω = (h,y)
with h = 0, 1 and y an arbitrary element of Rk. We endow Ω with the σ-field F
given by

F = σ
(
P({0, 1})× B(Rk)

)
where P({0, 1}) is the power set of {0, 1}, and B(Rk) is the Borel σ-field on Rk.

We define the mappings H : Ω→ R and Y : Ω→ Rk by

H(ω) = h and Y (ω) = y, ω = (h,y) ∈ Ω.

Both projection mappings are Borel measurable, and therefore define rvs.
If P is any probability measure on the σ-field F , then by construction of the

rvs H and Y just given, the joint probability distribution of the pair (H,Y ) is
necessarily given by

P [H = h,Y ≤ y] = P [{ω ∈ Ω : H(ω) = h,Y (ω) ≤ y}]

= P [{h} × (−∞,y]] ,
h = 0, 1
y ∈ Rk (1.4)

since
{ω ∈ Ω : H(ω) = h,Y (ω) ≤ y} = {h} × (−∞,y].

On the way to identify a probability P on F under which the joint probability
distribution of the pair (H,Y ) satisfies (1.2), we readily conclude from (1.4) that
P is necessarily determined on certain rectangles, namely

P [{h} × (−∞,y]] =


(1− p)F0(y) if h = 0

pF1(y) if h = 1
(1.5)

for every y in Rk. At this point we recall the following fact from Measure Theory:
Any probability measure on the σ-fieldF carried by the product space {0, 1}×Rk

is uniquely determined on the entire σ-field F by its values on the rectangle sets
of the form

{h} × (−∞,y],
h = 0, 1
y ∈ Rk.
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Therefore, by virtue of (1.5) there exists a unique probability measure P on F
such that (1.4) holds. More generally, it is also the case that

P [{h} × (−∞,y]] =


(1− p)

∫
B
dF0(y) if h = 0

p
∫
B
dF1(y) if h = 1

(1.6)

for every Borel set B in Rk as a result of the fact that

σ
(
(−∞,y], y ∈ Rk

)
= B(Rk).

Finally, under this probability measure P it is plain (1.5) immediately implies

P [H = h] = P [{h}] =


(1− p) if h = 0

p if h = 1
(1.7)

and

P [Y ≤ y|H = h] =
P [H = h,Y ≤ y]

P [H = h]

= Fh(y) (1.8)

for every y in Rk, as required.

1.4 Basic assumptions
During the discussion, several assumptions will be enforced on the probability
distributions F0 and F1. The assumptions that will be most often encountered are
denoted by (A.1) and (A.2) for sake of convenience. They are stated and discussed
in some details below.

Condition (A.1): The probability distributions F0 and F1 on Rk are both absolutely
continuous with respect to some distribution F on Rk – In general F may not be
a probability distribution.

Condition (A.1) is equivalent to saying that there exist Borel mappings f0, f1 :
Rk → R+ such that

Fh(y) =

∫ y
−∞

fh(η)dF (η),
y ∈ Rk,
h = 0, 1.

(1.9)
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In some basic sense, this condition is hardly constraining since we can always
take F to be the average of the two probability distributions F0 and F1. i.e.,

F (y) ≡ 1

2
F0(y) +

1

2
F1(y), y ∈ Rk. (1.10)

in which case F is also a probability distribution. This choice for F is usually
not operationally convenient and therefore discarded. However, the most often
encountered situations arise when F is either Lebesgue measure on Rk or a count-
ing measure on some countable subset of Rk, in which case F is not a probability
distribution.

When F is Lebesgue measure on Rk, the Borel mappings f0, f1 : Rk →
R+ are just the probability density functions induced by F0 and F1 in the usual
sense. When F is counting measure on a countable subset S ⊆ Rk, then the Borel
mappings f0, f1 : Rk → R+ are best thought as probability mass functions (pdfs)
f 0 = {f0(y), y ∈ S} and f 1 = {f1(y), y ∈ S}, i.e.,

0 ≤ fh(y) ≤ 1,
y ∈ S,
h = 0, 1.

and ∑
y∈S

fh(y) = 1, h = 0, 1.

The condition (1.9) now takes the form

P [Y ∈ B|H = h] =
∑
η∈S∩B

fh(η),
B ∈ B(Rk)
h = 0, 1.

Condition (A.2): The probability distribution F1 is absolutely continuous with
respect to the probability distribution F0.

Under Condition (A.1), with the notation introduced earlier, this is equivalent to
requiring

f0(y) = 0 implies f1(y) = 0. (1.11)

1.5 Admissible tests
Decisions as to which state of nature occurred are taken on the basis of observa-
tions; this is formalized through the following definition.
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An admissible decision rule (or test) is any Borel mapping d : Rk → {0, 1}. The
collection of all admissible rules is denoted by D.

The measurability requirement entering the definition of admissibility is im-
posed to guarantee that the mapping d(Y ) : Ω→ {0, 1} : ω → d(Y (ω)) is indeed
a rv, i. e., [ω ∈ Ω : d(Y (ω)) = h] is an event in F for all h = 0, 1. The need for
this technical condition will become apparent in subsequent chapters.

The next fact will prove useful in some of the discussion

Lemma 1.5.1 The set D of admissible decision rules is in one-to-one correspon-
dence with B(Rk).

Proof. By definition of admissibility every test d in D is completely specified by
the Borel subset C(d) defined by

C(d) ≡ {y ∈ Rk : d(y) = 0}. (1.12)

Conversely, any Borel measurable subset C of Rk uniquely determines an admis-
sible rule dC in D through

dC(y) =


1 if y /∈ C

0 if y ∈ C.

We note that C(dC) = C as expected.

Any admissible rule d in D induces two types of error: Upon observing Y ,
either H = 0 is true and d(Y ) = 1 or H = 1 is true and d(Y ) = 0.

These two possibilities are the so–called errors of the first and second type asso-
ciated with the decision rule d; they are quantified by

α(d) ≡ P [d(Y ) = 1|H = 0] (1.13)

and
β(d) ≡ P [d(Y ) = 0|H = 1] , (1.14)
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respectively.

The quantity α(d) is sometimes called the size of the test d. In radar par-
lance, these probabilities are referred to as probabilities of false alarm and miss,
respectively, with alternate notation

PF(d) ≡ P [d(Y ) = 1|H = 0] (1.15)

and
PM(d) ≡ P [d(Y ) = 0|H = 1] . (1.16)

Throughout we shall use this terminology. Sometimes, it is convenient to consider
the so–called probability of detection given by

PD(d) ≡ P [d(Y ) = 1|H = 1] = 1− PM(d). (1.17)

1.6 Likelihood ratio tests
In subsequent chapters we shall consider several formulations for the binary hy-
pothesis problem. In all cases the tests of interest are related to tests in the class
of admissible tests {dη, η ≥ 0} which we now introduce.

For each η ≥ 0, the mapping dη : Rk → {0, 1} is defined by

dη(y) = 0 iff f1(y) < ηf0(y). (1.18)

It is plain from the definition (1.18) (with η = 0) that d0 is simply the test that
always selects the non-null hypothesis H = 1, i.e., d0(y) = 1 for every y in Rk.
On the other hand, formally substituting η = ∞ in (1.18) will be problematic at
observation points where f0(y) = 0. However, by convention we shall interpret
d∞ as the test that always selects the null hypothesis H = 0, i.e., d0(y) = 0 for
every y in Rk.

Such tests take an even simpler form under the additional Condition (A.2) as
will be seen shortly: Note that (1.18) can be rewritten as

dη(y) = 0 if
f1(y)

f0(y)
< η whenever f0(y) > 0.
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Taking our cue from this last statement, we define the likelihood ratio as any Borel
mapping L : Rk → R of the form

L(y) ≡


f1(y)

f0(y)
if f0(y) > 0

Λ(y) if f0(y) = 0

(1.19)

for some arbitrary Borel mapping Λ : Rk → R+. Different choices of this ar-
bitrary non-negative function produce different versions of the likelihood ratio
function.

Given a version of the likelihood ratio function in (1.19), we define the likelihood
ratio test with threshold η ≥ 0 to be the admissible decision rule Lrtη : Rk →
{0, 1} given by

Lrtη(y) ≡


1 if L(y) ≥ η

0 if L(y) < η.
(1.20)

With
Bh =

{
y ∈ Rk : fh(y) = 0

}
, h = 0, 1, (1.21)

we note that

P [f0(Y ) = 0|H = h] =

∫
B0

fh(y)dF (y), h = 0, 1. (1.22)

Under (A.2), the inclusion B0 ⊆ B1 holds and we conclude that

P [f0(Y ) = 0|H = h] = 0, h = 0, 1.

For any value η of the threshold it is plain that the tests dη and Lrtη coincide
on the set {y ∈ Rk : f0(y) > 0} (while possibly disagreeing on the complement
B0). Thus, for each h = 0, 1, we find that

P [dη(Y ) = 0|H = h]

= P [dη(Y ) = 0, f0(Y ) > 0|H = h] + P [dη(Y ) = 0, f0(Y ) = 0|H = h]

= P [Lrtη(Y ) = 0, f0(Y ) > 0|H = h]

= P [Lrtη(Y ) = 0, f0(Y ) > 0|H = h] + P [Lrtη(Y ) = 0, f0(Y ) = 0|H = h]

= P [Lrtη(Y ) = 0|H = h] .
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This discussion leads to the following fact.

Lemma 1.6.1 Assume the absolute continuity conditions (A.1)–(A.2) to hold.
For each η ≥ 0, the tests dη and Lrtη are equivalent in the sense that PM(dη) =
PM(Lrtη) and PF (dη) = PF (Lrtη).

1.7 Exercises

1.8 References
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Chapter 2

The Bayesian formulation

The Bayesian formulation assumes knowledge of the conditional distributions F1

and F0, and of the prior distribution p of the rvH . Two other formulations, namely
the Minimax formulation and the Neyman-Pearson formulation, will be studied in
Chapters 4 and 5, respectively.

2.1 The Bayesian optimization problem
The cost incurred for making decisions is quantified by the mapping C : {0, 1} ×
{0, 1} → R with the interpretation that

C(h, d) =
Cost incurred for deciding d

when H = h
, d, h = 0, 1.

As the sample ω in Ω is realized, the observation Y (ω) is recorded and the
use of the admissible rule d in D incurs a cost C(H(ω), d(Y (ω))). Although it
is tempting to seek to minimize this quantity, this is not possible. Indeed, the rv
Y is observed, whence d(Y ) is known once the test d has been specified, but
the state of nature H is not directly observable. Consequently, the value of the
cost C(H, d(Y )) is not available. To remedy to this difficulty, we introduce the
expected cost function J : D → R given by

J(d) ≡ E [C(H, d(Y ))] , d ∈ D.

The Bayesian Problem PB is the minimization problem

PB : Minimize J(d) over d in D.

17
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This amounts to finding an admissible test d? : Rk → {0, 1, . . . ,M − 1} in D
such that

J(d?) ≤ J(d), d ∈ D. (2.1)

Any admissible test d? which satisfies (2.1) is called a Bayesian test, and the value

J(d?) = inf
d∈D

J(d) = min
d∈D

J(d) (2.2)

is known as the Bayesian cost.

The solution to the Bayesian problemPB is developed with the help of an auxiliary
result concerning the form of the Bayesian cost. This representation result will be
useful in several places and is given here for sake of easy reference: Introduce the
relative costs Γ0 and Γ1 given by

Γh ≡ C(h, 1− h)− C(h, h), h = 0, 1 (2.3)

and define the auxiliary expected cost function Ĵ : D → R to be

Ĵ(d) = E [1 [d(Y ) 6= H] ΓH ] , d ∈ D. (2.4)

Lemma 2.1.1 For any admissible rule d in D, the relation

J(d) = E [C(H,H)] + Ĵ(d) (2.5)

holds with

Ĵ(d) = Γ0(1− p) · PF (d) + Γ1p · PM(d). (2.6)

Proof. Fix d in D. Recall that the rvs H and d(Y ) are {0, 1}-valued rvs, and
that the events [d(Y ) = H] and [d(Y ) 6= H] form a partition of Ω, i.e.,

1 [d(Y ) = H] + 1 [d(Y ) 6= H] = 1 [Ω] = 1.
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It readily follows that

C(H, d(Y )) = 1 [d(Y ) = H]C(H,H) + 1 [d(Y ) 6= H]C(H, 1−H)

= (1− 1 [d(Y ) 6= H])C(H,H) + 1 [d(Y ) 6= H]C(H, 1−H)

= C(H,H) + (C(H, 1−H)− C(H,H))1 [d(Y ) 6= H]

= C(H,H) + 1 [d(Y ) 6= H] ΓH (2.7)

with the relative costs Γ0 and Γ1 given by (2.3). Taking expectations on both sides
of (2.7) we obtain (2.5).

The law of total probabilities gives

Ĵ(d) = E [Γ01 [d(Y ) 6= 0]1 [H = 0] + Γ11 [d(Y ) 6= 1]1 [H = 1]]

= Γ0(1− p) · P [d(Y ) 6= 0|H = 0] + Γ1p · P [d(Y ) 6= 1|H = 1]

= Γ0(1− p) · P [d(Y ) = 1|H = 0] + Γ1p · P [d(Y ) = 0|H = 1] ,

and the desired expression (2.6) is obtained.

The Bayesian cost under a given decision rule is completely determined by its
probabilities of false alarm and of miss. We also note that

Ĵ(d) = Γ0(1− p) + Γ1p · P [d(Y ) = 0|H = 1]

−Γ0(1− p) · P [d(Y ) = 0|H = 0] , d ∈ D (2.8)

as an immediate consequence of (2.6).
Therefore, by Lemma 1.6.1 it follows from (2.5)-(2.6) that J(dη) = J(Lrtη)

regardless of the cost function C : {0, 1} × {0, 1} → R. The same argument
also shows that any two versions of the likelihood ratio function will generate
likelihood ratio tests which are equivalent.

2.2 Solving the Bayesian problem PB
It follows from (2.6) that solvingPB is equivalent to solving the auxiliary problem
P̂B where

P̂B : Minimize Ĵ(d) over d in D.

To do so, it will be necessary to assume that the probability distributions F0

and F1 satisfy the absolute continuity condition (A1) given earlier, namely that
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there exists a single distribution F on Rk with respect to which both F0 and F1

are absolutely continuous. For any test d in D, we get

P [d(Y ) = 0|H = h] =

∫
C(d)

dFh(y)

=

∫
C(d)

fh(y)dF (y), h = 0, 1 (2.9)

with C(d) defined at (1.12). It is now easy to see from (2.8) that

Ĵ(d) = Γ0(1− p) +

∫
C(d)

h(y)dF (y) (2.10)

where the mapping h : Rk → R is given by

h(y) ≡ Γ1p · f1(y)− Γ0(1− p) · f0(y), y ∈ Rk. (2.11)

Theorem 2.2.1 Assume the absolute continuity condition (A.1) to hold. Define
the Borel set C? by

C? ≡ {y ∈ Rk : h(y) < 0} (2.12)

with h : Rk → R given by (2.11). The decision rule d? : Rk → {0, 1} induced by
C? is given by

d?(y) =


1 if x /∈ C?

0 if x ∈ C?;
(2.13)

it is admissible and solves the Problem P̂B, hence solves the Bayesian Problem
PB.

Proof. The set C? is a Borel subset of Rk due to the fact that the functions
f0, f1 : Rk → R+ are themselves Borel measurable. The test d? is therefore an
admissible decision rule in D since C(d?) = C?. We now show that d? satisfies

Ĵ(d?) ≤ Ĵ(d), d ∈ D. (2.14)

Indeed, for every test d in D, we see from (2.10) that

Ĵ(d) = Γ0(1− p) +

∫
C(d)\C?

h(y)dF (y) +

∫
C(d)∩C?

h(y)dF (y)
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and

Ĵ(d?) = Γ0(1− p) +

∫
C?\C(d)

h(y)dF (y) +

∫
C(d)∩C?

h(y)dF (y).

Therefore,

Ĵ(d)− Ĵ(d?) =

∫
C(d)\C?

h(y)dF (y) +

∫
C?\C(d)

(−h(y)) dF (y) ≥ 0

since ∫
C(d)\C?

h(y)dF (y) ≥ 0 and
∫
C?\C(d)

h(y)dF (y) ≤ 0

by the very definition of C?. The problem P̂B is therefore solved by the test d?

defined at (2.13).

Uniqueness The solution to the Bayesian problem is not unique: It should be
plain that C? could be replaced by

C?? ≡ {y ∈ Rk : h(y) ≤ 0}

(with corresponding test d??) without affecting the conclusion of optimality since∫
{y∈Rk: h(y)=0}

h(y)dF (y) = 0.

While it is true that J(d?) = J(d??), it is not necessarily the case that the equalities
PF (d?) = PF (d??) or PM(d?) = PM(d??) hold.

Implementation using likelihood ratio test Assume that 0 < p < 1 to avoid
trivial situations, and that the relative costs satisfy the conditions

Γh > 0, h = 0, 1, (2.15)

i.e., the cost of making an incorrect decision is greater than the cost of making a
correct decision. This is of course a most reasonable assumption which always
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holds in applications. Under this condition, the Bayesian decision rule d? given in
Theorem 2.2.1 takes the equivalent form

d?(y) = 0 iff f1(y) <
Γ0(1− p)

Γ1p
f0(y). (2.16)

In view of the definition (1.18), the Bayesian test d? is indeed a test dη with η
given by

η ≡ Γ0(1− p)
Γ1p

.

Equipped with Lemma 1.6.1 we can now restate Theorem 2.2.1.

Theorem 2.2.2 Assume the absolute continuity conditions (A.1)–(A.2) to hold.
Whenever Γh > 0 for h = 0, 1, the Bayesian decision rule d? identified in Theo-
rem 2.1 is equivalent to the likelihood ratio test Lrtη? where

η? ≡ Γ0(1− p)
Γ1p

=
C(0, 1)− C(0, 0)

C(1, 0)− C(1, 1)
· 1− p

p
.

2.3 The probability of error criterion
A special case of great interest is obtained when the cost function C takes the
form

C(h, d) = 1 [h 6= d] , h, d = 0, 1.

The corresponding expected cost then reduces to the probability of making an
incorrect decision, namely the probability of error, and is given by

PE(d) ≡ P [d(Y ) 6= H] , d ∈ D.

We check that

Γh = C(h, 1− h)− C(h, h) = 1, h = 0, 1,
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and the relations (2.5)-(2.6) yield

PE(d) = (1− p) · PF (d) + p · PM(d)

= p+ (1− p) · PF (d)− p · PD(d), d ∈ D. (2.17)

For the probability of error criterion, the threshold η? appearing in Theorem 2.2.2
has the simpler form

η? =
1− p
p

.

The optimal decision rule d?, as described at (2.16), can now be rewritten as

d?(y) = 0 iff f1(y) <
1− p
p

f0(y). (2.18)

The ML test In the uniform prior case, i.e., p = 1
2
, the Bayesian test (2.18)

becomes
d?(y) = 0 iff f1(y) < f0(y). (2.19)

In other words, the optimal decision is to select that hypothesis whose likelihood
is largest given the observation y. We refer to this strategy as the Maximum Like-
lihood (ML) test.

The MAP computer Finally, (2.18) can also be rewritten as

d?(y) = 0 iff P [H = 1|Y = y] < P [H = 0|Y = y] (2.20)

since for each y in Rk, we have

P [H = 1|Y = y] =
pf1(y)

pf1(y) + (1− p)f0(y)

and

P [H = 0|Y = y] =
(1− p)f0(y)

pf1(y) + (1− p)f0(y)

by Bayes’ Theorem. For each h = 0, 1, the conditional probability P [H = h|Y = y]
is known as the posterior probability that H = h occurs given the observation y.
Put differently, the optimal test (2.20) compares these posterior probabilities given
the observation y, and selects the hypothesis with the largest posterior probability,
hence the terminology Maximum A Posteriori (MAP) computer.
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2.4 The Gaussian case

Assume that the observation rv Y is conditionally Gaussian given H , i.e.,

H1 : Y ∼ N(m1,R1)
H0 : Y ∼ N(m0,R0)

where m1 and m0 are elements in Rk, and the k × k symmetric matrices R1

and R0 are positive definite (thus invertible). Throughout the pairs (m0,R0) and
(m1,R1) are distinct so that the probability density functions f0, f1 : Rk → R+

are distinct since

fh(y) =
1√

(2π)k detRh

e−
1
2

(y−mh)′R−1

h (y−mh),
y ∈ Rk

h = 0, 1.

Both conditions (A.1) and (A.2) obviously hold, and for each η > 0, the test dη
and Lrtη coincide.

The likelihood ratio and the likelihood ratio tests For this example, the like-
lihood ratio function is given by

L(y) =

√
det(R0)

det(R1)
· e

1
2
Q(y), y ∈ Rk

where we have used the notation

Q(y) = (y −m0)′R−1
0 (y −m0)− (y −m1)′R−1

1 (y −m1).

Fix η > 0. By direct substitution, we conclude that

Lrtη(y) = 0 iff e
1
2
Q(y) <

√
η2 · detR1

detR0

,

and a simple logarithmic transformation yields

Lrtη(y) = 0 iff Q(y) < log

(
η2 detR1

detR0

)
.
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The equal covariance case If the covariances are identical under both hypothe-
ses, i.e.,

R0 = R1 ≡ R,
withm1 6= m0, then

Q(y) = (y −m0)′R−1(y −m0)− (y −m1)′R−1(y −m1)

= 2y′R−1(m1 −m0)−
(
m′1R

−1m1 −m′0R−1m0

)
. (2.21)

The form of Lrtη simplifies even further to read

Lrtη(y) = 0 iff y′R−1∆m < τ(η)

where we have set

∆m ≡m1 −m0 (2.22)

and

τ(η) ≡ 1

2

(
m′1R

−1m1 −m′0R−1m0

)
+ log η. (2.23)

Evaluating probabilities We will now evaluate the probabilities of false alarm
and miss under Lrtη. It is plain that

PF (Lrtη) = P [Lrtη(Y ) = 1|H = 0]

= P [L(Y ) ≥ η|H = 0]

= P
[
Y ′R−1∆m ≥ τ(η) | H = 0

]
(2.24)

and

PM(Lrtη) = P [Lrtη(Y ) = 0|H = 1]

= P [L(Y ) < η|H = 1]

= P
[
Y ′R−1∆m < τ(η) | H = 1

]
= 1− P

[
Y ′R−1∆m ≥ τ(η) | H = 1

]
. (2.25)

To carry out the calculations further, recall that for each h = 0, 1, given H =
h, the rv Y is conditionally Gaussian with mean vectormh and covariance matrix
R. Therefore, the scalar rv Y ′R−1∆m is also conditionally Gaussian with mean
and variance given by

E
[
Y ′R−1∆m|H = h

]
= m′hR

−1∆m
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and

Var
[
Y ′R−1∆m|H = h

]
=

(
R−1∆m

)′
Cov [Y |H = h]

(
R−1∆m

)
=

(
R−1∆m

)′
R
(
R−1∆m

)
= ∆m′R−1∆m, (2.26)

respectively. In obtaining this last relation we have used the fact that

Y ′R−1∆m = (R−1∆m)′Y .

Consequently, for all h = 0, 1,

P
[
Y ′R−1∆m ≥ τ(η)|H = h

]
= P

[
m′hR

−1∆m+
√

∆m′R−1∆m · Z ≥ τ(η)
]

= P
[
Z ≥ τ(η)−m′hR−1∆m√

∆m′R−1∆m

]
(2.27)

where Z ∼ N(0, 1).
For the sake of convenience, pose

d2 ≡ ∆m′R−1∆m, (2.28)

and note that

τ(η)−m′hR−1∆m =


log η − 1

2
d2 if h = 1

log η + 1
2
d2 if h = 0.

