ENEE 621 SPRING 2017 DETECTION AND ESTIMATION THEORY

MEAN-SQUARE ESTIMATION

1 The basic setting

Throughout, p and k are arbitrary positive integers. Let the random parameter ϑ be modelled as an \mathbb{R}^p -valued rv, while the observation rv Y is an \mathbb{R}^k -valued rv. Here the family of distributions $\{F_{\theta}, \theta \in \Theta\}$ on \mathbb{R}^k is interpreted as conditional distributions in the sense that

$$\mathbb{P}\left[\boldsymbol{Y} \leq \boldsymbol{y} | \vartheta = \theta\right] = F_{\theta}(\boldsymbol{y}), \qquad \boldsymbol{y} \in \mathbb{R}^{k} \\ \theta \in \Theta.$$

We assume that the rv ϑ is a *second-order* rv, namely,

$$\mathbb{E}\left[|\vartheta_i|^2\right] < \infty, \quad i = 1, \dots, p$$

We shall use $\mathcal{B}(k;p)$ to denote the collection of all Borel mappings $\mathbb{R}^k \to \mathbb{R}^p$. With $r \ge 1$, let $\mathcal{G}_r(p; \mathbf{Y})$ denote the collection of all estimators for ϑ on the basis of \mathbf{Y} with finite r^{th} moment. Formally,

$$\mathcal{G}_r(p; \mathbf{Y}) = \{g \in \mathcal{B}(k; p) : \mathbb{E}[|g_i(\mathbf{Y})|^r] < \infty, \quad i = 1, \dots, p\}.$$

We shall also introduce $\mathcal{L}(k; p)$ as the collection of *affine* estimators for ϑ on the basis of \mathbf{Y} . Thus, the estimator g in $\mathcal{B}(k; p)$ is an affine estimator in $\mathcal{L}(k; p)$ if it takes the form

$$g(\boldsymbol{y}) = A\boldsymbol{y} + \boldsymbol{b}, \quad \boldsymbol{y} \in \mathbb{R}^k$$

for some $p \times k$ matrix A and a vector **b** in \mathbb{R}^p .

The following easy fact will be found handy in a number of places.

Fact 1.1 With scalars a and b, if

$$at + bt^2 \ge 0, \quad t \in \mathbb{R},$$

then necessarily a = 0.

Proof. It is plain that

$$a+bt \ge 0, \quad t > 0$$

and

$$-a+b|t| \ge 0, \quad t < 0.$$

Letting t go to zero in both sets of inequalities we find that $a \ge 0$ and $a \le 0$ both hold, hence a = 0.

2 Minimum Mean Square Error (MMSE) Estimation

The MMSE problem can be formulated as follows: Find g^* in $\mathcal{G}_2(k; \mathbf{Y})$ such that

(1)
$$\mathbb{E}\left[\|\vartheta - g^{\star}(\boldsymbol{Y})\|^{2}\right] \leq \mathbb{E}\left[\|\vartheta - g(\boldsymbol{Y})\|^{2}\right], \quad g \in \mathcal{G}_{2}(k; \boldsymbol{Y}).$$

Any estimator g^* in $\mathcal{G}_2(k; \mathbf{Y})$ which satisfies (1) is known as a MMSE estimator of ϑ on the basis of \mathbf{Y} .

Theorem 2.1 The estimator g^* in $\mathcal{G}_2(p; \mathbf{Y})$ satisfies

$$\mathbb{E}\left[\|\vartheta - g^{\star}(\boldsymbol{Y})\|^{2}\right] \leq \mathbb{E}\left[\|\vartheta - g(\boldsymbol{Y})\|^{2}\right], \quad g \in \mathcal{G}_{2}(p; \boldsymbol{Y})$$

if and only if the Orthogonality Principle

(2)
$$\mathbb{E}\left[\left(\vartheta - g^{\star}(\boldsymbol{Y})\right)'h(\boldsymbol{Y})\right] = 0, \quad h \in \mathcal{G}_{2}(p;\boldsymbol{Y})$$

holds.