It is now clear that

PF (Lrtη) = 1− Φ

(
log η + 1

2
d2

d

)
and

PM(Lrtη) = Φ

(
log η − 1

2
d2

d

)
.

We finally obtain

PD(Lrtη) = 1− Φ

(
log η − 1

2
d2

d

)
.
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The ML test The ML test corresponds to η = 1, in which case these expressions
become

PF (dML) = 1− Φ

(
d

2

)
= Q

(
d

2

)
and

PM(dML) = Φ

(
−d

2

)
= Q

(
d

2

)
,

whence

PE(dML) = (1− p)PF (dML) + pPM(dML) = Q

(
d

2

)
regardless of the prior p.

2.5 The Bernoulli case

Consider the binary hypothesis testing problem

H1 : Y ∼ Ber(a1)
H0 : Y ∼ Ber(a0)

with a1 < a0 in (0, 1). The case a0 < a1 is left as an exercise. Thus,

P [Y = 1|H = h] = ah = 1− P [Y = 0|H = h] , h = 0, 1

and Conditions (A.1) and (A.2) obviously hold with respect to counting measure
F on {0, 1}. The likelihood rate function is given by

L(y) =

(
1− a1

1− a0

)1−y (
a1

a0

)y
, y ∈ R.

For each η > 0, the test dη takes the following form

dη(y) = 0 iff
(

1− a1

1− a0

)1−y

·
(
a1

a0

)y
< η

iff
(

1− a0

1− a1

· a1

a0

)y
< η · 1− a0

1− a1

, y ∈ R. (2.29)
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Therefore,

PF (dη) = P [dη(Y ) = 1|H = 0]

= P

[(
1− a0

1− a1

· a1

a0

)Y
≥ η · 1− a0

1− a1

∣∣∣H = 0

]

= P

[
Y = 1,

(
1− a0

1− a1

· a1

a0

)Y
≥ η · 1− a0

1− a1

∣∣∣H = 0

]

+ P

[
Y = 0,

(
1− a0

1− a1

· a1

a0

)Y
≥ η · 1− a0

1− a1

∣∣∣H = 0

]

= a01

[
η · 1− a0

1− a1

≤ 1− a0

1− a1

· a1

a0

]
+ (1− a0)1

[
η · 1− a0

1− a1

≤ 1

]
= a01

[
η ≤ a1

a0

]
+ (1− a0)1

[
η

1− a0

1− a1

≤ 1

]
= a01

[
η ≤ a1

a0

]
+ (1− a0)1

[
η ≤ 1− a1

1− a0

]
. (2.30)

Similarly, we get

PM(dη) = P [dη(Y ) = 0|H = 1]

= P

[(
1− a0

1− a1

· a1

a0

)Y
< η · 1− a0

1− a1

∣∣∣H = 1

]

= P

[
Y = 1,

(
1− a0

1− a1

· a1

a0

)Y
< η · 1− a0

1− a1

∣∣∣H = 1

]

+ P

[
Y = 0,

(
1− a0

1− a1

· a1

a0

)Y
< η · 1− a0

1− a1

∣∣∣H = 1

]

= a11

[
1− a0

1− a1

· a1

a0

< η · 1− a0

1− a1

]
+ (1− a1)1

[
1 < η · 1− a0

1− a1

]
= a11

[
a1

a0

< η

]
+ (1− a1)1

[
1 < η · 1− a0

1− a1

]
= a11

[
a1

a0

< η

]
+ (1− a1)1

[
1− a1

1− a0

< η

]
. (2.31)
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2.6 Additional examples

We now present several examples where Conditions (A.1) or (A.2) fail. In all
cases we assume Γ0 > 0 and Γ1 > 0.

An example where absolute continuity (A.2) fails Here, the observation is the
scalar rv Y with F0 and F0 admitting probability density functions f0, f1 : R →
R+ with respect to Lebesgue measure given by

f0(y) =


1− | y | if |y| ≤ 1

0 otherwise
and f1(y) =


1
3

if −1 ≤ y ≤ 2

0 otherwise.

Condition (A.1) holds (with Lebesgue measure) but the absolute continuity
condition (A.2) is clearly not satisfied. However, simple substitution reveals that

h(y) = Γ1p · f1(y)− Γ0(1− p) · f0(y)

=



0 if y < −1

1
3
Γ1p− Γ0(1− p)(1− |y|) if |y| ≤ 1

1
3
Γ1p if 1 < y ≤ 2

0 if 2 < y.

(2.32)

The Bayesian test d? is simply

d?(y) = 0 iff |y| < 1−
1
3
Γ1p

Γ0(1− p)
.

Another example where absolute continuity (A.2) fails The observation is the
scalar rv Y with F0 and F0 admitting probability density functions f0, f1 : R →
R+ with respect to Lebesgue measure given by

f0(y) =


1− | y | if |y| ≤ 1

0 otherwise
and f1(y) =


1
3

if 0 ≤ y ≤ 3

0 otherwise.
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Condition (A.1) holds (with Lebesgue measure) but (A.2) fails. Simple substitu-
tion reveals that

h(y) = Γ1p · f1(y)− Γ0(1− p) · f0(y)

=



0 if y < −1

−Γ0(1− p)(1 + y) if −1 ≤ y ≤ 0

1
3
Γ1p− Γ0(1− p)(1− y) if 0 < y ≤ 1

1
3
Γ1p if 1 < y ≤ 3

0 if 3 < y,

(2.33)

and it is straightforward to check that the Bayesian test d? is simply

d?(y) = 0 iff
−1 < y ≤ 0

or

0 < y ≤ 1, y < 1−
1
3

Γ1p

Γ0(1−p) .

Equivalently, d? can be described as

d?(y) = 0 iff y ∈

(
−1,

(
1− Γ1p

3Γ0(1− p)

)+
)
.

A final example Consider the binary hypothesis testing problem

H1 : Y ∼ F1

H0 : Y ∼ F0

where F0 is the discrete uniform distribution on {0, 1}, and F1 is uniform on the
interval (0, 1). Thus, F1 admits a probability density function f1 : R → R+ with
respect to Lebesgue measure given by

f1(y) =


1 if y ∈ (0, 1)

0 otherwise

and
P [Y = 0|H = 0] = P [Y = 1|H = 0] =

1

2
.
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In this example F cannot be taken to be either the distribution associated with
Lebesgue measure on R or with the counting measure on {0, 1}. In principle we
could use F given by (1.10) but this would yield complicated expressions for the
density functions f0, f1 : R → R+. Instead of applying Theorem 2.2.1 with that
choice, we provide a direct optimization of the auxiliary expected cost function
(2.4): For each test d in D we recall that we have

Ĵ(d)

= Γ0(1− p) + Γ1p · P [d(Y ) = 0|H = 1]− Γ0(1− p) · P [d(Y ) = 0|H = 0]

with

P [d(Y ) = 0|H = 0] =


1
2

if 0 ∈ C(d), 1 /∈ C(d)
1
2

if 1 ∈ C(d), 0 /∈ C(d)
1 if 0 ∈ C(d), 1 ∈ C(d)
0 if 0 /∈ C(d), 1 /∈ C(d)

and

P [d(Y ) = 0|H = 1] =

∫
C(d)

f1(y)dy = |C(d) ∩ [0, 1]|.

Adding or deleting a finite number of points from C(d) will not affect the
value of P [d(Y ) = 0|H = 1], but it may change the value of P [d(Y ) = 0|H = 0].
Therefore, with C(d) given, modify it, if needed, by adding both points 0 and 1.
If C ′ denotes this Borel subset of R, then C ′ = C(d) ∪ {0, 1}; if d′ denotes the
corresponding test, then C(d′) = C ′. Obviously

P [d(Y ) = 0|H = 1] = P [d′(Y ) = 0|H = 1] = |C(d′) ∩ [0, 1]|

since |C(d′) ∩ [0, 1]| = |C(d) ∩ [0, 1]|, while

P [d(Y ) = 0|H = 0] ≤ P [d′(Y ) = 0|H = 0] = 1.

We can now conclude that

Ĵ(d)

= Γ0(1− p) + Γ1p · P [d(Y ) = 0|H = 1]− Γ0(1− p) · P [d(Y ) = 0|H = 0]

≥ Γ0(1− p) + Γ1p · P [d′(Y ) = 0|H = 1]− Γ0(1− p) · P [d′(Y ) = 0|H = 0]

= Γ0(1− p) + Γ1p · |C(d′) ∩ [0, 1]| − Γ0(1− p)
= Γ1p · |C(d′) ∩ [0, 1]| ≥ 0. (2.34)
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Consider the test d? : R→ {0, 1} given by

d?(y) = 1 [{0, 1}] (y), y ∈ R.

The arguments leading to (2.34) also show that

Ĵ(d?) = Γ1p · |C(d?) ∩ [0, 1]| = 0,

and the test d? is therefore a Bayesian decision rule.

2.7 Exercises

2.8 References



Chapter 3

Randomized tests

As we shall see shortly, a solution cannot always be found to the Minimax and
Neyman–Pearson formulations of the hypothesis testing problem if the search is
restricted to the class of decision rules D as done for the Bayesian set–up. In
some very real sense this class D of tests is not always large enough to guarantee
a solution; to remedy this difficulty we enlarge D by considering the class of
randomized tests or decision rules.

3.1 Randomized tests
We start with a definition.

A randomized test δ is a Borel mapping δ : Rk → [0, 1] with the following in-
terpretation as conditional probability: Having observed Y = y, it is decided
that the state of nature is 1 (resp. 0) with probability δ(y) (resp. 1 − δ(y)). The
collection of all randomized tests will be denoted by D?.

Obviously, any test d inD can be mechanized as a randomized test, say δd : Rk →
[0, 1], given by

δd(y) ≡ d(y), y ∈ Rk.

A test in D is often referred to as a pure strategy.
A natural question then arises as to how such randomization mechanisms can

be incorporated into the probabilistic framework introduced earlier in Section 1.2:
The model data is unchanged as we are given two probability distributions F0 and
F1 on Rk and a prior p in [0, 1]. We still consider a sample space Ω equipped with

33
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a σ-field of events F , and on it we now define the three rvs H , Y and D which
take values in {0, 1}, Rk and {0, 1}, respectively. The rvs H and Y have the same
interpretation as before, as state of nature and observation, respectively, while the
rv D now encodes the decision to be taken on the basis of the observation Y .

With each decision rule δ in D? we associate a probability measure Pδ on F
such that the following constraints are satisfied: As before, this time under Pδ, we
still have

Pδ [Y ≤ y|H = h] = Fh(y),
y ∈ Rk,
h = 0, 1

and
p = Pδ [H = 1] = 1− Pδ [H = 0] .

Therefore, under Pδ the probability distribution of the pair (H,Y ) does not de-
pendent on δ with

Pδ [H = h,Y ≤ y] = Pδ [H = h]Fh(y),
h = 0, 1,
y ∈ Rk (3.1)

as expected. In addition, for h = 0, 1 and y in Rk, we now require that

Pδ [D = d|H = h,Y = y] =


1− δ(y) if d = 0

δ(y) if d = 1

= dδ(y) + (1− d) (1− δ(y)) . (3.2)

The joint probability distribution of the rvs H , D and Y (under Pδ) can now
be completely specified: With h, d = 0, 1 and a Borel subset B of Rk, a precondi-
tioning argument gives

Pδ [H = h,D = d,Y ∈ B]

= Eδ [1 [H = h,Y ∈ B]Pδ [D = d|H,Y ]]

= Eδ [1 [H = h,Y ∈ B] (dδ(Y ) + (1− d) (1− δ(Y )))]

= Pδ [H = h] ·
∫
B

(dδ(y) + (1− d) (1− δ(y))) dFh(y)

=


Pδ [H = h] ·

∫
B

(1− δ(y))dFh(y) if d = 0

Pδ [H = h] ·
∫
B
δ(y)dFh(y) if d = 1.

(3.3)
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3.2 An alternate framework
The class D? of randomized strategies gives rise to a collection of probability
triples, namely

{(Ω,F ,Pδ) , δ ∈ D?} .
It is however possible to provide an equivalent probabilistic framework using a
single probability triple (Ω,F ,P). To see how this can be done, imagine that the
original probability triple (Ω,F ,P) is sufficiently rich that there exists on it a rv
U : Ω → [0, 1] which is uniformly distributed on (0, 1), and independent of the
pair of rvs H and Y , This amounts to

P [U ≤ t,H = h,Y ≤ y] = P [U ≤ t]P [H = h,Y ≤ y] ,
t ∈ R
h = 0, 1,
y ∈ Rk

with

P [U ≤ t] =


0 if t ≤ 0

min(t, 1) if t ≥ 0,

P [H = h,Y ≤ y] = P [H = h]Fh(y),
h = 0, 1,
y ∈ Rk

and
P [H = 1] = p = 1− P [H = 0] .

Now, for each decision rule δ in D?, define the {0, 1}-valued rv Dδ given by

Dδ = 1 [U ≤ δ(Y )] .

Note that

P [Dδ = 1|H = h,Y = y] = E [1 [U ≤ δ(Y )] |H = h,Y = y]

= E [1 [U ≤ δ(y)] |H = h,Y = y]

= P [U ≤ δ(y)]

= δ(y) (3.4)

under the enforced independence assumptions. Similarly it follows that

P [Dδ = 0|H = h,Y = y] = 1− P [Dδ = 1|H = h,Y = y]

= 1− δ(y). (3.5)
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Therefore, the conditional distribution of Dδ (under P) given H and Y coincides
with the conditional distribution of D (under Pδ) given H and Y , and the two
formalisms are probabilistically equivalent.

3.3 Evaluating error probabilities
Evaluating error probabilities under randomized tests can be done rather easily:
Consider a randomized test δ inD?. In analogy with (1.15) and (1.16), we evaluate
the probabilities of false alarm and miss under δ as

PF (δ) ≡ Pδ [D = 1|H = 0] (3.6)

and
PM(δ) ≡ Pδ [D = 0|H = 1] . (3.7)

It is also convenient to consider the so–called probability of detection given by

PD(δ) ≡ Pδ [D = 1|H = 1] = 1− PM(δ). (3.8)

Because

Pδ [D = h|H] = Eδ [Pδ [D = h|H,Y ] |H] , h = 0, 1

we readily conclude that

PF (δ) =

∫
Rk
δ(y)dF0(y) (3.9)

and
PM(δ) =

∫
Rk

(1− δ(y)) dF1(y), (3.10)

so that
PD(δ) =

∫
Rk
δ(y)dF1(y), (3.11)

3.4 The Bayesian problem revisited
Assuming the cost function C : {0, 1} × {0, 1} → R introduced in Section 2.1,
we define the expected cost function J? : D? → R given by

J?(δ) = Eδ [C(H,D)] , δ ∈ D?.
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When considering randomized decision rules, the original Bayesian Problem
PB is now reformulated as the minimization problem

P?B : Minimize J?(δ) over δ in D?.

This amounts to finding an admissible test δ? in D? such that

J?(δ?) ≤ J?(δ), δ ∈ D?. (3.12)

Any admissible test δ? which satisfies (3.12) is called a randomized Bayesian test,
and the value

J?(δ?) = inf
δ∈D?

J?(δ)) (3.13)

is sometimes referred to as the randomized Bayesian cost.

Obviously, since D ⊂ D? (with a slight abuse of notation) with

J?(δd) = J(d), d ∈ D,

it is plain that
inf
δ∈D?

J?(δ) ≤ inf
d∈D

J(d).

While in principle this last inequality could be strict, we now show that it is not
so and that the Bayesian problem is not affected by considering the larger set of
randomized decision rules; the proof is available in Section 3.6.

Theorem 3.4.1 Under the absolute continuity condition (A.1), it holds that

inf
δ∈D?

J?(δ) = inf
d∈D

J(d). (3.14)

It follows from Theorem 2.13 that (3.14) is equivalent to

min
δ∈D?

J?(δ) = min
d∈D

J(d) = J(d?) (3.15)

where the deterministic test d? : Rk → {0, 1} is given by (2.13).
For easy reference we close with the following analog of Lemma 2.1.1 for

randomized tests; the proof is left as an exercise.
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Lemma 3.4.1 For any admissible rule δ in D?, the relation

J?(δ) = E [C(H,H)] + Ĵ?(δ) (3.16)

holds with

Ĵ?(δ) = Γ0(1− p) · PF (δ) + Γ1p · PM(δ). (3.17)

3.5 Randomizing between two pure decision rules
Consider two pure strategies d1 and d2 in D. With a in (0, 1), we introduce a
randomized policy δa in D? which first selects the pure strategy d1 (resp. d2)
with probability a (resp. 1 − a), and then uses the pure policy that was selected.
Formally, this amounts to defining δa : Rk → [0, 1] by

δa(y) = ad1(y) + (1− a)d2(y), y ∈ Rk.

Applying the expressions (3.9) and (3.10) with the randomized test δa we get

PF (δa) =

∫
Rk
δa(y)dF0(y)

=

∫
Rk

(ad1(y) + (1− a)d2(y)) dF0(y)

= a

∫
Rk
d1(y)dF0(y) + (1− a)

∫
Rk
d2(y)dF0(y)

= aPF (d1) + (1− a)PF (d2). (3.18)

Similarly we find that

PM(δa) =

∫
Rk

(1− δa(y)) dF1(y)

=

∫
Rk

(1− ad1(y)− (1− a)d2(y)) dF1(y)

= a

∫
Rk

(1− d1(y))dF1(y) + (1− a)

∫
Rk

(1− d2(y))dF1(y)

= aPM(d1) + (1− a)PM(d2). (3.19)
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It immediately follows from (3.16) and (3.17) that

J?p (δa) = aJp(d1) + (1− a)Jp(d2). (3.20)

as we use the relations (3.18) and (3.19).
One very concrete way to implement the randomized policy δa on the original

triple (Ω,F ,P) proceeds as follows: Consider the original probabilistic frame-
work introduced in Section 1.2 and assume it to be sufficiently rich to carry an
additional R-valued rv V which is independent of the rvs H and Y (under P), and
is uniformly distributed on the interval [0, 1]. Define the {0, 1}-valued rvBa given
by

Ba = 1 [V ≤ a] .

It is plain that the rv Ba is independent of the rvs H and Y (under P), with

P [Ba = 1] = a = 1− P [Ba = 0] .

Define the decision rv Da given by

Da = Bad1(Y ) + (1−Ba)d2(Y ).

It is easy to check that

P [Da = 1|H = h,Y = y]

= P [Bad1(Y ) + (1−Ba)d2(Y ) = 1|H = h,Y = y]

= P [Bad1(y) + (1−Ba)d2(y) = 1|H = h,Y = y]

= P [Ba = 1, d1(y) = 1|H = h,Y = y] + P [Ba = 0, d2(y) = 1|H = h,Y = y]

= d1(y)P [Ba = 1|H = h,Y = y] + d2(y)P [Ba = 0|H = h,Y = y]

= d1(y)P [Ba = 1] + d2(y)P [Ba = 0]

= ad1(y) + (1− a)d2(y),
y ∈ Rk,
h = 0, 1

(3.21)

as desired.

3.6 A proof of Theorem 3.4.1
Pick an arbitrary test δ in D?. A simple preconditioning argument shows that

J?(δ) = Eδ [C(H,D)]
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= Eδ [Eδ [C(H,D)|H,Y ]]

= Eδ [C(H, 1)Pδ [D = 1|H,Y ] + C(H, 0)Pδ [D = 0|H,Y ]]

= Eδ [C(H, 1) · δ(Y ) + C(H, 0) · (1− δ(Y ))]

= Eδ [C(H, 0)] + Eδ [(C(H, 1)− C(H, 0)) · δ(Y )] (3.22)

with

Eδ [(C(H, 1)− C(H, 0)) · δ(Y )]

= Eδ [(C(H, 1)− C(H, 0)) · Eδ [δ(Y )|H]]

= (C(1, 1)− C(1, 0))Eδ [δ(Y )|H = 1]Pδ [H = 1]

+ (C(0, 1)− C(0, 0))Eδ [δ(Y )|H = 0]Pδ [H = 0]

= −Γ1p · Eδ [δ(Y )|H = 1] + Γ0(1− p) · Eδ [δ(Y )|H = 0] . (3.23)

Using the absolute continuity condition (A.1) we can now write

Eδ [δ(Y )|H = h] =

∫
Rk
δ(y)dFh(y) =

∫
Rk
δ(y)fh(y)dF (y), h = 0, 1

so that

J?(δ)− Eδ [C(H, 0)]

= −Γ1p ·
∫
Rk
δ(y)f1(y)dF (y) + Γ0(1− p) ·

∫
Rk
δ(y)f0(y)dF (y)

=

∫
Rk

(−Γ1pf1(y) + Γ0(1− p)f0(y)) δ(y)dF (y)

= −
∫
Rk
h(y)δ(y)dF (y) (3.24)

where the mapping h : Rk → R is given by (2.11). Note that the term Eδ [C(H, 0)]
does not depend on the randomized test δ being used.

From Theorem 2.2.1 recall that the Bayesian rule which solves Problem PB is
the test d? : Rk → {0, 1} inD given by (2.13). Note that d? can also be interpreted
as the randomized rule δ? : Rk → [0, 1] given by

δ?(y) =


0 if h(y) < 0

1 if h(y) ≥ 0
=


0 if y ∈ C?

1 if y 6∈ C?

where C? is the Borel subset of Rk given by (2.12).
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The desired result will be established if we show that

J?(δ?) ≤ J?(δ), δ ∈ D?.

The approach we take is reminiscent of the one used in the proof of Theorem
2.2.1: For an arbitrary δ in D?, earlier calculations (3.24) show that

J?(δ)− J?(δ?) = −
∫
Rk
h(y)δ(y)dF (y) +

∫
Rk
h(y)δ?(y)dF (y)

=

∫
Rk
h(y) (δ?(y)− δ(y)) dF (y)

=

∫
C?

(−h(y))δ(y)dF (y) +

∫
Rk\C?

(1− δ(y))h(y)dF (y)

≥ 0

as desired since∫
C?

(−h(y))dF (y) ≥ 0 and
∫
Rk\C?

(1− δ(y))h(y)dF (y) ≥ 0

by the very definition of the set C? and of the mapping h : Rk → R.

3.7 Exercises

3.8 References
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Chapter 4

The Minimax formulation

The Bayesian formulation implicitly assumes knowledge of the prior distribution
on the hypothesis rv H . In many situations, this assumption cannot be adequately
justified, and the Bayesian formulation has to abandoned for the so–called Mini-
max formulation discussed in this chapter.

4.1 Keeping track of the prior
To facilitate the discussion, we augment the notation introduced in Chapter 1 and
Chapter 3 by explicitly indicating the dependence on the prior probability dis-
tribution: As before we are given two distinct probability distributions F0, F1 :
Rk → [0, 1] which act as conditional probability distributions for the observation
given the state of nature. As in Chapter 1, we can always construct a collection
{(Ω,F ,Pp), p ∈ [0, 1]} of probability triples, and rvs H and Y defined on Ω
which take values in {0, 1} and Rk, respectively, such that for each p in [0, 1],

Fh(y) = Pp [Y ≤ y|H = h] ,
y ∈ Rk,
h = 0, 1

and
p = Pp [H = 1] = 1− Pp [H = 0] .

One possible construction was given in Section 1.3: Take Ω = {0, 1} × Rk with
generic element ω = (h,y) with h = 0, 1 and y an arbitrary element of Rk. We
endow Ω with the σ-field F given by

F = σ
(
P({0, 1})× B(Rk)

)
43
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where P({0, 1}) is the power set of {0, 1}, and B(Rk) is the Borel σ-field on Rk.
We define the mappings H : Ω→ R and Y : Ω→ Rk by

H(ω) = h and Y (ω) = y, ω = (h,y) ∈ Ω.

Both projection mappings are Borel measurable, and therefore define rvs.
As before, it is plain that

Pp [Y ≤ y,H = h] = Pp [Y ≤ y|H = h]Pp [H = h]

=


(1− p)F0(y) if h = 0, y ∈ Rk

pF1(y) if h = 1, y ∈ Rk.
(4.1)

Let Ep [·] denote expectation under Pp.
When dealing with randomized strategies we further augment the notation Pδ

to read Pδ,p when using the randomized strategy δ in D? with prior p; see Section
3.1 for details on the probabilistic framework to be used.. In that case let Eδ,p [·]
denote expectation under Pδ,p.

4.2 The Bayesian problems
Fix p in [0, 1]. Let Jp(d) denote the expected cost associated with the admissible
decision rule d in D when the prior on H is p, i.e.,

Jp(d) ≡ Ep [C(H, d(Y ))] .

Similarly, let J?p (δ) denote the expected cost associated under the randomized
decision rule δ in D? when the prior on H is p, i.e.,

J?p (δ) ≡ Eδ,p [C(H,D)] .

The Bayesian problems introduced in Chapters 2 and 3 now read

Pp,B : Minimize Jp(d) over d in D

and
P?p,B : Minimize J?p (δ) over δ in D?.

The corresponding Bayesian costs will be denoted by

V (p) ≡ inf
d∈D

Jp(d) (4.2)
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and
V ?(p) ≡ inf

δ∈D?
J?p (δ). (4.3)

As shown in Chapter 2, under Condition (A.1), for each p in [0, 1] the problem
Pp,B has a solution which we denote d?(p) to indicate its dependence on the prior
p. Clearly, any such solution satisfies

Jp(d
?(p)) ≤ Jp(d), d ∈ D (4.4)

and the equality
V (p) = Jp(d

?(p)) (4.5)

holds. Under the same condition, Theorem 3.4.1 further shows that

J?p (δd?(p)) ≤ Jp(δ), δ ∈ D?

so that
V ?(p) = V (p). (4.6)

The following properties of the value function V : [0, 1] → R will be useful
in the forthcoming discussion. Conditions (A.1) and (A.2) are not needed for the
results to hold.

Lemma 4.2.1 Assume Γh > 0 for h = 0, 1. The value function V : [0, 1]→ R is
concave and continuous on the closed interval [0, 1] with boundary values V (0) =
C(0, 0) and V (1) = C(1, 1). Moreover, its right-derivative (resp. left-derivative)
exists and is finite on [0, 1) (resp. (0, 1]))

The proof can be omitted in a first reading, and can be found in Section 4.10. For
easy reference, recall that for each p in [0, 1] the expressions

Jp(d) = pC(1, 1) + (1− p)C(0, 0) (4.7)
+ Γ0(1− p) · PF (d) + Γ1p · PM(d), d ∈ D

and

J?p (δ) = pC(1, 1) + (1− p)C(0, 0) (4.8)
+ Γ0(1− p) · PF (δ) + Γ1p · PM(δ), δ ∈ D?

hold. The relationships were given in Lemma 2.1.1 and Lemma 3.4.1, respec-
tively.
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4.3 The minimax formulation
Since the exact value of the prior p is not available, the Bayesian criterion has to
be modified. Two different approaches are possible; each in its own way seeks to
compensate for the uncertainty in the modeling assumptions.

Minmax On possible approach is to introduce a worst-case cost associated with
the original cost, and then use it as the new criterion to be minimized. With this
in mind, define

JMax(d) ≡ sup
p∈[0,1]

Jp(d), d ∈ D. (4.9)

We are then lead to consider the minimization problem

PMax : Minimize JMax(d) over d in D.

Solving PMax amounts to finding an admissible test d?m in D such that

JMax(d?m) ≤ JMax(d), d ∈ D. (4.10)

When it exists, the test d?m is known as a minimax test.

A priori there is no guarantee that a test in D exists which satisfies (4.10) (even
under Condition (A.1)) – It is not clear that a cost C̃ : {0, 1}×{0, 1} → R (likely
related to the original cost C : {0, 1} × {0, 1} → R) and p̃ in [0, 1] can be found
such that

JMax(d) = Ep̃
[
C̃(H, d(Y ))

]
, d ∈ D.

If that were indeed the case, then Theorem 2.2.1 would guarantee the existence of
a minimizer.

For technical reasons to become shortly apparent we also introduce the worst-
case cost under randomized strategies, namely

J?Max(δ) ≡ sup
p∈[0,1]

J?p (δ), δ ∈ D?. (4.11)

The minimization problem of interest here is now defined as

P?Max : Minimize J?Max(δ) over δ in D?.
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Solving P?Max amounts to finding a randomized strategy δ?m in D? such that

J?Max(δ?m) ≤ J?Max(δ), δ ∈ D?. (4.12)

Again a priori there is no guarantee that there exists a test in D? satisfying (4.12)
(even under Condition (A.1)). When it exists, the test δ?m is also known as a
minimax test.

It is natural to wonder whether the tests d?m and δ?m exist, (possibly under additional
conditions), whether they are different, and if not, whether J?Max(δ?m) = JMax(d?m).

Maxmin Another reasonable way to proceed consists in using the Bayesian test
for that value of p which yields the largest Bayesian cost (4.2): With the notation
introduced earlier, let pm in [0, 1] such that

V (pm) = max
p∈[0,1]

V (p), (4.13)

and use the Bayesian rule d?(pm) – The existence of pm is guaranteed by the fact
that the mapping V : [0, 1] → R is continuous on the closed bounded interval
[0, 1] by Lemma 4.2.1, hence achieves its maximum value on [0, 1].

The value pm satisfying (4.13) is known as the least favorable prior. Although the
terminology is not standard, we shall refer to d?(pm) as a maximin test.

4.4 Preliminary facts

In view of the two competing approaches outlined in Section 4.3, several questions
arise: (i) How does one characterize the minimax strategy d?m and develop ways
find it; (ii) How does one characterize the least-favorable prior pm and develop
ways find it; (iii) Is there a simple relationship between the solutions proposed by
two approaches, and in particular, whether is d?(pm) is a candidate for d?m.

To frame the discussion of these issues we start with a couple of preliminary
remarks.
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The minimax inequalities As a first step towards understanding how the two
approaches may be related to each other, consider the following arguments: From
the definitions it always holds that

V (p) ≤ Jp(d) ≤ JMax(d),
p ∈ [0, 1]
d ∈ D. (4.14)

It is now immediate that

V (p) ≤ inf
d∈D

JMax(d), p ∈ [0, 1]

since V (p) does not depend on d, whence

sup
p∈[0,1]

V (p) ≤ inf
d∈D

JMax(d).

This last inequality can be rewritten as the minimax inequality

sup
p∈[0,1]

(
inf
d∈D

Jp(d)

)
≤ inf

d∈D

(
sup
p∈[0,1]

Jp(d)

)
(4.15)

(in pure policies)
If we were to consider randomized strategies, it is also the case that

V ?(p) ≤ J?p (δ) ≤ J?Max(δ),
p ∈ [0, 1]
δ ∈ D? (4.16)

and arguments similar to the ones leading to (4.15) yield the minimax inequality

sup
p∈[0,1]

(
inf
δ∈D?

J?p (δ)

)
≤ inf

δ∈D?

(
sup
p∈[0,1]

J?p (δ)

)
(4.17)

in randomized strategies.

Toward minimax equalities As we contrast the inequalities (4.15) and (4.17),
it is natural to wonder whether these inequalities ever hold as equalities, namely

sup
p∈[0,1]

(
inf
d∈D

Jp(d)

)
= inf

d∈D

(
sup
p∈[0,1]

Jp(d)

)
(4.18)
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and

sup
p∈[0,1]

(
inf
δ∈D?

J?p (δ)

)
= inf

δ∈D?

(
sup
p∈[0,1]

J?p (δ)

)
. (4.19)

When this occurs we shall then say that the minimax property holds in pure and
randomized policies, respectively.

It is worth pointing out that the equalities

inf
δ∈D?

(
sup
p∈[0,1]

J?p (δ)

)
≤ inf

d∈D

(
sup
p∈[0,1]

Jp(d)

)
(4.20)

and

sup
p∈[0,1]

(
inf
δ∈D?

J?p (δ)

)
= sup

p∈[0,1]

(
inf
d∈D

Jp(d)

)
(4.21)

always hold; the latter is a rewrite of (4.6) and is a simple consequence of Theorem
3.4.1. As we combine these observations with (4.17) we conclude that

sup
p∈[0,1]

(
inf
d∈D

Jp(d)

)
≤ inf

δ∈D?

(
sup
p∈[0,1]

J?p (δ)

)
≤ inf

d∈D

(
sup
p∈[0,1]

Jp(d)

)
. (4.22)

Thus, if (4.18) happens to be true, then (4.19) necessarily holds – Put differently,
the minimax property in pure policies is more difficult to achieve than the minimax
property in randomized strategies. This disparity will become apparent in the
discussion of the Minimax Theorem given in Section 4.5, opening the possibility
that we may have to resort to randomized tests (at least in some situations) in order
to achieve the minimax equality.

The structure of the worst-case costs (4.9) and (4.11) A little more can be said
concerning the auxiliary costs (4.9) and (4.11): For each test d inD, we note from
(4.7) and (4.8) that

sup
p∈[0,1]

Jp(d) = max
p∈[0,1]

Jp(d) = max{J0(d), J1(d)} (4.23)

with the supremum achieved at either p = 0 or p = 1. Also, J0(d) and J1(d) can
be given probabilistic interpretations as the conditional interpretations

J0(d) = Ep [C(H, d(Y )|H = 0] (4.24)
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and
J1(d) = Ep [C(H, d(Y )|H = 1] (4.25)

with p arbitrary in [0, 1]. Similarly, for each randomized strategy δ inD?, we have

sup
p∈[0,1]

J?p (δ) = max
p∈[0,1]

J?p (δ) = max{J?0 (δ), J?1 (δ)} (4.26)

with the supremum achieved at either p = 0 or p = 1 with probabilistic interpre-
tations

J?0 (δ) = Eδ,p [C(H,D)|H = 0] (4.27)

and
J?1 (δ) = Eδ,p [C(H,D)|H = 1] (4.28)

with p arbitrary in [0, 1].

4.5 The minimax equality
The main result concerning the minimax formulation for the binary hypothesis
testing problem is summarized in the following special case of the Minimax The-
orem from Statistical Decision Theory; see [?, Thm. 1, p. 82] for a discussion in
a more general setting.

Theorem 4.5.1 Assume Γh > 0 for all h = 0, 1. Under Condition (A.1), the
minimax equality

sup
p∈[0,1]

(
inf
δ∈D?

J?p (δ)

)
= inf

δ∈D?

(
sup
p∈[0,1]

J?p (δ)

)
(4.29)

holds in randomized strategies.

In Section 4.6 we present an analysis of the minimax equality which exploits
the specific structure of the binary hypothesis problem as reflected through the
properties of the value function: As pointed out earlier, there always exists pm in
[0, 1] such that (4.13) holds. From the concavity of the value function it follows
that the set of maximizers

Im ≡
{
pm ∈ [0, 1] : V (pm) = max

p∈[0,1]
V (p)

}
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is a closed interval in [0, 1]. The set Im will often be reduced to a singleton, in
which case the value function admits a unique (isolated) maximizer. Four sit-
uations can occur depending on the location of Im and on the smoothness of
p → V (p) at the maximum. In each case we establish a minimax equality and
identify the minimax strategy. Throughout we still use d?(pm) to denote the
Bayesian test for the selected value pm in Im, so that

V (pm) = Jpm(d?(pm)) = min
d∈D

Jpm(d). (4.30)

From the discussion of Section 4.4 we see that (4.29) will hold if we can
establish the reverse inequality to (4.17), namely

inf
δ∈D?

(
sup
p∈[0,1]

J?p (δ)

)
≤ sup

p∈[0,1]

(
inf
δ∈D?

J?p (δ)

)
. (4.31)

Recall that (4.31) will automatically hold if we show the stronger inequality

inf
d∈D

(
sup
p∈[0,1]

Jp(d)

)
≤ sup

p∈[0,1]

(
inf
d∈D

Jp(d)

)
. (4.32)

In the first three cases we show in effect that

inf
d∈D

(
max
p∈[0,1]

Jp(d)

)
≤ max

p∈[0,1]

(
min
d∈D

Jp(d)

)
. (4.33)

4.6 A proof of Theorem 4.5.1
We start with the boundary cases pm = 0 and pm = 1.

Case 1: Assume pm = 0 – Thus, maxp∈[0,1] V (p) = V (0) = J0(d?(0)). By

concavity we have d+

dp
V (p)

∣∣∣
p=0
≤ 0 with the mapping V : [0, 1] → R being de-

creasing. But the straight line p → Jp(d
?(0)) is tangent to the value function

V : [0, 1]→ R at p = 0, whence

d+

dp
V (p)

∣∣∣
p=0

=
d

dp
Jp(d

?(0))
∣∣∣
p=0
≤ 0.

The mapping p→ Jp(d
?(0)) being affine, its derivative is therefore constant with

d

dp
Jp(d

?(0)) =
d

dp
Jp(d

?(0))
∣∣∣
p=0
≤ 0, p ∈ [0, 1]
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and the mapping p→ Jp(d
?(0)) is also decreasing on [0, 1]. This leads to

J0(d?(0)) = max
p∈[0,1]

Jp(d
?(0)).

With this in mind we get

max
p∈[0,1]

(
min
d∈D

Jp(d)

)
= max

p∈[0,1]
V (p)

= V (0)

= J0(d?(0))

= max
p∈[0,1]

Jp(d
?(0)). (4.34)

The desired inequality (4.32) (hence (4.31)) is now immediate from (4.34) as we
note that

max
p∈[0,1]

Jp(d
?(0)) ≥ inf

d∈D

(
max
p∈[0,1]

Jp(d)

)
.

But the minimax equality being now established in pure strategies, we conclude
from the discussion that

max
p∈[0,1]

Jp(d
?(0)) = inf

d∈D

(
max
p∈[0,1]

Jp(d)

)
.

This shows that d?m can be taken to be d?(0).

Case 2: Assume pm = 1 – The proof is as in Case 1 mutatis mutandis, and is
left as an exercise. Again, the minimax equality holds in pure strategies and d?m
can be taken to be d?(1).

We now turn to cases when pm is selected in (0, 1).

Case 3: Assume that pm in an element of (0, 1) and p→ V (p) is differentiable
at p = pm – It is plain that d

dp
V (p)

∣∣∣
p=pm

= 0 since pm is an interior point by

assumption. By concavity the mapping p → Jp(d
?(pm)) is tangent to the value

function V : [0, 1]→ R at p = pm, whence

d

dp
V (p)

∣∣∣
p=pm

=
d

dp
Jp(d

?(pm))
∣∣∣
p=pm

= 0.
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The mapping p→ Jp(d
?(pm)) being affine, its derivative is constant and given by

d

dp
Jp(d

?(pm)) =
d

dp
Jp(d

?(pm))
∣∣∣
p=0

= 0, p ∈ [0, 1].

Therefore, the mapping p → Jp(d
?(pm)) is constant on [0, 1], and the equality

J0(d?(pm)) = J1(d?(pm)) holds. It follows from the first equality in (4.30) that

V (pm) = Jp(d
?(pm)) = max

p∈[0,1]
Jp(d

?(pm)), p ∈ [0, 1]. (4.35)

On the other hand, it is plain that

inf
d∈D

(
max
p∈[0,1]

Jp(d)

)
≤ max

p∈[0,1]
Jp(d

?(pm))

= Jpm(d?(pm))

= min
d∈D

Jpm(d)

≤ inf
d∈D

(
max
p∈[0,1]

Jp(d)

)
(4.36)

as we use the second equality in (4.35) with p = pm, and then apply the second
equality in (4.30). The inequality (4.32) (hence (4.31)) is now a straightforward
consequence of (4.36).

Leveraging the fact that the minimax equality is now known to hold in pure
strategies, we conclude from the discussion that

max
p∈[0,1]

Jp(d
?(pm)) = inf

d∈D

(
max
p∈[0,1]

Jp(d)

)
,

and d?m can therefore be taken to be d?(pm).

Case 4: Assume that Im = {pm} ⊆ (0, 1) but p → V (p) is not differentiable
at p = pm – Under such assumptions we must have

a+ ≡
d+

dp
V (p)

∣∣∣
p=pm

<
d−

dp
V (p)

∣∣∣
p=pm
≡ a−

by concavity with either a+ < 0 ≤ a− or a+ ≤ 0 < a−. We continue the
discussion under the assumption a+ < 0 ≤ a−; the case a+ ≤ 0 < a− proceeds
along similar lines, and is therefore omitted.
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Recall that p→ V (p) is defined as the envelope of a family of affine functions.
Thus, under the non-differentiability assumption at p = pm, concavity guarantees
that there exist two pure strategies, say d−, d+ : Rk → {0, 1}, such that V (pm) =
Jpm(d−) and V (pm) = Jpm(d+) (because pm is a maximum) while the straight
lines p → Jp(d−) and p → Jp(d+) are both tangent to the value function at
p = pm – These two strategies are distinct. Hence, as discussed in earlier cases,
the function p → Jp(d−) (resp. p → Jp(d+)) is an affine function with constant
derivative a− ≥ 0 (resp. a+ < 0), hence non-decreasing (resp. decreasing). It
follows that J0(d−) ≤ J1(d−) and J1(d+) < J0(d+).

Next we introduce randomized policies {δa, a ∈ [0, 1]} obtained by random-
izing two pure strategies d− and d+. Thus, with each a in [0, 1] consider the
randomized policy δa : Rk → [0, 1] given by

δa = ad+ + (1− a)d−.

The relation (3.20) discussed in Section 3.5 applies, yielding

J?p (δa) = aJp(d+) + (1− a)Jp(d−), p ∈ [0, 1].

By construction we also note that

V (pm) = J?pm(δa), a ∈ [0, 1]. (4.37)

If a suitable of a, we were to have p → J?p (δa) constant over [0, 1], then the
test δa would a performance insensitive to the value of p. This requirement (on a)
is equivalent to the equality J?0 (δa) = J?1 (δa), i.e.,

aJ0(d+) + (1− a)J0(d−) = aJ1(d+) + (1− a)J1(d−).

Thus,

a ((J0(d+)− J1(d+)) + (J1(d−)− J0(d−))) = J1(d−)− J0(d−)

and solving for a we get

a? =
J1(d−)− J0(d−)

(J0(d+)− J1(d+)) + (J1(d−)− J0(d−))
.

It is a simple matter to check that a? lies in [0, ) since J1(d−) − J0(d−) ≥ 0 and
J0(d+)− J1(d+) > 0 as discussed earlier.
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It is now plain that

V (pm) = J?p (δa?) = max
p∈[0,1]

J?p (δa?), p ∈ [0, 1]. (4.38)

Therefore, as in the discussion for Case 3, we have

inf
δ∈D?

(
max
p∈[0,1]

J?p (δ)

)
≤ max

p∈[0,1]
J?p (δa?)

= V (pm)

= inf
δ∈D?

J?p (δ)

≤ max
p∈[0,1]

(
inf
δ∈D?

J?p (δ)

)
(4.39)

and the desired inequality (4.31) is established.
The minimax equality now holds in mixed strategies, whence

max
p∈[0,1]

J?p (δa?) = inf
δ∈D?

(
max
p∈[0,1]

J?p (δ)

)
by virtue of (4.39). The minimax strategy is a randomized strategy δ?m which is
identified as δ?(pm). Note that δ?(pm) is also a (randomized) Bayesian policy for
the least favorable prior.

We summarize these findings in the following corollary to Theorem 4.5.1.

Corollary 4.6.1 Assume Γh > 0 for all h = 0, 1. Under Condition (A.1), the
minimax equality (4.29) holds in randomized strategies. Moreover, the minimax
strategy always exists and can be interpreted as a (possibly randomized) Bayesian
test under the least favorable prior pm.

4.7 The minimax equation
The discussion of Section 4.5 shows that finding minimax tests passes through
the evaluation of the value function p → V (p) and its maximizing set Im. As
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simple examples already suggest in later sections, this evaluation may not always
be straightforward to carry. Moreover, once an expression for the value function
becomes available, finding its maximizers may turn out to be rather cumbersome.
However, this two-step approach can be bypassed when Im contains an interior
point pm at which the value function is differentiable, in which case the minimax
test is given by the Bayesian test d?(pm). Instead a simple characterization of pm

is achieved through the so-called Minimax Equation.

Lemma 4.7.1 Assume Γh > 0 for all h = 0, 1, and that pm is an element of (0, 1)
and p → V (p) is differentiable at p = pm. Under Condition (A.1), pm can be
characterized through the Minimax Equation

C(1, 1)− C(0, 0) = Γ0 · PF (d?(pm))− Γ1 · PM(d?(pm)). (4.40)

For the probability of error criterion, the Minimax Equation takes the simpler form

PF (d?(pm)) = PM(d?(pm)). (4.41)

Proof. Fix p in [0, 1]. Upon specializing (4.7) to the test d?(p), we get

Jα(d?(p)) = αC(1, 1) + (1− α)C(0, 0)

+Γ0(1− α) · PF (d?(p)) + Γ1α · PM(d?(p)) (4.42)

with α in [0, 1] and the mapping α→ Jα(d?(p)) is therefore affine in the variable
α on the interval [0, 1] Therefore, the graph of the mapping α → Jα(d?(p)) is a
straight line; its slope is given by

d

dα
Jα(d?(p)) = C(1, 1)− C(0, 0) + Γ1 · PM(d?(p))− Γ0 · PF (d?(p)). (4.43)

By its definition, the Bayesian cost satisfies

V (α) ≤ Jα(d),
d ∈ D
α ∈ [0,

with strict inequality for most tests. With d = d?(p) this inequality becomes an
equality when α = p, namely

V (p) = Jp(d
?(p))
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while
V (α) ≤ Jα(d?(p)), α ∈ [0, 1].

With p in (0, 1), if the concave mapping α→ V (α) is differentiable at α = p,
then the straight line α→ Jα(d?(p)) will be a tangent to the mapping α→ V (α)
at α = p – This is a consequence of the concavity established in Lemma 4.2.1.
Thus,

d

dα
V (α)

∣∣∣
α=p

=
d

dα
Jα(d?(p))

∣∣∣
α=p

. (4.44)

In particular, if pm is an element of (0, 1) and the mapping α → V (α) is
differentiable at α = pm, then

d

dα
V (α)

∣∣∣
α=pm

=
d

dα
Jα(d?(pm))

∣∣∣
α=pm

. (4.45)

But the interior point pm being a maximum for the function α → V (α), we must
have

d

dα
V (α)

∣∣∣
α=pm

= 0,

whence
d

dα
Jα(d?(pm))

∣∣∣
α=pm

= 0.

The equation (4.40) now follows from (4.43).

Obviously this analysis does not cover the cases when (i) pm = 0, (ii) pm = 1
and (iii) pm is an element of (0, 1) but the mapping α→ V (α) is not differentiable
at α = pm.

4.8 The Gaussian Case
The setting is that of Section 2.4 to which we refer the reader for the notation. As
shown there, for every η > 0 we have

PF (Lrtη) = 1− Φ

(
log η + 1

2
d2

d

)
and

PM(Lrtη) = Φ

(
log η − 1

2
d2

d

)
.
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For each p in (0, 1], with

η(p) =
1− p
p
· Γ0

Γ1

,

we have d?(p) = Lrtη(p) and the expression (4.7) yields

V (p) = Jp(d
?(p))

= pC(1, 1) + (1− p)C(0, 0)

+ Γ0(1− p) ·
(

1− Φ

(
log η(p) + 1

2
d2

d

))
+ Γ1p · Φ

(
log η(p)− 1

2
d2

d

)
. (4.46)

The boundary cases p = 0 is easily recovered upon formally substituting this
value in the expression (4.46). The Minimax Equation (4.40) takes the form

C(1, 1)− C(0, 0)

= Γ1Φ

(
log η(pm)− 1

2
d2

d

)
− Γ0

(
1− Φ

(
log η(pm) + 1

2
d2

d

))
.(4.47)

Probability of error – Simplifications occur since C(0, 0) = C(1, 1) = 0 and
Γ0 = Γ1 = 1: The expression (4.46) becomes

V (p) = (1− p) ·

(
1− Φ

(
1−p
p

+ 1
2
d2

d

))
+ p · Φ

(
log 1−p

p
− 1

2
d2

d

)
,

and the Minimax Equation (4.47) reduces to

Φ

(
log η(pm)− 1

2
d2

d

)
+ Φ

(
log η(pm) + 1

2
d2

d

)
= 1.

It is easy to see that this requires log η(pm) = 0 so that pm = 1
2

(indeed in (0, 1)),
an intuitively satisfying conclusion! Moreover, the minimax test is given by d?m =
d( 1

2
).
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4.9 The Bernoulli case
The setting is that of Section 2.5 to which we refer the reader for the notation. We
discuss only the case a1 < a0, and leave the case a0 < a1 as an exercise for the
interested reader.

Note that the condition a1 < a0 is equivalent to 1 < 1−a1
1−a0 , so that the expres-

sions (2.30) and (2.31) for the probabilities PF (dη) and PM(dη), respectively, are
piecewise constant functions of η with different constant values on the intervals
(0, a1

a0
], (a1

a0
, 1−a1

1−a0 ] and (1−a1
1−a0 ,∞): Direct inspection of the expression (2.30) yields

PF (dη) =


1 if 0 < η ≤ a1

a0

1− a0 if a1
a0
< η ≤ 1−a1

1−a0

0 if 1−a1
1−a0 < η.

(4.48)

Similarly, using (2.31) we find

PM(dη) =


0 if 0 < η ≤ a1

a0

a1 if a1
a0
< η ≤ 1−a1

1−a0

1 if 1−a1
1−a0 < η.

(4.49)

Thus, for each p in [0, 1], we see from (4.7) that the cost Jp(dη) takes a different
value on each of the intervals (0, a1

a0
], (a1

a0
, 1−a1

1−a0 ] and (1−a1
1−a0 ,∞): Specifically, we

have:
On (0, a1

a0
],

Jp(dη) = pC(1, 1) + (1− p)C(0, 0) + Γ0(1− p)
= pC(1, 1) + (1− p)C(0, 1). (4.50)

On (a1
a0
, 1−a1

1−a0 ],

Jp(dη)

= pC(1, 1) + (1− p)C(0, 0) + Γ0(1− p) · (1− a0) + Γ1p · a1

= pC(1, 1) + (1− p)C(0, 1) + Γ1p · a1 − Γ0(1− p) · a0

= p (C(1, 1) + Γ1a1) + (1− p) (C(0, 1)− Γ0a0) . (4.51)
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On (1−a1
1−a0 ,∞),

Jp(dη) = pC(1, 1) + (1− p)C(0, 0) + Γ1p

= pC(1, 0) + (1− p)C(0, 0). (4.52)

Recall that

V (p) = Jp(dη(p)) with η(p) = Γ0(1−p)
Γ1p

, 0 < p ≤ 1.

As the mapping p : (0, 1] → R+ : p → η(p) is strictly decreasing, each of the
equations

η(p) =
1− a1

1− a0

, 0 < p ≤ 1

and
η(p) =

a1

a0

, 0 < p ≤ 1

has a unique solution in (0, 1). These solutions, denoted p− and p+, respectively,
are given by

p− =
Γ0(1− a0)

Γ1(1− a1) + Γ0(1− a0)

and
p+ =

Γ0a0

Γ1a1 + Γ0a0

.

As expected p− < 1
2
< p+.

Earlier expressions can now be used, and yield

V (p)

=


pC(1, 0) + (1− p)C(0, 0) if p ∈ (0, p−]

p (C(1, 1) + Γ1a1) + (1− p) (C(0, 1)− Γ0a0) if p ∈ (p−, p+]

pC(1, 1) + (1− p)C(0, 1) if p ∈ (p+, 1).

It is plain that the function V : [0, 1] → R is piecewise linear with three distinct
segments, namely (0, p−], (p−, p+] and (p+, 1]. There are two kinks at p = p−
and p = p+, respectively. That the function is concave can be seen by computing
the left and right-derivatives at these points. The function V : [0, 1] → R is
differentiable everywhere except at these kinks. However the maximum occurs at
one of these points so that pm ∈ {p−, p+}.
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Probability of error – In that case we find that

V (p) =


p if p ∈ (0, p−]

pa1 + (1− p) (1− a0) if p ∈ (p−, p+]

1− p if p ∈ (p+, 1)

(4.53)

with

p− =
1− a0

(1− a1) + (1− a0)

and

p+ =
a0

a1 + a0

.

It is a simple matter to check that V (p±−) = V (p±+), establishing continuity
at the kink points. As we compare V (p−) and V (p+), we readily conclude that
pm = p− (resp. pm = p+) iff 1 − p+ < p− (resp. p− < 1 − p+) iff a0 + a1 < 1
(resp. 1 < a0 + a1). The minimax cost is then given by

Vm =


p− = 1−a0

(1−a1)+(1−a0)
if a0 + a1 < 1

1− p+ = a1
a1+a0

if 1 < a0 + a1

Minimax strategy is necessarily randomized and is given by

δa = ad+ + (1− a)d−

with the pure tests d−, d+ : R→ {0, 1} given by

4.10 A proof of Lemma 4.2.1

The proof proceeds in several stages. We start with the fact that

V (p) = inf
d∈D

Jp(d), p ∈ [0, 1].
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Values at the boundary points – Consider a test d in D. With p = 0 and p = 1
in (4.7) we get

J0(d) = C(0, 0) + Γ0PF (d)

and
J1(d) = C(1, 1) + Γ1PM(d).

Using the conditions Γ0 > 0 and Γ1 > 0, we conclude that

V (0) = inf
d∈D

J0(d) = C(0, 0) + Γ0 · inf
d∈D

PF (d)

and
V (1) = inf

d∈D
J0(d) = C(1, 1) + Γ1 · inf

d∈D
PM(d).

However, PF (dF ) = 0 for the test dF : Rk → {0, 1} which always selects the
null hypothesis (H = 0) while PM(dM) = 0 for the test dM : Rk → {0, 1} which
always selects the alternative (H = 1). It follows that infd∈D PF (d) = 0 and
infd∈D PM(d) = 0, whence V (0) = C(0, 0) and V (1) = C(1, 1).

Concavity on [0, 1] and continuity on (0, 1) – Once the test d is selected, the
probabilities PF (d) and PM(d) appearing in (4.7) do not depend on p, and are
determined only through F0 and F1. Thus, the mapping p → Jp(d) is affine,
hence concave in p. As a result, the mapping V : [0, 1] → R is concave on the
closed interval [0, 1], being the infimum of the family {Jp(d), d ∈ D} of concave
functions. Because a concave function defined on an open interval is necessarily
continuous on that open interval, the mapping V : [0, 1] → R is continuous on
(0, 1) by virtue of Fact 9.4.2.

Continuity at the boundary points – We now turn to showing that the mapping
V : [0, 1] → R is also continuous at the boundary points p = 0 and p = 1. We
discuss only the case p = 0; the case p = 1 can be handled mutatis mutandis and
is left to the interested reader as an exercise.

For notational convenience here and below we write

∆(p) ≡ inf
d∈D

(Γ0(1− p) · PF (d) + Γ1p · PM(d)) , p ∈ (0, 1].
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Recall that V (0) = C(0, 0) by the first part of the proof. Thus, for each p in (0, 1]
we get from the definition of V (p) that

V (p)− V (0) = p (C(1, 1)− C(0, 0)) + ∆(p) (4.54)

by virtue of (4.7). The continuity of the mapping V : [0, 1] → R at p = 0 is
therefore equivalent to

lim
p→0

∆(p) = 0. (4.55)

For any fixed p in (0, 1], the conditions Γ0 > 0 and Γ1 > 0 yield the inequali-
ties

0 ≤ ∆(p) ≤ Γ1p (4.56)

since under the test dF (introduced earlier in the proof) we have PF (dF ) = 0 and
PM(dF ) = 1. The conclusion (4.55) is now immediate.

Differentiability – The existence and finiteness of the right-derivative and left-
derivative on the open interval (0, 1) are simple consequences of Fact 9.4.4. The
same argument also shows that the right-derivative (resp. left-derivative) does
exist at p = 0 (resp. p = 1); however it may not necessarily be finite.

Instead, we provide a direct argument to show the existence and initeness of
the right-derivative (resp. left-derivative) at p = 0 (resp. p = 1). We carry out the
discussion only for p = 0 as the case p = 1 is similar: For each p in (0, 1], we
note that

V (p)− V (0)

p
= C(1, 1)− C(0, 0) +

∆(p)

p
(4.57)

with
∆(p)

p
= inf

d∈D

(
Γ0

(
1

p
− 1

)
· PF (d) + Γ1 · PM(d)

)
.

This last expression shows that p→ ∆(p)
p

is decreasing on (0, 1], whence the limit

limp↓0
∆(p)
p

always exists. This limit is finite by virtue of the bounds

0 ≤ ∆(p)

p
≤ Γ1, p ∈ (0, 1]

which are inherited from the earlier bounds (4.56). This shows the existence of a
finite right-derivative at p = 0.
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4.11 Exercises
4.1.
Let I denote an interval of R, not necessarily finite, closed or open, and let A be
an arbitrary index set. For each α in A, let fα : I → R be a concave function.
With the function g : I → R defined by

g(x) = inf (fα(x) : α ∈ A) , x ∈ I

show that the mapping g : I → R is concave.
4.2.
With h > 0 show that the equation

Φ(x− h) + Φ(x+ h) = 1, x ∈ R

has a unique solution x = 0.
4.3.

4.12 References



Chapter 5

The Neyman-Pearson formulation

In many situations, not only is the prior probability p not available but it is quite
difficult to make meaningful cost assignments. This is typically the case in radar
applications – After all, what is the real cost of failing to detect an incoming
missile? While it is tempting to seek to minimize both the probabilities of miss
and false alarm, these are (usually) conflicting objectives and a constrained op-
timization problem is considered instead. The Neyman-Pearson formulation of
the binary hypothesis problem given next constitutes an approach to handle such
situations.

5.1 A constrained optimization problem
Fix α in (0, 1) (the limiting case α = 0 being of little practical interest). Let Dα
denote the collection of admissible tests in D of size at most α, namely

Dα = {d ∈ D : PF(d) ≤ α}.

The Neyman-Pearson formulation is based on solving the constrained optimiza-
tion problem NPα where

NPα : Maximize PD(d) over d in Dα.

Solving NPα amounts to finding a test dNP(α) in Dα with the property that

PD(d) ≤ PD(dNP(α)), d ∈ Dα.

Such a test dNP(α), when it exists, is called a Neyman–Pearson test of size α, or

65
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alternatively, an α-level Neyman–Pearson decision rule. Such decision rules may
not be unique. Following the accepted terminology, its power β(α) is given by

β(α) ≡ PD(dNP(α)) = sup
d∈Dα

PD(d).

When reformulated as

NPα : Minimize PM(d) over d in Dα,

the constrained optimization problem NPα can be solved by standard Lagrangian
arguments which are outlined in the next section. Throughout we assume that
Condition (A.1) holds.

5.2 The Lagrangian arguments
Fix α in (0, 1). For each λ ≥ 0 consider the Lagrangian functional Jλ : D → R
given by

Jλ(d) = PM(d) + λ (PF(d)− α) , d ∈ D.
The Lagrangian problem LPλ is now defined as the unconstrained minimization
problem

LPλ : Minimize Jλ(d) over d in D.
Solving LPλ amounts to finding a test d?λ in D such that

Jλ(d
?
λ) ≤ Jλ(d), d ∈ D.

Solving the Lagrangian problem LPλ Fix λ > 0. For any test d in D, we note
that

Jλ(d) = P [d(Y ) = 0|H = 1] + λ (P [d(Y ) = 1|H = 0]− α)

= P [d(Y ) = 0|H = 1] + λ (1− P [d(Y ) = 0|H = 0]− α)

= λ(1− α) + P [d(Y ) = 0|H = 1]− λP [d(Y ) = 0|H = 0]

= λ(1− α) +

∫
C(d)

hλ(y)dF (y) (5.1)

with hλ : Rk → R given by

hλ(y) = f1(y)− λf0(y), y ∈ Rk.
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By the comparison arguments used in the proof of Theorem 2.2.1, the La-
grangian problem LPλ is easily seen to be solved by the test d?λ : Rk → {0, 1}
given by

d?λ(y) = 0 iff hλ(y) < 0, (5.2)

or equivalently,

d?λ(y) = 0 iff f1(y) < λf0(y). (5.3)

Note that in the notation associated with the definition (??) we have d?λ = dλ.

Meeting the constraint The next step consists in finding some value λ(α) > 0
of the Lagrangian multiplier such that the test dλ(α) meets the constraint, i.e.,

PF(dλ(α)) = α. (5.4)

If such value λ(α) were to exist, then the optimality dλ(α) implies

Jλ(α)(dλ(α)) ≤ Jλ(α)(d), d ∈ D,

or equivalently,

PM(dλ(α)) ≤ PM(d) + λ(α) (PF(d)− α) , d ∈ D.

Consequently, for every test d in Dα (and not merely in D), it follows that

PM(dλ(α)) ≤ PM(d)

since then PM(d) ≤ α. The test dλ(α) is a test in Dα by virtue of (5.4), hence it
solves NPα – In other words, dNP(α) can be taken to be dλ(α).

A difficulty The Lagrangian argument hinges upon the possibility of finding a
value λ(α) of the Lagrange multiplier such that PF(dλ(α)) = α. Unfortunately,
this may not be always possible, unless additional assumptions are imposed. To
see how this may indeed happen, note that

PF(dλ) = P [dλ(Y ) = 1|H = 0]

= P [f1(Y ) ≥ λf0(Y )|H = 0] , λ > 0. (5.5)
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The mapping R+ → [0, 1] : λ → PF(dλ) is clearly monotone non-increasing.
However, the constraint PF(dλ) = α may fail to hold for some α in (0, 1] because
the set of values {PF(dλ), λ ≥ 0} need not contain α. This will occur if the
mapping λ→ PF(dλ) is not continuous at some point, say λ? > 0, with

lim
λ↑λ?

PF(dλ) < α < lim
λ↓λ?

PF(dλ).

In Section ?? we illustrate such situations on simple examples that involve dis-
crete rvs. Randomized policies are introduced to solve this difficulty. There are
however situations where this can be avoided because each one of the problems
NPα (properly defined over randomized strategies) has a solution within the set
of non-randomized policies D.

5.3 The Neyman-Pearson Lemma
The discussion of Section 5.2 suggests the need to consider an extended version
of the Neyman-Pearson formulation where randomized strategies are allowed.

Fix α in (0, 1]. Let D?α denote the collection of all randomized tests in D? of
size at most α, namely

D?α = {δ ∈ D? : PF(δ) ≤ α} .

The constrained optimization problem NP? is now replaced by the following con-
strained optimization problem NP?

α where

NP?
α : Maximize PD(δ) over δ in D?α.

Solving NP?
α amounts to finding a test δNP(α) in D?α with the property that

PD(δ) ≤ PD(δNP(α)), δ ∈ D?α.

Such a test δNP(α), when it exists, is also called a Neyman–Pearson test of size α,
or alternatively, an α-level Neyman–Pearson decision rule. It may not be unique.

The existence of the Neyman–Pearson test δNP(α) of size α, its characteriza-
tion and uniqueness are discussed below through three separate lemmas, known
collectively as the Neyman-Pearson Lemma. Proofs are delayed until Section 5.4.



5.3. THE NEYMAN-PEARSON LEMMA 69

First a definition: With η ≥ 0 and Borel mapping γ : Rk → [0, 1] (to be selected
shortly), define the randomized test δ? : Rk → [0, 1] in D? given by

δ?(y) =


1 if ηf0(y) < f1(y)

γ(y) if f1(y) = ηf0(y)

0 if f1(y) < ηf0(y).

(5.6)

The inequality discussed next lays the groundwork for identifying the Neyman–
Pearson test δNP(α).

Lemma 5.3.1 For any test δ : Rk → [0, 1] in D?, the inequality

PD(δ?)− PD(δ) ≥ η (PF(δ?)− PF(δ)) (5.7)

holds where the randomized test δ? : Rk → [0, 1] in D? is given by (5.7).

If we select η ≥ 0 and γ : Rk → [0, 1] so that δ? satisfies the equality

PF(δ?) = α, (5.8)

then the inequality (5.7) reads

PD(δ?)− PD(δ) ≥ η (α− PF(δ)) , δ ∈ D?. (5.9)

For any test δ : Rk → [0, 1] in D?α, we then conclude that

PD(δ?)− PD(δ) ≥ η (α− PF(δ)) ≥ 0 (5.10)

since PF(δ) ≤ α. In other words,

PD(δ) ≤ PD(δ?), δ ∈ D?α
and the test δ? solves the constrained problem NP?

α.
We now show that the parameter η ≥ 0 and the Borel mapping γ : Rk → [0, 1]

can indeed be selected so that a test δ? of the form (5.7) indeed satisfies (5.8).

Lemma 5.3.2 For every α in (0, 1] it is always possible to select η ≥ 0 and a
Borel mapping γ : Rk → [0, 1] in (5.6) so that (5.8) holds.

Finally uniqueness is shown to hold in the following sense.

Lemma 5.3.3 For every α in (0, 1], if δNP(α) is a Neyman–Pearson test (possibly
in D?) of size α, then it necessarily holds that

P [δNP(α)(Y ) = δ?(Y )|H = h] = 1, h = 0, 1 (5.11)

where the test δ? is given by (5.6) with η ≥ 0 and Borel mapping γ : Rk → [0, 1]
selected so that (5.8) holds.
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5.4 Proofs
Throughout the discussion α is given in (0, 1] and held fixed.

A proof of Lemma 5.3.1 Let δ : Rk → [0, 1] be an arbitrary test in D?. As
discussed in Section 3.3 recall that

PF(δ) =

∫
Rk
δ(y)f0(y)dF (y) and PF(δ?) =

∫
Rk
δ?(y)f0(y)dF (y),

while

PD(δ) =

∫
Rk
δ(y)f1(y)dF (y) and PD(δ?) =

∫
Rk
δ?(y)f1(y)dF (y).

It follows that

PD(δ?)− PD(δ)− η (PF(δ?)− PF(δ))

=

∫
Rk

(δ?(y)− δ(y)) f1(y)dF (y)− η
∫
Rk

(δ?(y)− δ(y)) f0(y)dF (y)

=

∫
Rk

(δ?(y)− δ(y)) (f1(y)− ηf0(y)) dF (y)

=

∫
Rk
Pη(y)dF (y) (5.12)

where we have set

Pη(y) ≡ (δ?(y)− δ(y)) (f1(y)− ηf0(y)) , y ∈ Rk.

Direct inspection shows that we always have

Pη(y) ≥ 0, y ∈ Rk. (5.13)

Obviously, we have Pη(y) = 0 when f1(y) = ηf0(y). When ηf0(y) < f1(y),
then

Pη(y) = (1− δ(y)) (f1(y)− ηf0(y)) ≥ 0,

while when f1(y) < ηf0(y), then

Pη(y) = −δ(y) (f1(y)− ηf0(y)) ≥ 0.

It is now plain from (5.12) and (5.13) that

PD(δ?)− PD(δ)− η (PF(δ?)− PF(δ)) ≥ 0 (5.14)

and the inequality (5.7) follows.
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A proof of Lemma 5.3.2 Using the definition (5.6) of the randomized test δ?,
we note that

PF(δ?)

=

∫
Rk
δ?(y)f0(y)dF (y)

=

∫
{y∈Rk:f1(y)=ηf0(y)}

γ(y)f0(y)dF (y) +

∫
{y∈Rk:f1(y)>ηf0(y)}

f0(y)dF (y)

=

∫
{y∈Rk:f1(y)=ηf0(y)}

γ(y)f0(y)dF (y) + P [f1(Y ) > ηf0(Y )|H = 0] .

As we seek to satisfy (5.8), we need to select η ≥ 0 and a Borel mapping
γ : Rk → [0, 1] such that

α− P [f1(Y ) > ηf0(Y )|H = 0] =

∫
{y∈Rk:f1(y)=ηf0(y)}

γ(y)f0(y)dF (y).

This last relation suggests introducing the quantity η(α) defined by

η(α) = inf {η ≥ 0 : P [f1(Y ) > ηf0(Y )|H = 0] < α} .

The definition of η(α) is well posed since η → P [f1(Y ) > ηf0(Y )|H = 0] is
non-increasing (and right-continuous) on (0,∞).

Two cases are possible: If

P [f1(Y ) > η(α)f0(Y )|H = 0] < α,

then take γ : Rk → [0, 1] to be constant, say

γ(y) = γ(α), y ∈ Rk.

In that case, the constant γ(α) satisfies

α−P [f1(Y ) > η(α)f0(Y )|H = 0] = γ(α)

∫
{y∈Rk:f1(y)=η(α)f0(y)}

f0(y)dF (y),

whence

γ(α) =
α− P [f1(Y ) > η(α)f0(Y )|H = 0]

P [f1(Y ) = η(α)f0(Y )|H = 0]
. (5.15)
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If
P [f1(Y ) > η(α)f0(Y )|H = 0] = α,

then the mapping γ : Rk → [0, 1] must selected so that∫
{y∈Rk:f1(y)=ηf0(y)}

γ(y)f0(y)dF (y) = 0.

This can be achieved by taking the constant mapping given by

γ(y) = 0, y ∈ Rk.

A proof of Lemma 5.3.3 The test δNP(α) being a Neyman–Pearson test of size
α, the equality

PD(δNP(α)) = PD(δ?)

must hold where the test δ? is given by (5.6) with η > 0 and Borel mapping
γ : Rk → [0, 1] selected so that (5.8) holds. This a consequence of the fact that
both δNP(α) and δ? solve the problem NP?

α.
It then follows from (5.7) that

0 = PD(δ?)− PD(δNP(α)) ≥ η (α− PF(δNP(α))) ≥ 0 (5.16)

since PF(δ?) = α under the choice of η > 0 and the Borel mapping γ : Rk →
[0, 1], whence PF(δNP(α)) = α.

In other words, PD(δNP(α)) = PD(δ?) and PF(δNP(α)) = PF(δ?). Using
these facts in the expression (5.12) (with the strategy δNP(α)) we find that

0 = PD(δ?)− PD(δNP(α))− η (PF(δ?)− PF(δNP(α)))

=

∫
Rk

(δ?(y)− δNP(α)(y)) (f1(y)− ηf0(y)) dF (y) (5.17)

with
(δ?(y)− δNP(α)(y)) (f1(y)− ηf0(y)) ≥ 0, y ∈ Rk

by virtue of (5.13). It immediately follows that

(δ?(y)− δNP(α)(y)) (f1(y)− ηf0(y)) = 0 F − a.e. (5.18)
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on Rk. Therefore,
δNP(α)(y) = δ?(y) F − a.e. (5.19)

on {y ∈ Rk : f1(y) 6= ηf0(y)}.

5.5 Examples
The Gaussian case Consider again the situation discussed in Section 2.6 where
the observation rv Y is conditionally Gaussian given H , i.e.,

H1 : Y ∼ N(m1,R)
H0 : Y ∼ N(m0,R)

wherem1 andm0 are distinct elements in Rk, and the k× k symmetric matrixR
is positive definite (thus invertible). From the discussion given in Section 2.6, it
follows for each λ > 0 the test dλ takes the form

dλ(y) = 0 iff y′R−1∆m > φ(λ)

with ∆m and φ(λ) given by (2.22) and (2.23), respectively. We also have

PF(dλ) = 1− Φ

(
log λ+ 1

2
d2

d

)
.

where d2 is given by (2.28) – It is plain that the function λ→ PF(dλ) is continuous
on R+ with {PF(dλ), λ > 0} = (0, 1). Given α in the unit interval (0, 1), the
value λ(α) is uniquely determined through the relation

1− α = Φ

(
log λ+ 1

2
d2

d

)
.

This is equivalent to
λ(α) = ed·x1−α−

1
2
d2 .

where for t in (0, 1), let xt denote the only solution to the equation

Φ(x) = t, x ∈ R.
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Discontinuity with Bernoulli rvs The setting is that of Section 2.5 to which we
refer the reader for the notation. We discuss only the case a1 < a0, and leave the
case a0 < a1 as an exercise for the interested reader. We have shown that

PF(dλ) =


1 if 0 < λ ≤ a1

a0

1− a0 if a1
a0
< λ ≤ 1−a1

1−a0

0 if 1−a1
1−a0 < λ

(5.20)

as λ ranges over (0,∞).
Note that λ→ PF(dλ) is left-continuous but not continuous with

{PF(dλ), λ > 0} = {0, 1− a0, 1} .

Discontinuity with Poisson rvs With P(m) denoting the Poisson pmf on N
with parameter m > 0, consider the following simple binary hypothesis testing
problem

H1 : Y ∼ P(m1)
H0 : Y ∼ P(m0)

where m1 6= m0 in (0,∞), Thus,

P [Y = k|H = h] =
(mh)

k

k!
e−mh ,

h = 0, 1
k = 0, 1, . . .

In this example, we take F to be the counting measure on N, and for every
λ ≥ 0, the definition of dλ reduces to

dλ(k) = 0 iff
(m1)k

k!
e−m1 < λ

(m0)k

k!
e−m0

iff
(
m1

m0

)k
< λe−(m0−m1) (5.21)

with k = 0, 1, . . ..
If m0 < m1, then

dλ(k) = 0 iff
(m1)k

k!
e−m1 < λ

(m0)k

k!
e−m0

iff
(
m1

m0

)k
< λe−(m0−m1)

iff k < η(λ) (5.22)
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with k = 0, 1, . . ., where

η(λ) =
log λe−(m0−m1)

log
(
m1

m0

) .

It follows that

PF(dλ) = P [dλ(Y ) = 1|H = 0]

= P [Y ≥ η(λ)|H = 0]

=
∞∑

k=0: η(λ)≤k

(m0)k

k!
e−m0 . (5.23)

In this last expression only the integer ceiling dη(λ)e of η(λ) matters, where
dη(λ)e = inf {k ∈ N : η(λ) ≤ k}, whence

PF(dλ) =
∞∑

k=dη(λ)e

(m0)k

k!
e−m0 .

As a result, the mapping λ→ PF(dλ) is easily seen to be a left-continuous piece-
wise constant mapping with

PF(dλ) = PF(dλn),
λn < λ ≤ λn+1

n = 0, 1, . . .

where {λn, n = 1, 2, . . .} is a strictly monotone increasing sequence determined
by the relation

n =
log λne

−(m0−m1)

log
(
m1

m0

) . n = 1, 2, . . .

or equivalently,

λn =

(
m1

m0

)n
e−(m1−m0), n = 1, 2, . . .

It is now plain that whenever α is chosen in [0, 1] such that

for some integer n = 0, 1, . . . then the requirement that PF(dλ(α)) = α cannot be
met. This difficulty is circumvented by enlargingD with randomized policies; see
Section ??.
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5.6 Exercises

5.7 References



Chapter 6

The receiver operating
characteristics

In this chapter we investigate various properties of the mappings η → PF(dη) and
η → PF(dη) as η ranges over R+. This leads to defining the receiver operating
characteristic curve, and to developing it into a handy operational tool to solve
the various versions of the binary hypothesis problem discussed so far.

6.1 A basic limiting result
We start with a basic observation.

Lemma 6.1.1 Assume Condition (A.1) to hold. For each h = 0, 1, the mapping

R+ → [0, 1] : η → P [f1(Y ) ≥ ηf0(Y )|H = h]

is monotone non-decreasing. Left (resp. right) limits exist at all points on (0,∞)
(resp. [0,∞)), with

lim
η↓λ

P [f1(Y ) ≥ ηf0(Y )|H = h] (6.1)

= P [f1(Y ) > λf0(Y ), f0(Y ) > 0|H = h] + P [f0(Y ) = 0|H = h] , λ ≥ 0

and

lim
η↑λ

P [f1(Y ) ≥ ηf0(Y )|H = h]

= P [f1(Y ) ≥ λf0(Y )|H = h] , λ > 0. (6.2)

77
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For future reference, for each η ≥ 0 define the Borel subset R(η) of Rk by

R(η) ≡
{
y ∈ Rk : f1(y) ≥ ηf0(y)

}
. (6.3)

Note that

P [f1(Y ) ≥ ηf0(Y )|H = h] = P [Y ∈ R(η)|H = h] , h = 0, 1, . (6.4)

Proof. The asserted monotonicity property is a consequence of the inclusion
R(η2) ⊆ R(η1) holding whenever η1 < η2. The existence of left (resp. right)
limits at all points on (0,∞) (resp. [0,∞)) immediately follows.

Consider h = 0, 1. Fix λ ≥ 0. By standard continuity facts from measure
theory it follows that

lim
η↓λ

P [f1(Y ) ≥ ηf0(Y )|H = h] = lim
η↓λ

P [Y ∈ R(η)|H = h]

= P [∪λ<η [Y ∈ R(η)] |H = h]

= P [Y ∈ ∪η>λR(η)|H = h] ,

and we obtain (6.1) as we note that

∪η>λR(η) =

{
y ∈ Rk :

f1(y) > λf0(y),
f0(y) > 0

}
∪
{
y ∈ Rk : f0(y) = 0

}
.

In a very similar way, with λ > 0 we get

lim
η↑λ

P [f1(Y ) ≥ ηf0(Y )|H = h] = lim
η↑λ

P [Y ∈ R(η)|H = h]

= P [∩η<λ [Y ∈ R(η)] |H = h]

= P [Y ∈ ∩η<λR(η)|H = h]

= P [f1(Y ) ≥ λf0(Y )|H = h]

because
∩η<λR(η) =

{
y ∈ Rk : f1(y) ≥ λf0(y)

}
= R(λ).

This establishes (6.2).
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6.2 Continuity properties

We shall specialize Lemma 6.1.1 for h = 0 and h = 1.

Lemma 6.2.1 The mapping η → PF(dη) is monotone non-decreasing on R+,
with the left (resp. right) limit existing at all points in (0,∞) (resp. [0,∞)).
Under Conditions (A.1), it holds that In particular, it holds that

lim
η↑λ

PF(dη) = P [f1(Y ) ≥ λf0(Y )|H = 0] = PF(dλ), λ > 0 (6.5)

while
lim
η↓λ

PF(dη) = P [f1(Y ) > λf0(Y )|H = 0] , λ ≥ 0. (6.6)

Proof. Applying (6.1) and (6.2) with h = 0 readily yields the desired conclusions
as we recall that

P [f0(Y ) = 0|H = 0] = 0 (6.7)

under Condition (A.1).

Thus, the mapping η → PF(dη) is left-continuous on (0,∞), but not necessar-
ily right-continuous on [0,∞) as we note that

lim
η↓λ

PF(dη) = PF(dλ)− P [f1(Y ) = λf0(Y )|H = 0] ≥ 0. (6.8)

Lemma 6.2.2 The mapping η → PD(dη) is monotone non-decreasing on R+,
with the left (resp. right) limit existing at all points on (0,∞) (resp. [0,∞)).
Under Conditions (A.1) and (A.2), it holds that

lim
η↑λ

PD(dη) = P [f1(Y ) ≥ λf0(Y )|H = 1] = PD(dλ), λ > 0 (6.9)

while
lim
η↓λ

PD(dη) = P [f1(Y ) > λf0(Y )|H = 1] , λ ≥ 0. (6.10)
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Proof. As discussed in Section ??, under Conditions (A.1) and (A.2) it also holds
that

P [f0(Y ) = 0|H = 1] = 0. (6.11)

Applying Lemma 6.1.1 with h = 1 and using this last fact we readily get the re-
sult.

Again, the mapping η → PD(dη) is left-continuous on (0,∞) but not neces-
sarily right-continuous on [0,∞) as we note that

lim
η↓λ

PD(dη) = PD(dλ)− P [f1(Y ) = λf0(Y )|H = 1] ≥ 0. (6.12)

We close with the behavior at η = 0 and at η = ∞; proofs are available in
Section 6.8.

Lemma 6.2.3 Under Condition (A.1) we have

lim
η→0

PF(dη) = P [f1(Y ) > 0|H = 0] , (6.13)

and if Condition (A.2) also holds, then

lim
η→0

PD(dη) = 1. (6.14)

In principle, it is possible that P [f1(Y ) > 0|H = 0] < 1. However, with the
notation (??) introduced in Section ??, we see that (6.13) becomes

lim
η→0

PF(dη) = 1 (6.15)

if B0 ⊆ B1 since then P [f1(Y ) > 0|H = 0] = 1 (or equivalently, (6.7)) under
Condition (A.1).

Note that B0 ⊆ B1 implies B0 = B1 under Conditions (A.1) and (A.2). In
that case we have “continuity” at the origin because PF(d0) = 1 and PD(d0) = 1
(under the convention used for d0 in Section ??).
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Lemma 6.2.4 Under Condition (A.1) we always have

lim
η→∞

PF(dη) = 0, (6.16)

and if Condition (A.2) also holds, then

lim
η→∞

PD(dη) = 0. (6.17)

Note that PF(d∞) = 0 and PD(d∞) = 0 (under the convention used for d∞
introduced Section ??), implying “continuity” at infinity.

6.3 The receiver operating characteristic (ROC)
A careful inspection of the solutions to the three formulations discussed so far
shows that sometimes under mild assumptions, the test of interest takes the form

dη(y) = 0 iff f1(y) < ηf0(y) (6.18)

for some η > 0 – It is only the value of the threshold η that varies with the problem
formulation. With the notation used earlier, we have

In the Bayesian formulation,

ηB =
Γ0(1− p)

Γ1p

In the minimax formulation,

ηm =
Γ0(1− pm)

Γ1pm

with pm such that
V (pm) = max (V (p) : p ∈ [0, 1]) .

When pm is a point in (0, 1) at which V : [0, 1]→ R is differentiable, then pm can
be characterized through the Minimax Equation.

In the Neyman–Pearson formulation,

ηNP(α) = λ(α).
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with λ(α) satisfying the constraint (5.4).
In view of this, it seems natural to analyze in some details the performance of

the tests (6.18). This is done by considering how their probabilities of detection
and of false alarm, namely PF(dη) and PD(dη), vary in relation to each other
as η ranges from η = 0 to η = +∞. This is best understood by plotting the
graph (Γ) of the detection probability against the corresponding probability of
false alarm. Such a graph is analogous to a phase portrait for two-dimensional
non-linear ODEs, and is called a receiver operating characteristic (ROC) curve.
Its parametric representation is given by

R+ → [0, 1]× [0, 1] : η → (PF(dη), (PD(dη)),

whence
(Γ) : {(PF(dη), (PD(dη)), η ≥ 0} .

This graph is completely determined by the probability distributions F0 and F1 of
the observation rv Y under the two hypotheses (through the densities f0 and f1

with respect to the underlying distribution F ) and not by cost assignments or the
prior probabilities. A typical ROC curve is drawn below.

6.4 Geometric properties of the ROC curve

The following geometric properties of the ROC curve are key to its operational
usefulness.

Theorem 6.4.1 Assume that Conditions (A.1) and (A.2) hold.
(i): Both mappings R+ → [0, 1] : η → PF(dη) and R+ → [0, 1] : η →

PD(dη) are monotone non-increasing, with limη→0 PF(dη) ≡ P ?
F ≤ PF(d0) = 1

and limη→0 PD(dη) = PD(d∞) = 1, and limη↑∞ PF(dη) = PF(d∞) = 0 and
limη↑∞ PD(dη) = PD(d∞) = 0.

(ii): If the right-derivative of η → PF(dη) exists at η = λ for some λ ≥ 0, then
the right-derivative of η → PD(dη) also exists at η = λ, and the relation

d+

dη
PD(dη)

∣∣∣
η=λ

= λ · d
+

dη
PF(dη)

∣∣∣
η=λ

(6.19)

holds.
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(iii): If the left-derivative of η → PF(dη) exists at η = λ for some λ > 0, then
the left-derivative of η → PD(dη) also exists at η = λ, and the relation

d−

dη
PD(dη)

∣∣∣
η=λ

= λ · d
−

dη
PF(dη)

∣∣∣
η=λ

(6.20)

holds.

A proof of Theorem 6.4.1 is available in Section 6.7. It follows from this
last result that whenever the mapping η → PF(dη) is strictly decreasing and dif-
ferentiable, then the mapping η → PD(dη) is also strictly decreasing and dif-
ferentiable, whence the curve (Γ) can be represented as the graph of a function
Γ : [0, 1]→ [0, 1] : PF → PD = Γ(PF), namely

PD(dη) = Γ(PF(dη)), η ≥ 0. (6.21)

In such circumstance, Theorem 6.4.1 yields the the following information con-
cerning this mapping. We consider only the case when P ?

F = 1 in Theorem 6.4.1;
the situation when P ?

F < 1 can be handled in a similar way with details left to the
interested reader.

Corollary 6.4.1 Assume Conditions (A.1) and (A.2) to hold. Whenever the map-
ping R+ → [0, 1] : η → PF(dη) is differentiable and strictly decreasing, so is
the mapping R+ → [0, 1] : η → PD(dη). In that case, there exists a mapping
Γ : [0, 1] → [0, 1] satisfying (6.21) which is differentiable, strictly increasing and
concave with

dΓ

dPF

(PF(dη)) = η, η ≥ 0. (6.22)

Proof. By Part (i) of Theorem 6.4.1 we see that the mapping R+ → [0, 1] :
η → PF(dη) maps R+ onto (0, 1]. Being strictly decreasing and differentiable,
this mapping admits an inverse, denoted (0, 1] → R+ : PF → η(PF), with the
property that

PF(dη(PF)) = PF, PF ∈ (0, 1].

By the Implicit Function Theorem this inverse mapping PF → η(PF) is differen-
tiable; it is also strictly decreasing.



84 CHAPTER 6. THE RECEIVER OPERATING CHARACTERISTICS

Define the mapping Γ : [0, 1]→ [0, 1] by setting

Γ(PF) ≡ PD(dη(PF)), PF ∈ [0, 1] (6.23)

with the understanding that Γ(1) = 1.
By Theorem 6.4.1 the differentiability of the mapping η → PF(dη) on R+

implies that of the mapping η → PD(dη) on R+, and the mapping PF → Γ(PF)
is therefore also differentiable. It is simple matter to check that this mapping is
strictly decreasing on [0, 1].

By the very definition of the function Γ, the identity (6.21) must hold. Differ-
entiating both sides of (6.21) with respect of η we find

d

dη
PD(dη) =

d

dη
Γ(PF(dη))

=
dΓ

dPF

(PF(dη)) ·
d

dη
PF(dη) (6.24)

as we use the Chain Rule. But Theorem 6.4.1 implies also that

d

dη
PD(dη) = η

d

dη
PF(dη).

Combining these facts we conclude that

η
d

dη
PF(dη) =

dΓ

dPF

(PF(dη)) ·
d

dη
PF(dη).

The mapping R+ → [0, 1] : η → PF(dη) being assumed differentiable and strictly
decreasing, we have d

dη
PF(dη) < 0. Dividing by d

dη
PF(dη) we get (6.22). The

other properties follow readily.

6.5 Operating the ROC
These results are most useful for operationally using the ROC curve:

For the Neyman–Pearson test of size α, consider the point on the ROC curve
with abscissa α. It is determined by the threshold value η(α) with the property
that PF(dη(α)) = α, and dNP (α) is simply dη(α). Note that η(α) is the slope of
the tangent to the ROC curve at the point with abscissa α and the power β(α) of
the test is simply the ordinate of that point.
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For the Bayesian problem, η is determined by the cost assignment and the
prior distribution of the rv H . The values of PD(dη) and PF(dη) can be easily
determined by finding the point on the ROC where the tangent has slope η.

The Minimax Equation takes the form

C(1, 1)− C(0, 0) + Γ1PM(dη)− Γ0PF(dη) = 0,

or equivalently

C(1, 1)− C(0, 0) + Γ1 = Γ1PD(dη) + Γ0PF(dη).

This shows that the minimax rule d?m is obtained as follows. Consider the straight
line (L) in the (PF, PD)-plane with equation

(L) C(1, 1)− C(0, 0) + Γ1 = Γ1PD + Γ0PF.

Let (P ?
F, P

?
D) be the point of intersection of the straight line (L) wth the ROC

curve (Γ), and let η? be the corresponding threshold value, i.e., P ?
F = PF(dη?) and

P ?
D = PD(dη?). It is now clear that d?m = dη? .

6.6 Examples
Building on material developed earlier we now discuss the ROC in the Gaussian
and Bernoulli cases, respectively.

The Gaussian case The setting is that of Section 2.4 to which we refer the
reader for the notation. As shown there, for any η > 0 we have

PF(dη) = 1− Φ

(
log η + 1

2
d2

d

)
and

PD(dη) = 1− Φ

(
log η − 1

2
d2

d

)
.

To find the ROC curve, note that

dΦ−1 (1− PF(dη))−
d2

2
= log η,
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while we must have

dΦ−1 (1− PD(dη)) +
d2

2
= log η,

whence

dΦ−1 (1− PF(dη))−
d2

2
= dΦ−1 (1− PD(dη)) +

d2

2
.

It follows that

Φ−1 (1− PD(dη)) = Φ−1 (1− PF(dη))− d

so that
1− PD(dη) = Φ

(
Φ−1 (1− PF(dη))− d

)
This shows that here the mapping Γ : [0, 1]→ [0, 1] is well defined and given by

PD = 1− Φ
(
Φ−1 (1− PF)− d

)
, PF ∈ [0, 1].

The Bernoulli case The setting is that of Section 2.5 to which we refer the
reader for the notation. We discuss only the case a1 < a0, and leave the case
a0 < a1 as an exercise for the interested reader. It was shown that

PF(dη) =


1 if 0 < η ≤ a1

a0

1− a0 if a1
a0
< η ≤ 1−a1

1−a0

0 if 1−a1
1−a0 < η

(6.25)

and

PD(dη) =


1 if 0 < η ≤ a1

a0

1− a1 if a1
a0
< η ≤ 1−a1

1−a0

0 if 1−a1
1−a0 < η.

(6.26)

Therefore,

{(PF(dη), PD(dη)), η ≥ 0} = {(0, 0), (1− a0, 1− a1), (1, 1)}.

Strictly speaking, in this case the ROC is not a “curve” as it comprises only three
points. However, the points on the two segments [(0, 0), (1 − a0, 1 − a1)] and
[(1− a0, 1− a1), (1, 1)] are achievable through randomization.
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6.7 A proof of Theorem 6.4.1
We start with some facts that prove useful in discussing Theorem 6.4.1: With
λ > 0, recall the set R(λ) defined in Section 6.2 as

R(λ) ≡ {y ∈ Rk : f1(y) ≥ λf0(y)}.

Noting that
dλ(y) = 1 iff y ∈ R(λ),

it is plain that

PF(dλ) = P [dλ(Y ) = 1|H = 0]

= P [Y ∈ R(λ)|H = 0] =

∫
R(λ)

f0(y)dF (y)

and

PD(dλ) = P [dλ(Y ) = 1|H = 1] =

∫
R(λ)

f1(y)dF (y).

For each ∆λ > 0, easy algebra now leads to

PF(dλ+∆λ)− PF(dλ) =

∫
R(λ+∆λ)

f0(y)dF (y)−
∫
R(λ)

f0(y)dF (y)

= −
∫
R+(λ;∆λ)

f0(y)dF (y)

where

R+(λ; ∆λ) ≡ {y ∈ Rk : λf0(y) ≤ f1(y) < (λ+ ∆λ)f0(y)}.

Similarly, we have

PF(dλ−∆λ)− PF(dλ) =

∫
R(λ−∆λ)

f0(y)dF (y)−
∫
R(λ)

f0(y)dF (y)

=

∫
R−(λ;∆λ)

f0(y)dF (y)

where

R−(λ; ∆λ) ≡ {y ∈ Rk : (λ−∆λ)f0(y) ≤ f1(y) < λf0(y)}.
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We can now turn to the proof of Theorem 6.4.1: Part (i) is already covered
in Section 6.2. We shall discuss only Part (ii) as Part (iii) can be established by
similar arguments mutatis mutandi. This is left to the interested reader.

Fix η ≥ 0. With ∆η > 0, the very definition of R+(η; ∆η) implies the in-
equalities

η

∫
R+(η;∆η)

f0(y)dF (y) ≤
∫
R+(η;∆η)

f1(y)dF (y)

and ∫
R+(η;∆η)

f1(y)dF (y) ≤ (η + ∆η)

∫
R+(η;∆η)

f0(y)dF (y).

It then follows that

(η + ∆η) · PF(dη+∆η)− PF(dη)

∆η
≤ PD(dη+∆η)− PD(dη)

∆η

and
PD(dη+∆η)− PD(dη)

∆η
≤ η · PF(dη+∆η)− PF(dη)

∆η
.

If the right-derivative of η → PF(dη) exists, then

d+

dη
PF(dη) = lim

∆η↓0

PF(dη+∆η)− PF(dη)

∆η

and an easy sandwich argument shows that the limit

lim
∆η↓0

PD(dη+∆η)− PD(dη)

∆η

also exists. Therefore, the right-derivative of η → PD(dη) also exists and is given
by

d+

dη
PD(dη) = η · d

+

dη
PF(dη).
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6.8 Proofs of Lemmas 6.2.3 and 6.2.4
A proof of Lemma 6.2.3 Applying (6.1) (with λ = 0) yields

lim
η↓0

P [f1(Y ) ≥ ηf0(Y )|H = h] (6.27)

= P [f1(Y ) > 0, f0(Y ) > 0|H = h] + P [f0(Y ) = 0|H = h] , h = 0, 1.

Under Condition (A.1), the validity of (6.7) implies (6.13) as we use (6.27) with
h = 0. Under the additional Condition (A.2), (6.11) and (6.27), this time with
h = 1, lead to

lim
η↓0

P [f1(Y ) ≥ ηf0(Y )|H = 1] = P [f1(Y ) > 0|H = 1]

and (6.14) readily follows.

A proof of Lemma 6.2.4 Fix h = 0, 1. For each η > 0, we note that

P [dη(Y ) = 1|H = h]

= P [f1(Y ) ≥ ηf0(Y )|H = h]

= P [f1(Y ) ≥ ηf0(Y ), f0(Y ) > 0|H = h] + P [f1(Y ) ≥ 0, f0(Y ) = 0|H = h]

= P [f1(Y ) ≥ ηf0(Y ), f0(Y ) > 0|H = h] + P [f0(Y ) = 0|H = h] .

The usual monotonicity argument yields

lim
η→∞

P [dη(Y ) = 1|H = h]

= lim
η→∞

P [f1(Y ) ≥ ηf0(Y ), f0(Y ) > 0|H = h] + P [f0(Y ) = 0|H = h]

= P [f1(Y ) =∞, f0(Y ) > 0|H = h] + P [f0(Y ) = 0|H = h]

= P [f0(Y ) = 0|H = h] . (6.28)

First use (6.28) with h = 0: Under Condition (A.1) the consequence (6.7)
implies limη→∞ P [dη(Y ) = 1|H = 0] = 0. With h = 1, under the additional
Condition (A.2) we also get limη→∞ P [dη(Y ) = 1|H = 1] = 0. This completes
the proof of Lemma 6.2.4.
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6.9 Exercises

6.10 References



Chapter 7

The M -ary hypothesis testing
problem

As we shall see in this chapter and in the next one, the simple binary hypothe-
sis testing problem of Chapter 7 admits several important generalizations. The
version discussed here assumes that there are more than two hypotheses; it is of
particular relevance to the design of optimal receivers in digital modulation. In
this formulation, nature assumes M distinct states, labeled 0, 1, . . . ,M − 1, and is
now encoded in a rv H which take values in the discrete set {0, 1, . . . ,M − 1}. A
decision has to be made as to which of these M hypotheses is the correct one on
the basis of an observation Y which is statistically related to H .

7.1 Motivating examples

Digital communications

Manufacturing

7.2 The probabilistic model

To formulate the M -ary hypothesis testing problem we proceed very much as in
Chapter 2: With positive integer M ≥ 2, we are given M distinct probability
distribution functions F0, . . . , FM−1 on Rk, and a pmf p = (p0, . . . , pM−1) on

91
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{0, 1, . . . ,M − 1} with

0 ≤ pm ≤ 1, m = 0, 1, . . . ,M − 1 and
M−1∑
m=0

pm = 1.

The situation is summarized by

Hm : Y ∼ Fm, m = 0, 1, . . . ,M − 1. (7.1)

We construct a sample space Ω equipped with a σ-field of events F , and rvsH
and Y defined on it and taking values in {0, 1, . . . ,M − 1} and Rk, respectively.
Now the probability distribution functions F0, . . . , FM−1 have the interpretation
that

Fm(y) = P [Y ≤ y|H = m] ,
y ∈ Rk,

m = 0, 1, . . . ,M − 1.

The probability distribution of the rvH is specified by the pmf p = (p0, . . . , pM−1)
with

pm = P [H = m] , m = 0, 1, . . . ,M − 1.

Again, the conditional probability distributions of the observations given the
hypothesis and the probability distribution of H completely specify the joint dis-
tribution of the rvs H and Y : Indeed, for each m = 0, 1, . . . ,M − 1,

P [Y ≤ y, H = m] = P [Y ≤ y|H = m]P [H = m]

= pmFm(y), y ∈ Rk. (7.2)

The unconditional probability distribution function of the rv Y is easily deter-
mined to be

P [Y ≤ y] =
M−1∑
m=0

P [Y ≤ y,H = m] , y ∈ Rk

by the law of total probabilities, whence

G(y) ≡ P [Y ≤ y]

=
M−1∑
m=0

pmFm(y), y ∈ Rk. (7.3)

During the discussion, several assumptions will be enforced on the probability
distributions F0, . . . , FM−1. The most common assumption is denoted by (A.3)
for sake of convenience; it parallels Condition (A.1) made in the binary case:
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Condition (A.3): The probability distributions F0, . . . , FM−1 on Rk are absolutely
continuous with respect to some distribution F on Rk.

This is equivalent to saying that for eachm = 0, 1, . . . ,M−1, there exists a Borel
mapping fm : Rk → R+ such that

Fm(y) =

∫ y
−∞

fm(η)dF (η),
y ∈ Rk,

m = 0, 1, . . . ,M − 1.
(7.4)

We refer to these Borel mappings as probability density functions with respect to
F .

This condition is hardly constraining since we can always take F to be the
average of the M distributions F0, . . . , FM−1. i.e.,

F (y) ≡ 1

M

(
M−1∑
m=0

Fm(y)

)
, y ∈ Rk (7.5)

However, in most applications F is either Lebesgue measure on Rk or a counting
measure on some countable subset of Rk.

Under Condition (A.3), the unconditional probability distribution function G :
Rk → [0, 1] of the rv Y is automatically absolutely continuous with respect to the
distribution F on Rk: Indeed, we see from (7.4) and (7.3) that

G(y) =
M−1∑
m=0

pm

∫ y
−∞

fm(η)dF (η)

=

∫ y
−∞

(
M−1∑
m=0

pmfm(η)

)
dF (η)

=

∫ y
−∞

g(η)dF (η). y ∈ Rk (7.6)

with Borel mapping g : Rk → R+ given by

g(y) =
M−1∑
m=0

pmfm(y), y ∈ Rk. (7.7)

In other words, the unconditional probability distribution functionG : Rk → [0, 1]
admits g : Rk → R+ as probability density function with respect to F .
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7.3 Admissible tests
We begin with a formal definition of an admissible test in the context M -ary hy-
pothesis testing.

An admissible decision rule or test is any Borel mapping d : Rk → {0, 1, . . . ,M−
1}. The collection of all such admissible rules is still denoted by D.

Again the measurability requirement is imposed to guarantee that the mapping
d(Y ) : Ω → {0, 1, . . . ,M − 1} : ω → d(Y (ω)) is indeed a rv, i.e., {ω ∈ Ω :
d(Y (ω)) = m} is an event in F for all m = 0, 1, . . . ,M − 1.

A collection {C0, . . . , CM−1}of M subsets of Rk forms an M -ary Borel par-
tition of Rk if

(i) For each m = 0, 1, . . . ,M − 1, the set Cm is a Borel subset of Rk;
(ii) We have

Cm ∩ Ck = ∅, m 6= k
m, k = 0, 1, . . . ,M − 1

and
(iii) The condition

∪M−1
m=0Cm = Rk

holds.
The collection of allM -ary Borel partitions of Rk is denotedPM(Rk). Lemma

1.5.1 has the following analog in the context M -ary hypothesis testing.

Lemma 7.3.1 The set D of admissible decision rules is in one-to-one correspon-
dence with PM(Rk).

Proof. For every test d in D, the Borel sets defined by

Cm(d) ≡ {y ∈ Rk : d(y) = m}, m = 0, 1, . . . ,M − 1

are determined by d, and obviously form an M -ary Borel partition of Rk.
Conversely, consider an M -ary Borel measurable partition {C0, ..., CM−1} in

PM(Rk). With this partition we can associate the mapping dC0,...,CM−1
: Rk →

{0, . . . ,M − 1} given by

dC0,...,CM−1
(y) = m,

y ∈ Cm,
m = 0, . . . ,M − 1.
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By construction this mapping is an admissible test in D as we note that

Cm(dC0,...,CM−1
) = Cm, m = 0, . . . ,M − 1

by the fact that the collection {C0, ..., CM−1} is a partition of Rk.

7.4 The Bayesian formulation
The probabilistic model The Bayesian formulation assumes knowledge of the
prior distribution p = (p0, . . . , pM−1) of the rv H , and of the conditional distribu-
tions F0, . . . , FM−1 of the rv Y given H .

The optimization problem A cost is incurred for making decisions. This is
captured through the mapping C : {0, 1, . . . ,M − 1} × {0, 1, . . . ,M − 1} → R
with the interpretation that

C(m, `) =
Cost incurred for deciding `

when H = m
, `,m = 0, 1, . . . ,M − 1.

Using the admissible rule d in D incurs a cost C(H, d(Y )), but as for the binary
hypothesis testing problem, the value of the cost C(H, d(Y )) is not available, and
attention focuses on the expected cost J : D → R given by

J(d) ≡ E [C(H, d(Y ))] , d ∈ D.

Here as well, the Bayesian Problem PB is the minimization problem

PB : Minimize J(d) over d in D.

Its solution is any test d? in D such that

J(d?) ≤ J(d), d ∈ D. (7.8)

Any test d? in D which satisfies (7.8) is called a Bayesian test, and the value

J(d?) = inf
d∈D

J(d) = min
d∈D

J(d) (7.9)

is known as the Bayesian cost.
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The Bayesian test For each ` = 0, 1, . . . ,M − 1, we define the Borel mapping
h` : Rk → R given by

h`(y) ≡
M−1∑

m=0, m 6=`

pm (C(m, `)− C(m,m)) fm(y), y ∈ Rk. (7.10)

The next result identifies the Bayesian test; its proof parallels that given in Section
2.2 for the binary case but with some important differences. Details are given in
Section 7.5.

Theorem 7.4.1 Assume the absolute continuity condition (A.1) to hold. The test
d? : Rk → {0, 1, . . . ,M − 1} given by

d?(y) = arg min (` = 0, . . . ,M − 1 : h`(y)) , y ∈ Rk (7.11)

(with a lexicographic tiebreaker in the event of ties) is admissible and solves the
Bayesian Problem PB.

7.5 A proof of Theorem 7.4.1
A reduction step Fix a test d in D. The decomposition

1 [d(Y ) = H] + 1 [d(Y ) 6= H] = 1

holds so that

C(H, d(Y ))

= 1 [d(Y ) = H]C(H,H) + 1 [d(Y ) 6= H]C(H, d(Y ))

= C(H,H) + (C(H, d(Y ))− C(H,H))1 [d(Y ) 6= H] . (7.12)

Defining the auxiliary expected cost function Ĵ : D → R to be

Ĵ(d) = E [(C(H, d(Y ))− C(H,H))1 [d(Y ) 6= H]] , d ∈ D (7.13)

we again readily conclude that

J(d) = E[C(H,H)] + Ĵ(d), d ∈ D. (7.14)

Therefore, solving PB is equivalent to solving the auxiliary problem P̂B where

P̂B : Minimize Ĵ(d) over d in D.
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Preparatory computations Fix d in D. From (7.14) we note that

Ĵ(d) = E [(C(H, d(Y ))− C(H,H))1 [d(Y ) 6= H]]

=
M−1∑
m=0

(
M−1∑

`=0, ` 6=m

E [(C(m, `)− C(m,m))1 [H = m, d(Y ) = `]]

)

=
M−1∑
m=0

(
M−1∑

`=0, ` 6=m

(C(m, `)− C(m,m))P [H = m, d(Y ) = `]

)

=
M−1∑
m=0

(
M−1∑

`=0, ` 6=m

(C(m, `)− C(m,m))P [d(Y ) = `|H = m] pm

)

=
M−1∑
m=0

(
M−1∑

`=0, ` 6=m

pm (C(m, `)− C(m,m))

∫
C`(d)

fm(y)dF (y)

)
.

Interchanging the order of summation we get

Ĵ(d) =
M−1∑
`=0

(
M−1∑

m=0, m6=`

pm (C(m, `)− C(m,m))

∫
C`(d)

fm(y)dF (y)

)

=
M−1∑
`=0

∫
C`(d)

(
M−1∑

m=0, m 6=`

pm (C(m, `)− C(m,m)) fm(y)

)
dF (y)

=
M−1∑
`=0

∫
C`(d)

h`(y)dF (y) (7.15)

where for each ` = 0, 1, . . . ,M − 1, the mapping h` : Rk → R is given by (7.10).

Solving P̂B Define the mapping h : Rk → R given by

h(y) ≡ min
`=0,1,...,M−1

h`(y), y ∈ Rk. (7.16)

where for each ` = 0, 1, . . . ,M − 1, the mapping h` : Rk → R is given by (7.10).
The following facts

h(y) = hd?(y)(y), y ∈ Rk (7.17)

and

h(y) ≤ h`(y),
` = 0, 1, . . . ,M − 1,

y ∈ Rk (7.18)
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are simple consequences of the definition (7.11) of d?.
Pick an arbitrary test in D. Using the expression (7.15) we get

J(d)− J(d?)

= Ĵ(d)− Ĵ(d?)

=
M−1∑
`=0

∫
C`(d)

h`(y)dF (y)−
M−1∑
`=0

∫
C`(d?)

h`(y)dF (y)

≥
M−1∑
`=0

∫
C`(d)

h(y)dF (y)−
M−1∑
`=0

∫
C`(d?)

h`(y)dF (y)

=
M−1∑
`=0

∫
C`(d)

h(y)dF (y)−
M−1∑
`=0

∫
C`(d?)

h(y)dF (y)

=

∫
Rk
h(y)dF (y)−

∫
Rk
h(y)dF (y)

= 0. (7.19)

The inequality above and the equality that follows are consequences of (7.17) and
(7.18), respectively. The last two steps used the fact that the collection {C0(d), . . . , CM−1(d)}
(resp. {C0(d?), . . . , CM−1(d?)}) forms an M -ary Borel partition of Rk. In partic-
ular, this observation implies

M−1∑
`=0

∫
C`(d)

h(y)dF (y) =

∫
Rk
h(y)dF (y)

and
M−1∑
`=0

∫
C`(d?)

h(y)dF (y) =

∫
Rk
h(y)dF (y).

From (7.19) it follows that

J(d)− J(d?) ≥ 0, d ∈ D,

and the optimality of d? is now established.



7.6. THE PROBABILITY OF ERROR CRITERION 99

7.6 The probability of error criterion
When C takes the form

C(m, k) = 1 [` 6= m] , m, ` = 0, 1, . . . ,M − 1,

the expected cost reduces to the probability of error criterion given by

PE(d) = P [d(Y ) 6= H] , d ∈ D.

The Bayesian test d? : Rk → {0, 1, . . . ,M − 1} given by (7.11) now takes the
following form: For each ` = 0, . . . ,M − 1, the mapping h` : Rk → R is now
given by

h`(y) =
M−1∑

m=0, m 6=`

pmfm(y), y ∈ Rk.

But the probability distribution function G : Rk → [0, 1] of the observation rv
Y is given by (7.3), and under condition (A.1) it has probability density function
g : Rk → R+ given by (7.7). Therefore, for each ` = 0, . . . ,M − 1, we have

h`(y) = g(y)− p`f`(y), y ∈ Rk

and the test d? : Rk → {0, 1, . . . ,M − 1} can be rewritten more compactly as

d?(y) = arg max (` = 0, . . . ,M − 1 : p`f`(y)) , y ∈ Rk (7.20)

with a lexicographic tiebreaker in the event of ties.

The ML test When all the hypotheses are equally likely, namely

p0 = . . . = pM−1 =
1

M
,

then (7.20) becomes

d?(y) = arg max (` = 0, . . . ,M − 1 : f`(y)) , y ∈ Rk (7.21)

with a lexicographic tiebreaker in the event of ties, so that

d?(y) = m iff fm(y) = max (f`(y), ` = 0, 1, . . . ,M − 1) (7.22)

with a lexicographic tiebreaker in the event of ties.
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The MAP computer Bayes’s Theorem gives

P [H = `|Y = y] =
p`f`(y)∑M−1

m=0 pmfm(y)
,

` = 0, 1, . . . ,M − 1,
y ∈ Rk.

This allows rewriting the test d? : Rk → {0, 1, . . . ,M − 1} in the more compact
form

d?(y) = arg max (` = 0, . . . ,M − 1 : P [H = `|Y = y]) , y ∈ Rk (7.23)

with a lexicographic tiebreaker in the event of ties. As with the binary case, we
refer to this rule as the Maximum A Posteriori computer.

7.7 The Gaussian case
Consider the case where the rv Y is Gaussian under each hypothesis, namely

Hm : Y ∼ N(am,Rm). m = 0, 1, . . . ,M − 1. (7.24)

where a0, . . . ,aM−1 are elements in Rk, and the k×k symmetric matricesR0, . . . ,RM−1

are positive definite (thus invertible). Condition (A.3) holds with respect to Lebesgue
measure.

Throughout the M pairs (a0,R0), . . . , (aM−1,RM−1) are assumed to be dis-
tinct so that the probability density function f0, . . . , fM−1 : Rk → R+ are dis-
tinct. Indeed, for each m = 0, . . . ,M − 1, the probability density function
fm : Rk → R+ is given by

fm(y) =
1√

(2π)k detRm

e−
1
2
Qm(y), y ∈ Rk

with
Qm(y) = (y − am)′R−1

m (y − am), y ∈ Rk.

Thus, for each ` = 0, . . . ,M − 1, we have

h`(y)

=
M−1∑

m=0, m6=`

pm (C(m, `)− C(m,m))
1√

(2π)k detRm

e−
1
2
Qm(y), y ∈ Rk.
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For the probability of error criterion, for each ` = 0, . . . ,M − 1, this last
expression becomes

h`(y) =
M−1∑

m=0, m 6=`

pm√
(2π)k detRm

e−
1
2
Qm(y)

= g(y)− p`√
(2π)k detR`

e−
1
2
Q`(y), y ∈ Rk. (7.25)

The equal covariance case When

R0 = . . . = RM−1 ≡ R,

additional simplifications occur: For each ` = 0, . . . ,M − 1, we find

h`(y)

=
1√

(2π)k detR

M−1∑
m=0, m 6=`

pm (C(m, `)− C(m,m))√
(2π)k detR

e−
1
2
Q(y−am), y ∈ Rk.

with
Q(y) = y′R−1y, y ∈ Rk.

For the probability of error criterion, for each ` = 0, . . . ,M − 1, we find

h`(y) =
M−1∑

m=0, m6=`

pm√
(2π)k detR

e−
1
2
Q(y−a)

= g(y)− p`√
(2π)k detR

e−
1
2
Q(y−a`), y ∈ Rk. (7.26)

Writing

d(p;y) = log p− 1

2
Q(y),

p ∈ (0, 1)
y ∈ Rk,

the Bayesian test d? : Rk → {0, . . . ,M − 1} now reduces to

d?(y) = m iff
d(pm;y − am)
= max (d(p`;y − a`), ` = 0, 1, . . . ,M − 1)

with a lexicographic tiebreaker in the event of ties.

7.8 Exercises
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Chapter 8

Composite hypothesis testing
problems

8.1 A motivating example
Consider the following problem of deciding between two hypotheses. Under the
null hypothesis H0, the observation Y is an Rk-valued rv which is normally dis-
tributed with mean vector m and covariance matrix R which are both known.
Under the alternative hypothesis H1, the Rk-valued rv Y is normally distributed
with mean vector θ and covariance matrix R where θ 6= m is only known to lie
in a subset Θ1 of Rk, and is otherwise unspecified. We assume that m is not an
element of Θ1.

This problem of testing for the binary hypothesis H0 vs. H1 can also be inter-
preted as one of deciding between the hypotheses

H1 : {Hθ, θ ∈ Θ1}
H0 : Y ∼ N(m,R).

(8.1)

where for each θ ∈ Rk, we write

Hθ : Y ∼ N(θ,R).

In such situations, when Θ1 is not reduced to a singleton, the alternative hypothesis
can be viewed as a composite hypothesis {Hθ, θ ∈ Θ1}. We emphasize that we
seek to decide between H0 and H1, or equivalently, between H0 and {Hθ, θ ∈
Θ1}; the precise value of θ is not thought

103
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8.2 The probabilistic model
More generally consider two non-empty Borel subsets Θ0 and Θ1 of Rp for some
positive integer p. Assume that

Θ0 ∩Θ1 = ∅.

We shall set
Θ = Θ0 ∪Θ1.

so that the pair Θ0 and Θ1 forms a Borel partition of Θ.
Given is a family of probability distributions {Fθ,θ ∈ Θ} on Rk. For mathe-

matical reasons, it is required that the mapping Θ×Rk → [0, 1] : (θ,y)→ Fθ(y)
be Borel measurable. This condition is satisfied in all applications of interest.

We are given a measurable space (Ω,F). The state of nature is modeled by
means of a rv ϑ : Ω → Θ defined on (Ω,F). The observation is given by an
Rk-valued rv Y : Ω → Rk defined on the same measurable space (Ω,F). with
the interpretation that

P [Y ≤ y|ϑ = θ] = Fθ(y),
y ∈ Rk,
θ ∈ Θ.

(8.2)

The state of nature and the corresponding observation are summarized as

Hθ : Y ∼ Fθ (8.3)

with θ ranging in Θ.
The composite binary hypothesis testing problem is then the problem of de-

ciding between the two composite hypotheses H0 = {Hθ, θ ∈ Θ0} and H1 =
{Hθ, θ ∈ Θ1} on the basis of the observation Y .

If either Θ0 or Θ1 is reduced to a single element, the corresponding hypothesis
is termed simple. Obviously the problems of simple binary hypothesis testing dis-
cussed in Chapters 1–5 obtains when each of the sets Θ0 and Θ1 contains exactly
one element.

The composite binary hypothesis testing problem is concisely denoted by

H1 : Y ∼ Fθ, θ ∈ Θ1

H0 : Y ∼ Fθ, θ ∈ Θ0
(8.4)

Sometimes, once the family of probability distributions {Fθ,θ ∈ Θ} has been
specified, the notation is simplified to read

H1 : θ ∈ Θ1

H0 : θ ∈ Θ0
(8.5)
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As in earlier chapters, the discussion will require that certain assumptions are
enforced. Condition (A.4) given next parallels Condition (A.1) given in the binary
case and Condition (A.3) given in the M -ary case.

Condition (A.4): For each θ in Θ, the probability distribution Fθ on Rk is abso-
lutely continuous with respect to some distribution F on Rk.

This is equivalent to requiring that for each θ in Θ, there exists a Borel mapping
fθ : Rk → R+ such that

Fθ(y) =

∫ y
−∞

fθ(η)dF (η), y ∈ Rk. (8.6)

For mathematical reasons we require that the mapping

Θ× Rk → R+ : (θ,y)→ fθ(y)

be Borel measurable. This condition is satisfied in all applications of interest.
In a manner reminiscent of the parameter estimation problem of Chapter 1

there are two possible cases, depending on whether or not θ is modeled as a rv;
these are the Bayesian and non-Bayesian cases, respectively.

8.3 The Bayesian case
In some settings it is appropriate to imagine that the value of the parameter θ is
indeed through some randomization mechanism. Thus, assume that there exists a
Θ-valued rv ϑ defined on the measurable space (Ω,F), and let K : Rp → [0, 1]
denote its probability distribution. Thus,

P [ϑ ≤ t] = K(t), t ∈ Rp.

The requirement that P [ϑ ∈ Θ] = 1 is equivalent to∫
Θc
dK(t) = 0.

As we now show, this composite binary hypothesis testing problem can be
reformulated as a simple binary hypothesis testing problem. To do so we define
the {0, 1}-valued rv H given by

H ≡ 1 [ϑ ∈ Θ1] .
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Note that

p = P [H = 1]

= P [ϑ ∈ Θ1]

=

∫
Θ1

dK(t). (8.7)

In a similar manner, since 1−H = 1 [ϑ ∈ Θ0], we conclude that

1− p = P [H = 0]

= P [ϑ ∈ Θ0]

=

∫
Θ0

dK(t). (8.8)

For each h = 0, 1, the conditional probability distribution of Y given that
H = h can be calculated as

Fh(y) ≡ P [Y ≤ y|H = h]

=
P [Y ≤ y, H = h]

P [H = h]

=
P [Y ≤ y, ϑ ∈ Θh]

P [ϑ ∈ Θh]

=
E [E [1 [Y ≤ y] |ϑ]1 [ϑ ∈ Θh]]

P [ϑ ∈ Θh]

=
E [P [Y ≤ y|ϑ]1 [ϑ ∈ Θh]]

P [ϑ ∈ Θh]

=
E [Fϑ(y)1 [ϑ ∈ Θh]]

P [ϑ ∈ Θh]

=

∫
Θh
Ft(y)dK(t)∫
Θh
dK(t)

, y ∈ Rk. (8.9)

Fix h = 0, 1 and y in Rk. Under Assumption (A.4) we note that∫
Θh

Ft(y)dK(t) =

∫
Θh

(∫ y
−∞

ft(η)dF (η)

)
dK(t)

=

∫ y
−∞

(∫
Θh

ft(η)dK(t)

)
dF (η) (8.10)
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by Tonelli’s Theorem, whence

Fh(y) =

∫ y
−∞

(∫
Θh
ft(η)dK(t)∫
Θh
dK(t)

)
dF (η). (8.11)

Thus, Condition (A.1) holds for F0 and F1 with respect to F with probability
density functions f0, f1 : Rk → R+ given by

fh(y) ≡
∫

Θh
ft(y)dK(t)∫
Θh
dK(t)

,
h = 0, 1,
y ∈ Rk.

At this point the reader might expect the corresponding tests {dη, η ≥ 0} to
play a prominent role where for each η ≥ 0, the test dη : Rk → {0, 1} is given by

dη(y) = 0 iff f1(y) < ηf0(y)

iff

∫
Θ1
ft(y)dK(t)∫
Θ1
dK(t)

< η

∫
Θ0
ft(y)dK(t)∫
Θ0
dK(t)

. (8.12)

In Section 8.9 we will see that this is not the case.

8.4 The Bayesian cost problem
In the Bayesian setup described in Section 8.3, we proceed as in Chapter 2 by in-
troducing a cost incurred for making decisions. This is quantified by the mapping
C : Θ× {0, 1} → R with the interpretation that

C(θ,d) =
Cost incurred for deciding d

when ϑ = θ
,

θ ∈ Θ
d = 0, 1.

We require that for each d = 0, 1, the mapping Θ → R : θ → C(θ,d) is Borel
measurable. This guarantees that for every test d : Rk → {0, 1}, C(ϑ,d(Y )) is a
rv defined on (Ω,F). To avoid unnecessary technical difficulties (and for ease of
exposition) we further assume that

0 ≤ C(θ,d) ≤ B,
d = 0, 1
ϑ ∈ Θ

for some scalarB. Together these requirements ensure that the expectation E [C(ϑ,d(Y ))]
is well defined and finite.
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With any admissible test d : Rk → {0, 1}, we define the expected cost

J(d) = E [C(ϑ, d(Y ))] . (8.13)

As before, the Bayesian Problem PB is the minimization problem

PB : Minimize J(d) over d in D.

This amounts to finding an admissible test d? in D such that

J(d?) ≤ J(d), d ∈ D. (8.14)

Any admissible test d? which satisfies (8.14) is called a Bayesian test, and the
value

J(d?) = inf
d∈D

J(d) = min
d∈D

J(d) (8.15)

is known as the Bayesian cost.

In Section 8.3 we have shown that the Bayesian formulation of the composite
binary hypothesis problem can be recast as a simple binary hypothesis problem.
However, as discussed in Section 8.9, in general it is not possible to write

J(d) = E [CNew(H, d(Y ))] , d ∈ D

for some mapping CNew : {0, 1}×{0, 1} → R (possibly derived from the original
cost function C : Θ × {0, 1} → R). This already suggests that the Bayesian test
may not belong to the class of tests {dη, η ≥ 0} introduced at (8.12).

Solving the Bayesian Problem PB In view of these comments a different ap-
proach is needed. Fix d in D. A standard preconditioning argument gives

J(d) = E [C(ϑ, d(Y ))]

= E [E [C(ϑ, d(Y ))|Y ]]

= E [E [1 [d(Y ) = 0]C(ϑ, d(Y )) + 1 [d(Y ) = 0]C(ϑ, d(Y ))|Y ]]

= E [E [1 [d(Y ) = 0]C(ϑ, 0) + 1 [d(Y ) = 1]C(ϑ, 1)|Y ]]

= E [1 [d(Y ) = 0]E [C(ϑ, 0)|Y ] + 1 [d(Y ) = 1]E [C(ϑ, 1)|Y ]]

= E
[
1 [d(Y ) = 0] Ĉ(0,Y ) + 1 [d(Y ) = 1] Ĉ(1,Y )

]
(8.16)
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where we have introduced the Borel mapping Ĉ : {0, 1} × Rk → R given by

Ĉ(d,y) ≡ E [C(ϑ, d)|Y = y] ,
d = 0, 1
y ∈ Rk.

Theorem 8.4.1 Under the foregoing assumptions, the test d? : Rk → {0, 1} de-
fined by

d?(y) =


0 if Ĉ(0,y) < Ĉ(1,y)

1 if Ĉ(1,y) ≤ Ĉ(0,y)

(8.17)

is admissible and solves the Bayesian Problem PB.

Note that the result does not even depend on Assumption (A.4). Moreover, when
Ĉ(0,y) = Ĉ(1,y), we may select d?(y) = 0 or d?(y) = 1 somewhat arbitrarily
as long as the resulting mapping Rk → {0, 1} is Borel measurable.

Proof. The admissibility of d? follows from the Borel measurability of the map-
ping Ĉ : {0, 1}×Rk → R. To show its optimality note that for each test d in D it
holds that

J(d) = E
[
1 [d(Y ) = 0] Ĉ(0,Y ) + 1 [d(Y ) = 1] Ĉ(1,Y )

]
= E

[
Ĉ(1,Y )

]
+ E

[
1 [d(Y ) = 0]

(
Ĉ(0,Y )− Ĉ(1,Y )

)]
= E

[
Ĉ(1,Y )

]
+ E

[
1 [Y ∈ C(d)]

(
Ĉ(0,Y )− Ĉ(1,Y )

)]
where as usual the Borel set C(d) is given by (1.12). The conclusion readily
follows by arguments similar to the ones used for the proof of Theorem 2.2.1:
Indeed, we have

J(d)− J(d?)

= E
[
(1 [Y ∈ C(d)]− 1 [Y ∈ C(d?)])

(
Ĉ(0,Y )− Ĉ(1,Y )

)]
= E

[
1 [Y ∈ C(d)\C(d?)] ·

(
Ĉ(0,Y )− Ĉ(1,Y )

)]
− E

[
1 [Y ∈ C(d?)\C(d)] ·

(
Ĉ(0,Y )− Ĉ(1,Y )

)]
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As we note that

C(d?) ≡
{
y ∈ Rk : Ĉ(0,y) < Ĉ(1,y)

}
it is plain that

E
[
1 [Y ∈ C(d)\C(d?)] ·

(
Ĉ(0,Y )− Ĉ(1,Y )

)]
≥ 0

and
E
[
1 [Y ∈ C(d?)\C(d)] ·

(
Ĉ(0,Y )− Ĉ(1,Y )

)]
≤ 0.

It follows that J(d?) ≤ J(d) and the optimality of d? is now established.

8.5 The non-Bayesian case – A generalized Neyman-
Pearson formulation

In this formulation θ is an unknown parameter lying in Θ, and an approach à
la Neyman-Pearson seems warranted. Since composite hypotheses are now in-
volved, earlier definitions given in Chapter 4 need to be modified.

Consider a test d : Rk → {0, 1} in D that tests the null hypothesis H0 against the
alternative H1. We define its size to be the quantity

αΘ0(d) ≡ sup
θ∈Θ0

Pθ [d(Y ) = 1] . (8.18)

With θ in Θ0, the probability Pθ [d(Y ) = 0] can be interpreted as the probability
of false alarm under the test d given that the hypothesis Hθ is indeed correct.

Fix α in [0, 1]. Let DΘ0,α denote the collection of all tests in D whose size is
no greater than α, namely,

DΘ0,α ≡ {d ∈ D : αΘ0(d) ≤ α} . (8.19)

When Θ0 is reduced to a singleton θ0 we write Dθ0,α
instead of D{θ0},α, so that

Dθ0,α
≡ {d ∈ D : Pθ0 [d(Y ) = 1] ≤ α} .
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The inclusion
DΘ0,α ⊆ Dθ0,α

, θ0 ∈ Θ0 (8.20)

always holds – It is also easy to see that

DΘ0,α = ∩θ0∈Θ0
Dθ0,α

.

When dealing with composite hypotheses, the generalized Neyman-Pearson
formulation takes the following form:

For α in [0, 1], find a test dUMP(α) : Rk → {0, 1} in DΘ0,α which is optimal in the
sense that

Pθ [d(Y ) = 1] ≤ Pθ [dUMP(α)(Y ) = 1] ,
θ ∈ Θ1,
d ∈ DΘ0,α.

(8.21)

Such a test dUMP(α), when it exists, is called a Uniformly Most Powerful (UMP)
test of size α for testing for testing H0 : Hθ, θ ∈ Θ0 against H1 : Hθ, θ ∈ Θ1,

A natural question is whether UMP tests exist and when they do, how does one go
about identifying them. The discussion in Section 8.6 below provides some useful
pointers concerning these issues.

8.6 Searching for UMP tests
If a UMP test dUMP(α) of size α did exist for testing H0 : Hθ, θ ∈ Θ0 against
H1 : Hθ, θ ∈ Θ1, then by definition dUMP(α) is a test in DΘ0,α, hence in Dθ0,α

for each θ0 in Θ0. However, in general the optimality property (8.21) does not
necessarily imply

Pθ [d(Y ) = 1] ≤ Pθ [dUMP(α)(Y ) = 1] ,
θ ∈ Θ1,
d ∈ Dθ0,α

(8.22)

since a priori the inclusion (8.20) may be strict.
Were it the case that DΘ0,α = Dθ0,α

for some θ0 in Θ0, then (8.22) would
hold (as it now coincides with (8.21)), and the test dUMP(α) would therefore act
as a Neyman-Pearson test dNP(α;θ0,θ) of size α for testing H0 ≡ Hθ0

against
H1 ≡ Hθ for each θ in Θ1.

There is of course one situation when the equality DΘ0,α = Dθ0,α
obviously

holds, namely whenH0 is a simple hypothesis so that Θ0 is reduced to a singleton,



112 CHAPTER 8. COMPOSITE HYPOTHESIS TESTING PROBLEMS

say Θ0 = {θ0} for some θ0 not in Θ1. The discussion above then implies that any
UMP test dUMP(α), if one exists, for testingH0 ≡ Hθ0

againstH1 : Hθ, θ ∈ Θ1,
must satisfy

Pθ [dUMP(α)(Y ) = 1]

= Pθ [dNP(α;θ0,θ))(Y ) = 1] , θ ∈ Θ1. (8.23)

This is clearly a non-trivial restriction on the problem, and already suggests that
UMP tests may not always exist evenH0 is a simple hypothesis – This is discussed
on an example in Section 8.8.

Nevertheless, when H0 is a simple hypothesis, these observations do point to
an obvious strategy for finding UMPs: For each θ in Θ1, determine the Neyman-
Pearson test dNP(α;θ0,θ) of size α for testingH0 ≡ Hθ0

againstH1 ≡ Hθ. If its
implementation does not require explicit knowledge of θ, then the setC(dNP(α;θ0,θ))
will be independent of θ in the sense that there exists a Borel subset C of Rk such
that C(dNP(α;θ0,θ)) = C for every θ in Θ1. The test d? : Rk → {0, 1} defined
by

d?(y) =


0 if y ∈ C

1 if y /∈ C
is an admissible test in Dθ0,α

since by construction

Pθ0
[d?(Y ) = 1] = Pθ0

[Y /∈ C]

= Pθ0
[Y /∈ C(dNP(α;θ0,θ))]

= Pθ0
[dNP(α;θ0,θ)(Y ) = 1] = α. (8.24)

By the same arguments we also conclude that

Pθ [d?(Y ) = 1] = Pθ [dNP(α;θ0,θ)(Y ) = 1] , θ ∈ Θ1 (8.25)

and we conclude that d? is a UMP test for of size α for testing for testing H0 ≡
Hθ0

against H1 : Hθ, θ ∈ Θ1,
When H0 is a composite hypothesis, finding a UMP test can be quite tricky. A

first natural step would consist in finding the Neyman-Pearson test dNP(α;θ0,θ)
of size α to test H0 ≡ Hθ0

against H1 ≡ Hθ with θ0 and θ1 arbitrary in Θ0 and
Θ1, respectively. In some cases exploring the structure of these tests may lead to
the UMP test of size α.

These ideas are illustrated through an example in Section 8.7 and Section 8.8.
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8.7 An example
The discussion of Section 8.5 will be illustrated in the case when Θ ⊆ R and the
probability distributions {Fθ, θ ∈ R} are unit-variance Gaussian distributions on
R: Thus, with θ arbitrary in R,

Hθ : Y ∼ N(θ, 1)

so that Fθ admits the density fθ : R→ R+ given by

fθ(y) =
1√
2π
e−

1
2

(y−θ)2 , y ∈ R.

With distinct θ0 and θ1 in R, consider the Neyman-Pearson formulation for the
binary hypothesis problem

H1 : Y ∼ N(θ1, 1)
H0 : Y ∼ N(θ0, 1)

(8.26)

As shown in Section 5.5 this problem has a complete solution: Fix λ > 0. The
test dλ : R→ {0, 1} takes the form

dλ(y) = 0 iff
1√
2π
e−

1
2

(y−θ1)2 < λ
1√
2π
e−

1
2

(y−θ0)2

iff (y − θ0)2 < 2 log λ+ (y − θ1)2

iff 2y(θ1 − θ0) < 2 log λ+ θ2
1 − θ2

0. (8.27)

For notational convenience we shall write

Tλ(θ0; θ1) ≡ log λ

θ1 − θ0

+
θ1 + θ0

2
.

Two cases arise: If θ0 < θ1, then

dλ(y) = 0 iff y < Tλ(θ0; θ1) (8.28)

and by standard arguments we get

Pθ0 [dλ(Y ) = 1] = Pθ0 [Y ≥ Tλ(θ0; θ1)]

= Pθ0
[
Y − θ0 ≥

log λ

θ1 − θ0

+
θ1 − θ0

2

]
= 1− Φ

(
log λ

θ1 − θ0

+
θ1 − θ0

2

)
. (8.29)
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If θ1 < θ0, then

dλ(y) = 0 iff y > Tλ(θ0; θ1), (8.30)

and this time we find

Pθ0 [dλ(Y ) = 1] = Pθ0 [Y ≤ Tλ(θ0; θ1)]

= Pθ0
[
Y − θ0 ≤

log λ

θ1 − θ0

+
θ1 − θ0

2

]
= Φ

(
log λ

θ1 − θ0

+
θ1 − θ0

2

)
. (8.31)

Fix α in (0, 1). The Neyman-Pearson test of size α for testing Hθ1 against
Hθ0 is the test dλ(θ1,θ0;α) where λ(θ1, θ0;α) is that value of λ > 0 determined by
Pθ0 [dλ(Y ) = 1] = α.

If θ0 < θ1, then
log λ(θ1, θ0;α)

θ1 − θ0

+
θ1 − θ0

2
= Φ−1(1− α),

and the test dλ(θ1,θ0;α) is given by

dλ(θ1,θ0;α)(y) = 0 iff y < θ0 + Φ−1 (1− α) .

If θ1 < θ0, then
log λ(θ1, θ0;α)

θ1 − θ0

+
θ1 − θ0

2
= Φ−1(α),

and the test dλ(θ1,θ0;α) is given by

dλ(θ1,θ0;α)(y) = 0 iff y > θ0 + Φ−1 (α) .

8.8 UMP tests for the example
We now consider four different situations, each associated with different sets Θ0

and Θ1.

Case I: Θ0 = {θ0} and Θ1 = (θ0,∞) The test dλ(θ1,θ0;α) given by

dλ(θ1,θ0;α)(y) = 0 iff y < θ0 + Φ−1 (1− α)

can be implemented without explicit knowledge of θ1. By the discussion of Sec-
tion 8.5, it is plain that a UMP test dUMP(α) of size α exists with

C(dUMP(α)) =
{
y ∈ R : y < θ0 + Φ−1 (1− α)

}
=
(
−∞, θ0 + Φ−1 (1− α)

)
.
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Case II: Θ0 = {θ0} and Θ1 = (−∞, θ0) Here, the test dλ(θ1,θ0;α) given by

dλ(θ1,θ0;α)(y) = 0 iff y > θ0 + Φ−1 (α) .

can also be implemented without explicit knowledge of θ1. Again, the discussion
of Section 8.5 shows that a UMP test dUMP(α) of size α exists with

C(dUMP(α)) =
{
y ∈ R : y > θ0 + Φ−1 (α)

}
=
(
θ0 + Φ−1 (α) ,∞

)
.

Case III: Θ0 = {θ0} and Θ1 = R − {θ0} It is plain from the discussion in
Cases I and II that a UMP test dUMP(α) does not exist.

Case IV: Θ0 = (−∞, θ0] and Θ1 = (θ0,∞) We begin by picking σ arbitrary
in Θ0, so σ ≤ θ0. Consider now the composite hypothesis testing problem

H1 : Y ∼ N(θ, 1), θ ∈ Θ1

H0 : Y ∼ N(σ, 1)
(8.32)

The discussion in Case I also shows that a UMP test of size α exists; it was
identified as the test d?(α;σ) : Rk → {0, 1} given by

d?(α;σ)(y) = 0 iff y < σ + Φ−1(1− α).

This means that for every θ in Θ1, it holds that

Pθ [d?(α;σ)(Y ) = 1] = Pθ
[
Y ≥ σ + Φ−1(1− α)

]
≥ Pθ [d(Y ) = 1] (8.33)

for every test d in Dσ,α, i.e., for every test in D such that Pσ [d(Y ) = 1] ≤ α.
Now recall that DΘ0,α is contained in Dσ,α since

DΘ0,α =

{
d ∈ D : sup

σ′≤θ0
Pσ′ [d(Y ) = 1] ≤ α

}
.

Therefore, for every θ in Θ1, we have

Pθ [d(Y ) = 1] ≤ Pθ
[
Y ≥ σ + Φ−1(1− α)

]
, d ∈ DΘ0,α

by virtue of (8.33) applied to the smaller class DΘ0,α of tests. Thus, with σ ≤ θ0,
the test d?(α;σ) would be the UMP test dUMP(α) we seek if only it belonged to
DΘ0,α.
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Next we show that σ can be selected in Θ0 such that the test d?(α;σ) is indeed
an element of DΘ0,α, in which case it is the desired UMP test dUMP(α). We shall
prove that this happened if and only if σ = θ0: For arbitrary σ and σ′ in R we
always have

F (σ, σ′) ≡ Pσ′
[
Y ≥ σ + Φ−1(1− α)

]
= Pσ′

[
Y ≥ σ′ + (σ − σ′) + Φ−1(1− α)

]
= Pσ′

[
Y − σ′ ≥ (σ − σ′) + Φ−1(1− α)

]
= 1− Φ

(
(σ − σ′) + Φ−1(1− α)

)
.

With σ in R given, we see that the mapping R→ [0, 1] : σ′ → F (σ, σ′) is strictly
increasing with

F (σ, σ) = α

since Φ (Φ−1(1− α)) = 1 − α, whence F (σ, σ) < α if σ′ < σ and α < F (σ, σ)
if σ < σ′. It now follows that

sup
σ′≤θ0

Pσ′ [d?(α;σ)(Y ) = 1] > α if σ < θ0

while
sup
σ′≤θ0

Pσ′ [d?(α; θ0)(Y ) = 1] = α.

This shows that the test d?(α; θ0) is indeed an element ofDΘ0,α, and therefore can
be used to implement the desired UMP test dUMP(α).

8.9 Reformulating the Bayesian cost
Fix d in D. By iterated conditioning we conclude that

J(d) = E [C(ϑ, d(Y ))]

= E [E [E [C(ϑ, d(Y ))|ϑ] |H]] (8.34)

with

E [C(ϑ, d(Y ))|ϑ]

= C(ϑ, 0) · P [d(Y ) = 0|ϑ] + C(ϑ, 1) · P [d(Y ) = 1|ϑ]

= C(ϑ, 0) · P [Y ∈ C(d)|ϑ] + C(ϑ, 1) · P [Y /∈ C(d)|ϑ]

= C(ϑ, 0)

∫
C(d)

fϑ(y)dF (y) + C(ϑ, 1)

∫
C(d)c

fϑ(y)dF (y). (8.35)
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On the other hand, for each h = 0, 1, we note as before that

P [ϑ ≤ t|H = h] =
P [ϑ ≤ t, H = h]

P [H = h]

=
P [ϑ ≤ t,ϑ ∈ Θh]

P [ϑ ∈ Θh]

=

∫
(−∞,t]∩Θh

dK(τ )∫
Θh
dK(τ )

=

∫ t
−∞ 1 [τ ∈ Θh] dK(τ )∫

Θh
dK(τ )

, t ∈ Rp. (8.36)

Therefore, the conditional distribution of ϑ given H = h is absolutely continuous
with respect to the probability distribution K : Rp → [0, 1], the corresponding
probability density function kh : Rp → R+ being given by

kh(t) =
1∫

Θh
dK(τ )

· 1 [t ∈ Θh] , t ∈ Rp.

Next, we get

E [E [C(ϑ, d(Y ))|ϑ] |H = h]

= E
[
C(ϑ, 0)

∫
C(d)

fϑ(y)dF (y) + C(ϑ, 1)

∫
C(d)c

fϑ(y)dF (y)
∣∣∣H = h

]
=

∫
Rp

(
C(t, 0)

∫
C(d)

ft(y)dF (y) + C(t, 1)

∫
C(d)c

ft(y)dF (y)

)
kh(t)dK(t)

=

∫
C(d)

(∫
Rp
C(t, 0)ft(y)kh(t)dK(t)

)
dF (y)

+

∫
C(d)c

(∫
Rp
C(t, 1)ft(y)kh(t)dK(t)

)
dF (y)

=

∫
C(d)

∫
Θh
C(t, 0)ft(y)dK(t)∫

Θh
dK(t)

dF (y) +

∫
C(d)c

∫
Θh
C(t, 1)ft(y)dK(t)∫

Θh
dK(t)

dF (y).

Next we observe that

J(d) = E [C(ϑ, d(Y ))]

= E [E [C(ϑ, d(Y ))|ϑ] |H = 0]P [H = 0]

+ E [E [C(ϑ, d(Y ))|ϑ] |H = 1]P [H = 1] ,
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with elementary algebra showing that

J(d) = E [C(ϑ, d(Y ))]

=

(∫
C(d)

∫
Θ0
C(t, 0)ft(y)dK(t)∫

Θ0
dK(t)

dF (y)

)
· P [H = 0]

+

(∫
C(d)c

∫
Θ0
C(t, 1)ft(y)dK(t)∫

Θ0
dK(t)

dF (y)

)
· P [H = 0]

+

(∫
C(d)

∫
Θ1
C(t, 0)ft(y)dK(t)∫

Θ1
dK(t)

dF (y)

)
· P [H = 1]

+

(∫
C(d)c

∫
Θ1
C(t, 1)ft(y)dK(t)∫

Θ1
dK(t)

dF (y)

)
· P [H = 1]

=

∫
C(d)

(∫
Θ

C(t, 0)ft(y)dK(t)

)
dF (y)

+

∫
C(d)c

(∫
Θ

C(t, 1)ft(y)dK(t)

)
dF (y) (8.37)

as we group like terms after noting that P [H = h] =
∫

Θh
dK(t).

Finally we conclude that

J(d) =

∫
Rk

(∫
Θ

C(t, 1)ft(y)dK(t)

)
dF (y)

+

∫
C(d)

(∫
Θ

(C(t, 0)− C(t, 1)) ft(y)dK(t)

)
dF (y) (8.38)

and the Bayesian test d? : Rk → {0, 1} is therefore given by

d?(y) = 0 iff
∫

Θ

(C(t, 0)− C(t, 1)) ft(y)dK(t) < 0. (8.39)

The Bayesian test d? is not an element of the class of tests {dη, η ≥ 0} introduced
at (8.12).

8.10 Exercises



Part II

ESTIMATION THEORY

119





Part III

APENDICES

121





Chapter 9

Useful facts from Real Analysis

9.1 Limits in R
We refer to any mapping a : N0 → R as a (R-valued) sequence; sometimes we
shall also use the notation {an, n = 1, 2, . . .}.

A sequence a : N0 → R converges to a? in R if for every ε > 0, there exists an
integer n?(ε) in N0 such that

|an − a?| ≤ ε, n ≥ n?(ε). (9.1)

We write limn→∞ an = a?, and refer to the scalar a? as the limit of the sequence.

Sometimes it is desirable to make sense of situations where the values of the
sequence become either unboundedly large or unboundely negative, in which case
we shall write limn→∞ an = ∞ and limn→∞ an = −∞, respectively. A precise
definition of such occurences is as follows: We write limn→∞ an = ∞ to signify
that for every M > 0, there exists a integer n?(M) in N0 such that

an > M, n ≥ n?(M). (9.2)

It is now natural to define limn→∞ an = −∞ whenever limn→∞ (−an) =∞.
If there exists a? in R∪{±∞} such that limn→∞ an = a?, we shall simply say

that the sequence a : N0 → R converges or is convergent (without any reference
to its limit). Sometimes we shall also say that the sequence a : N0 → R converges
(or is convergent) in R to indicate that the limit a? is an element of R (thus finite).

123
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Convergence is guaranteed under conditions of monotonicity: A sequence a :
N0 → R is monotone non-decreasing (resp. non-increasing) if an ≤ an+1 (resp.
an+1 ≤ an) for all n = 1, 2, . . ..

Fact 9.1.1 A monotone sequence a : N0 → R is always convergent, although its
limit may be ±∞.

9.2 Accumulation points
Since not all sequences converge, it is important to understand how can non-
convergence occur. To that end, consider a sequence a : N0 → R. A subsequence
of the sequence a : N0 → R is any sequence of the form N0 → R : k → ank
where

nk < nk+1, k = 1, 2, . . .

This forces limk→∞ nk =∞.

An accumulation point for the sequence a : N0 → R is defined as any element a?

in R ∪ {±∞} such that
lim
k→∞

ank = a?

for some subsequence N0 → R : k → ank .

A convergent sequence a : N0 → R has exactly one accumulation point,
namely its limit. if the sequence does not converge, it must necessarily have dis-
tinct accumulation points, in which case there is a smallest and a largest accumu-
lation point. The next definition formalizes this observation: Given a sequence
a : N0 → R, the quantities

lim sup
n→∞

an = inf
n≥1

(
sup
m≥n

am

)
and

lim inf
n→∞

an = sup
n≥1

(
inf
m≥n

am

)
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are known as the limsup and liminf of the sequence a : N0 → R, respectively.
It is plain that

inf
m≥n

am ≤ sup
m≥n

am, n = 1, 2, . . .

and that the sequences {infm≥n am, n = 1, 2, . . .} and {supm≥n am, n = 1, 2, . . .}
are non-decreasing and non-increasing, respectively, with

lim
n→∞

(
inf
m≥n

am

)
= lim inf

n→∞
an

and

lim
n→∞

(
sup
m≥n

am

)
= lim sup

n→∞
an,

hence the terminology. A useful characterization of convergence can now be pro-
vided in terms of the limsup and liminf.

Fact 9.2.1 Consider a sequence a : N0 → R: If it converges to an element a?(in
R ∪ {±∞}), then

lim inf
n→∞

an = lim sup
n→∞

an = a?.

Conversely, if lim infn→∞ an = lim supn→∞ an = a? for some a? in R ∪ {±∞},
then the sequence a : N0 → R converges to a?.

9.3 Continuous functions
Let I denote a subset of R. A function g : I → R is said to be left-continuous at
x in I if for any sequence a : N0 → I such that limn→∞ an = x with an < x for
all n = 1, 2, . . . we have

lim
n→∞

g(an) = g(x). (9.3)

Similarly, a function g : I → R is said to be right-continuous at x in I if for any
sequence a : N0 → I such that limn→∞ an = x with x < an for all n = 1, 2, . . .
we have (9.3).

Finally, a function g : I → R is said to be continuous at x in I if it is both
left-continuous and right-continuous at x. This is equivalent to (9.3) holding for
any sequence a : N0 → I such that limn→∞ an = x.
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A function g : I → R is left-continuous (resp. right-continuous, continu-
ous) on I if the function g : I → R is left-continuous (resp. right-continuous,
continuous) at every point x in I .

9.4 Convex functions
Let I denote an interval in R. A function g : I → R is said to be convex if for
every x0 and x1 in I , it holds that

g((1− λ)x0 + λx1) ≤ (1− λ)g(x0) + λg(x1), λ ∈ [0, 1]. (9.4)

A function g : I → R is said to be concave if the function −g is convex. Here
are some well-known facts concerning convex functions; the analog properties for
concave functions are easily obtained mutatis mutandis.

Fact 9.4.1 Let g : I → R be a convex function. With x < y < z in I , we have
the basic inequalities

g(y)− g(x)

y − x
≤ g(z)− g(x)

z − x
(9.5)

and
g(z)− g(x)

z − x
≤ g(z)− g(y)

z − y
. (9.6)

Proof. With x < y < z in I , write

y = (1− λ)x+ λz where λ =
y − x
z − x

.

It is plain that λ is an element of (0, 1), and the convexity of g implies

g(y) ≤ (1− λ)g(x) + λg(z)

=
z − y
z − x

g(x) +
y − x
z − x

g(z). (9.7)

Substracting g(x) from both sides of this inequality we get

g(y)− g(x) ≤ z − y
z − x

g(x) +
y − x
z − x

g(z)− g(x)

=

(
y − x
z − x

)
(g(z)− g(x)) .
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and this establishes (9.5).
On the other hand, subtracting g(z) from (9.7) we find that

g(y)− g(z) ≤ z − y
z − x

g(x) +
y − x
z − x

g(z)− g(z)

=

(
z − y
z − x

)
(g(x)− g(z))

and the inequality (9.5) readily follows.

Fact 9.4.2 If the mapping g : I → R is convex on an interval I , then it is also
continuous on the interior of I .

Continuity may fail at the boundary points as the next example shows: With I =
[0, 1], take the mapping g : I → R given by

g(x) =


0 if x = 0

x if 0 < x ≤ 1.

This function is clearly convex on [0, 1] but it fails to be continuous at x = 0.

Proof. Pick x in the interior of I so that [x − τ, x + τ ] ⊆ I for some τ > 0.
With 0 < t < 1 we note that x + tτ = t(x+ τ) + (1− t)x, whence g(x+ tτ) ≤
tg(x+ τ) + (1− t)g(x) by the convexity of g and we conclude

g(x+ tτ)− g(x)

t
≤ g(x+ τ)− g(x).

Similarly, since x− tτ = t(x− τ) + (1− t)x, we have g(x− tτ) ≤ tg(x− τ) +
(1− t)g(x) by the convexity of g, so that

g(x)− g(x− τ) ≤ g(x)− g(x− tτ)

t
.

But 1
2

(x− tτ) + 1
2

(x+ tτ) = x, and using convexity again leads to

g(x)− g(x− tτ) ≤ g(x+ tτ)− g(x),
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whence

g(x)− g(x− τ) ≤ g(x− tτ)− g(x)

−t
≤ g(x+ tτ)− g(x)

t
≤ g(x+ τ)− g(x).

Therefore, with

M ≡ max (|g(x)− g(x− τ)| , |g(x+ τ)− g(x)|) ,

we get

−M ≤ g(x)− g(x− tτ)

−t
≤ g(x+ tτ)− g(x)

t
≤M, 0 < t < 1.

Changing notation we see that∣∣∣∣g(x+ h)− g(x)

h

∣∣∣∣ ≤M, |h| ≤ τ (9.8)

and the continuity of g at x is now immediate since limn→∞ g(an) = g(x) for any
sequence I-valued sequence a : N0 → I such that limn→∞ an = x.

In the course of the proof of Fact 9.4.2 we saw that the property (9.8), known
as local Lipschitz continuity, holds.

Fact 9.4.3 If the mapping g : I → R is convex on an interval I , then it is also
locally Lipschitz at every point in the interior of I .

This paves the way for the following differentiability result.

Fact 9.4.4 If the mapping g : I → R is convex on some interval I , then its left
and right-derivatives always exist at every point of continuity in I (and whenever
appropriate at the boundary points of I).

Proof. Pick ξ in the interior of I so that (ξ − τ, ξ + τ) ⊆ I for some τ > 0. By
virtue of ( 9.5) we see that the mapping t→ g(ξ+t)−g(ξ)

t
is monotone increasing on
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the interval (0, τ) – Just use x = ξ, y = ξ+t1 and z = ξ+t2 with 0 < t1 < t2 < τ .
It follows that the limit defining the right-derivative at ξ, namely

d+

dx
g(ξ) = lim

t↓0

g(ξ + t)− g(ξ)

t
,

always exists.
Similarly, by virtue of ( 9.6) we see that the mapping t→ g(ξ−t)−g(ξ)

−t is mono-
tone increasing on the interval (0, τ) – Just use z = ξ, y = ξ − t1 and z = ξ − t2
with 0 < t1 < t2 < τ . It follows that the limit defining the left-derivative at ξ,
namely

d−

dx
g(ξ) = lim

t↓0

g(ξ − t)− g(ξ)

−t
,

always exists.

9.5 Measurable spaces
Let S denote an arbitrary non-empty set. A non-empty collection S of subsets of
S is a σ-field (also known as an σ-algebra) on S if

(i) S contains the empty set ∅;

(ii) S is closed under complementarity: If E ∈ S, then Ec ∈ S (where Ec is
the complement of E in S); and

(iii) S is closed under countable union: With I a countable index set, if Ei ∈ S
for each i ∈ I , then ∪i∈IEi ∈ S.

The pair (S,S) is sometimes referred to as a measurable space. For every non-
empty set S, there at least two distinct σ-fields on S, namely the trivial σ-field
STriv = {∅, S} and the complete σ-field P(S) (where P(S) denotes the power set
of S).

If S1 and S2 are two σ-fields on S, we say that S1 contains S2, written S1 ⊆
S2, if any element of S1 is an element of S2. Thus, for any σ-field S, we have
STriv ⊆ S ⊆ P(S).

If G is a collection of subsets of S, then σ (G) is defined as the smallest σ-field
on S which contains G, i.e., every element of G is also an element of σ (G). We
shall refer to σ (G) as the σ-field on S generated by G.
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9.6 Borel measurability
With A denoting a subset of Rp for some positive integer p, we define the σ-field
B(A) to be

B(A) ≡ σ (O(A))

where O(A) denotes the collection of all open sets contained in A. In particular,

B(Rp) ≡ σ (O(Rp))

where O(Rp) denotes the collection of all open sets contained in Rp.
Consider an arbitrary set S equipped with a σ-field S. A mapping g : S → Rp

is said to be a Borel mapping if the conditions

g−1(B) ∈ S, B ∈ B(Rp) (9.9)

are all satisfied where

g−1(B) ≡ {s ∈ S : g(s) ∈ B} .

Fact 9.6.1 Let G denote a collection of subsets of Rp which generates the Borel
σ-field B(Rp), i.e.,

B(Rp) = σ (G) . (9.10)

It holds that the mapping g : S → Rp is a Borel mapping if and only if the weaker
set of conditions

g−1(E) ∈ S, E ∈ G (9.11)

holds.

There are many generators known for the Borel σ-field B(Rp). For instance,
we have (9.10) with

• G = Ropen(Rp) where Ropen(Rp) is the collection of all finite open rectan-
gles, i.e.,

Ropen(Rp) ≡
{
I1 × . . .× Ip,

Ik ∈ I(R)
k = 1, . . . , p

}
where

I(R) = {(a, b) : a, b ∈ R}
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• G = RSW(Rp) where RSW(Rp) is the collection of all closed Southwest
rectangles, i.e.,

RSW(Rp) ≡

I1 × . . .× Ip,
Ik = (−∞, ak]

ak ∈ R
k = 1, . . . , p

 .

It follows from the discussion above that a mapping g : S → Rp is a Borel
mapping if the seemingly weaker conditions{

s ∈ S : g(s) ∈
p∏
i=1

(−∞, ak]

}
∈ S, (a1, . . . , ap) ∈ Rp

all hold. Equivalently, a mapping g : S → Rp is a Borel mapping if

{s ∈ S : gk(s) ≤ ak, k = 1, . . . , p} ∈ S, (a1, . . . , ap) ∈ Rp

where it is understood that

g(s) = (g1(s), . . . , gp(s)) , s ∈ S.

It is now plain that for each k = 1, . . . , p, the component mapping gk : S → R
is also a Borel mapping – Just take a` = ∞ for all ` = 1, . . . , k different from k.
Conversely, since

{s ∈ S : gk(s) ≤ ak, k = 1, . . . , p} = ∩pk=1 {s ∈ S : gk(s) ≤ ak}

for arbitrary (a1, . . . , ap) in Rp, we see that the mapping g : S → Rp is a Borel
mapping if and only if each of the component mappings g1 : S → R, . . . , gp :
S → R is a Borel mapping.

Most (if not all) mappings Rp → Rq encountered in applications are Borel
mappings. Furthermore, any continuous mapping Rp → Rq can be shown to be a
Borel mapping!
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Chapter 10

Useful facts from Probability Theory

10.1 Probability models

Probabilistic reasoning assumes the availability of a probability triple (Ω,F ,P)
where: (i) The sample space Ω is the collection of all outcomes (samples) gen-
erated by the random experiment E of interest; (ii) Events are collections of out-
comes, and the collection of events whose likelihood of occurrence can be defined
is a σ-field F on Ω; and (iii) The “likelihood” of occurrence to events in F is as-
signed through a probability measure P defined on F .

With Ω an arbitrary set, a non-empty collection F of subsets of Ω is a σ-field (also
known as an σ-algebra) on Ω if F (i) contains the empty set ∅; (ii) is closed under
complementarity: If E ∈ F , then Ec ∈ F (iii) is closed under countable union:
With I a countable index set, if Ei ∈ F for each i ∈ I , then ∪i∈IEi ∈ F .

The “likelihood” of occurrence to events in F is assigned through a probability
measure P defined on F .

A probability (measure) P on the σ-field F (or on (Ω,F)) is a mapping P : F →
[0, 1] such that (i) P [∅] = 0 and P [Ω] = 1; (ii) σ-additivity: With I a countable
index set, if Ei ∈ F for each i ∈ I , then

P [∪i∈IEi] =
∑
i∈I

P [Ei]

133
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whenever the subsets {Ei, i ∈ I} are pairwise disjoint, namely

Ei ∩ Ej = ∅, i 6= j
i, j ∈ I

10.2 Random variables

All random variables (rvs) can always be thought as being defined on some given
probability triple (Ω,F ,P) where Ω is the sample space, F is a σ-field of events
on Ω and P is a probability measure on F .

Given a probability triple (Ω,F ,P), a mapping X : Ω → Rp is an (Rp-valued)
random variable (rv) if

X−1 (B) = {ω ∈ Ω : X(ω) ∈ B} ∈ F , B ∈ B(Rp).

In other words, the mapping X : Ω→ Rp is a rv if it is a Borel mapping X : Ω→
Rp – Here S = Ω and S = F . We shall often write [X ∈ B] in lieu of X−1 (B)
and P [X ∈ B] for P [[X ∈ B]].

The probability distribution (function) FX : Rp → [0, 1] of the rv X is defined by

FX(x) ≡ P [X ∈ (−∞, x1]× . . .× (−∞, xp]]
= P [X1 ≤ x1, . . . , Xp ≤ xp] , x = (x1, . . . , xp) ∈ Rp. (10.1)

with the notation X = (X1, . . . , Xp).
It turns out that there is as much probabilistic information in the probability

distribution FX : Rp → [0, 1] of the rv X as in

{P [X ∈ B] , B ∈ B(Rp)}

In fact, knowledge of FX : Rp → R allows a unique reconstruction of

{P [X ∈ B] , B ∈ B(Rp)} .
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10.3 Probability distributions

Properties of FX (Case p = 1): It is easy to see that the following properties
hold:

• Monotonicity:
FX(x) ≤ FX(y), x, y ∈ R

• Right-continuous:

lim
y↓x

FX(y) = FX(x), x ∈ R

• Left limit exists:

lim
y↑x

FX(y) = FX(x−) with P [X = x] = FX(y)− FX(x−), x ∈ R

• Behavior at infinity: Monotonically

lim
x→−∞

FX(x) = 0 and lim
x→∞

FX(x) = 1

A probability distribution (function) on R is any mapping F : R → [0, 1] such
that

• Monotonicity:
F (x) ≤ F (y), x, y ∈ R

• Right-continuous:
lim
y↓x

F (y) = F (x), x ∈ R

• Left limit exists:
lim
y↑x

F (y) = F (x−) x ∈ R

• Behavior at infinity: Monotonically

lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1
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Any rv X : Ω → R generates a probability distribution function FX : R →
[0, 1]. Conversely, for any probability distribution function F : R → [0, 1], there
exists a probability triple (Ω̃, F̃ , P̃) and a rv X̃ : Ω̃→ R defined on it such that

P̃
[
X̃ ≤ x

]
= F (x), x ∈ R

This is the basis of Monte-Carlo simulation. There exists a multi-dimensional
analog to this fact.

Proof. Take Ω̃ = [0, 1], F̃ = B([0, 1]) and P̃ = λ. Define the rv X̃ : Ω̃ → R by
setting

X̃(ω̃) = F−(ω̃), ω̃ ∈ [0, 1]

where F− : [0, 1]→ [−∞,∞] is the generalized inverse of F given by

F−(u) = inf (x ∈ R : u ≤ F (x)) , 0 ≤ u ≤ 1.

with the understanding that F−(u) =∞ if the defining set is empty, i.e., F (x) < u
for all x in R.

Discrete distributions
A rv X : Ω → Rp is a discrete rv if there exists a countable subset S ⊆ Rp such
that

P [X ∈ S] = 1.

Note that
P [X ∈ B] =

∑
x∈S∩B

P [X = x] , B ∈ B(Rp).

It is often more convenient to characterize the distributional properties of the rv
X through its probability mass function (pmf) of the rv X given by

pX ≡ (pX(x), x ∈ S)

with
pX(x) = P [X = x] , x ∈ S.

Absolutely continuous distributions
A rv X : Ω→ Rp is an (absolutely) continuous rv if there exists a Borel mapping
fX : Rp → R+ such that

P [Xi ≤ xi, i = 1, . . . , p] =

∫ x

−∞
fX(ξ)dξ, x = (x1, . . . , xp) ∈ Rp.
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Properties of FX when p ≥ 1

• Monotonicity needs to be modified and now reads

P [xk < Xk ≤ yk] ≥ 0,
xk < yk
xk, yk ∈ R
k = 1, . . . , p

with the understanding that the quantity P [xk < Xk ≤ yk] is expressed solely
in terms of FX : Rp → [0, 1].

• Right-continuous:

lim
y↓x

FX(y) = FX(x), x ∈ Rp

with the understanding that yk ↓ xk for each k = 1, . . . , p.

• Left limit exists:

lim
y↑x

FX(y) = FX(x−) with P [X = x] = FX(y)− FX(x−), x ∈ Rp

with the understanding that yk ↑ xk for each k = 1, . . . , p.

• Behavior at infinity:

lim
min(xk, k=1,...,p)→−∞

FX(x) = 0

and
lim

min(xk, k=1,...,p)→∞
FX(x) = 1

Independence of rvs
Consider a collection of rvs {Xi, i ∈ I}which are all defined on some probability
triple (Ω,F ,P). Assume that for each i in I , the rv Xi is a Rpi-valued rv for some
positive integer pi.

With I finite, we shall say that the rvs {Xi, i ∈ I} are mutually independent
if for each selection of Bi in B(Rpi) for each i in I , the events

{[Xi ∈ Bi], i ∈ I}
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are mutually independent. It is easy to see that this is equivalent to requiring

P [∩i∈I [Xi ∈ Bi]] =
∏
i∈I

P [Xi ∈ Bi] ,
Bi ∈ B(Rpi)

i ∈ I.

More generally, with I arbitrary (and possibly uncountable), the rvs {Xi, i ∈
I} are said to be mutually independent if for every finite subset J ⊆ I , the rvs
{Xj, j ∈ J} are mutually independent!

Product spaces
Some facts: Consider two arbitrary sets Ωa and Ωb (possibly identical). LetA and
B denote non-empty collections of subsets of Ωa and Ωb, respectively. While the
collection A × B is usually not a σ-field on Ωa × Ωb, even when A and B are
themselves σ-fields, it can be shown that

σ (A× B) = σ (σ (A)× σ (B)) .

10.4 Gaussian rvs
With scalar m and σ2 > 0, the rv X is said to be a Gaussian rv with mean m
and variance σ2, written X ∼ N(m,σ2), if its cumulative probability distribution
function is given by

P [X ≤ x] =

∫ x

−∞

1√
2πσ2

e−
1
2( ξ−mσ )

2

dξ, x ∈ R.

The zero mean unit variance Gaussian rv is often referred to as a standard Gaus-
sian rv; its probability density function ϕ : R→ R+ is given by

ϕ(x) =
1√
2π
e−

x2

2 , x ∈ R, (10.2)

and its cumulative probability distribution function is then

Φ(x) =

∫ x

−∞
ϕ(t)dt, x ∈ R. (10.3)

Obviously, if X ∼ N(m,σ2) and Z ∼ N(0, 1), then X and m+σZ have the same
distribution.

In the context of digital communications, it is customary to use theQ-function
Q : R+ → [0, 1] given by

Q(x) = 1− Φ(x) =

∫ ∞
x

ϕ(t)dt, x ≥ 0.
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The classical limit theorems

The setting of the next four sections is as follows: The rvs {Xn, n = 1, 2, . . .} are
rvs defined on some probability triple (Ω,F ,P). With this sequence we associate
the sums

Sn =
n∑
k=1

Xk, n = 1, 2, . . .

Two types of results will be discussed: The first class of results are known as Laws
of Large Numbers; they deal with the convergence of the sample averages

S̄n =
1

n

n∑
k=1

Xk, n = 1, 2, . . .

The second class of results are called Central Limit Theorems and provide a rate
of convergence in the Laws Large Numbers.

11.1 Weak Laws of Large Numbers (I)
Laws of Large Numbers come in two types which are distinguished by the mode
of convergence used. When convergence in probability is used, we refer to such
results as weak Laws of Large Numbers. The most basic such results is given first.

Theorem 11.1.1 Assume the rvs {X,Xn, n = 1, 2, . . .} to be i.i.d. rvs with
E [|X|2] <∞. Then,

Sn
n

P→ nE [X] . (11.1)

139
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As we now show, the finiteness of the second moment of X can be dropped.

Theorem 11.1.2 Assume the rvs {X,Xn, n = 1, 2, . . .} to be i.i.d. rvs with
E [|X|] <∞. Then, we have

Sn
n

P→ nE [X] . (11.2)

11.2 The Strong Law of Large Numbers
Strong Laws of Large Numbers are given are convergence statements in the a.s.
sense. The classical Strong Law of Large Numbers is given next.

Theorem 11.2.1 Assume the rvs {X,Xn, n = 1, 2, . . .} to be i.i.d. rvs with
E [|X|] <∞. Then,

lim
n→∞

Sn
n

= E [X] a.s. (11.3)

11.3 The Central Limit Theorem
The Central Limit Theorem completes the Law of Large Numbers, in that it pro-
vides some indication as to the rate at which convergence takes place.

Theorem 11.3.1 Assume the rvs {X,Xn, n = 1, 2, . . .} to be i.i.d. rvs with
E [|X|2] <∞. Then, we have

√
n

(
Sn
n
− E [X]

)
=⇒n

√
Var[X] · U (11.4)

where U is standard zero-mean unit-variance Gausssian rv.