This characterization is geometric in nature, and points to g^* as the projection of ϑ on the subspace of second-order rvs

$$\{g(\boldsymbol{Y}): g \in \mathcal{G}_2(p; \boldsymbol{Y})\}.$$

This is a subspace of $L_2((\Omega, \mathcal{F}, \mathbb{P}); \mathbb{R}^p)$, the space of all second-order \mathbb{R}^p -valued rvs. Orthogonality in $L_2((\Omega, \mathcal{F}, \mathbb{P}); \mathbb{R}^p)$ is defined by

$$\mathbb{E}\left[\boldsymbol{\xi}^{\prime}\boldsymbol{\eta}
ight]=0, \quad \boldsymbol{\xi}, \boldsymbol{\eta}\in L_{2}((\Omega,\mathcal{F},\mathbb{P});\mathbb{R}^{p}).$$

2 MINIMUM MEAN SQUARE ERROR (MMSE) ESTIMATION

The Orthogonality Principle (2) can be restated as saying that the error $\vartheta - g^*(\mathbf{Y})$ is orthogonal to the subspace $\{g(\mathbf{Y}) : g \in \mathcal{G}_2(p; \mathbf{Y})\}$.

As an immediate consequence of Theorem 2.1 we have the following uniqueness result.

Corollary 2.1 If g_1^{\star} and g_2^{\star} are estimators in $\mathcal{G}_2(p; \mathbf{Y})$ such that

$$\mathbb{E}\left[\|\vartheta - g_i^{\star}(\boldsymbol{Y})\|^2\right] \leq \mathbb{E}\left[\|\vartheta - g(\boldsymbol{Y})\|^2\right], \quad g \in \mathcal{G}_2(p; \boldsymbol{Y})$$

for each i = 1, 2, then we have

$$\mathbb{P}\left[g_1^{\star}(\boldsymbol{Y}) = g_2^{\star}(\boldsymbol{Y})\right] = 1.$$

Proof. Use the Orthogonality Principle (2) with $h = g_1^* - g_2^*$ for both g_1^* and g_2^* .

Basic ideas behind the proof of Theorem 2.1 ______ With estimator g in $\mathcal{G}_2(p; \mathbf{Y})$, note that

$$\begin{split} & \mathbb{E}\left[\|\vartheta - g(\boldsymbol{Y})\|^2\right] \\ &= \mathbb{E}\left[(\vartheta - g(\boldsymbol{Y}))'\left(\vartheta - g(\boldsymbol{Y})\right)\right] \\ &= \mathbb{E}\left[\left((\vartheta - g^{\star}(\boldsymbol{Y})) + \left(g^{\star}(\boldsymbol{Y}) - g(\boldsymbol{Y})\right)\right)'\left((\vartheta - g^{\star}(\boldsymbol{Y})) + \left(g^{\star}(\boldsymbol{Y}) - g(\boldsymbol{Y})\right)\right)\right] \\ &= \mathbb{E}\left[\|\vartheta - g^{\star}(\boldsymbol{Y})\|^2\right] + 2\mathbb{E}\left[(\vartheta - g^{\star}(\boldsymbol{Y}))'\left(g^{\star}(\boldsymbol{Y}) - g(\boldsymbol{Y})\right)\right] \\ &\quad + \mathbb{E}\left[\|g^{\star}(\boldsymbol{Y}) - g(\boldsymbol{Y})\|^2\right] \end{split}$$

so that

$$\mathbb{E}\left[\|\vartheta - g(\boldsymbol{Y})\|^{2}\right] - \mathbb{E}\left[\|\vartheta - g^{\star}(\boldsymbol{Y})\|^{2}\right]$$

(3)
$$= \mathbb{E}\left[\|g^{\star}(\boldsymbol{Y}) - g(\boldsymbol{Y})\|^{2}\right] + 2\mathbb{E}\left[(\vartheta - g^{\star}(\boldsymbol{Y}))'(g^{\star}(\boldsymbol{Y}) - g(\boldsymbol{Y}))\right].$$

If g^* in $\mathcal{G}_2(p; \mathbf{Y})$ satisfies the Optimality Principle (2), then the equality (3) implies

$$\mathbb{E}\left[\|\vartheta - g(\boldsymbol{Y})\|^2\right] - \mathbb{E}\left[\|\vartheta - g^*(\boldsymbol{Y})\|^2\right] = \mathbb{E}\left[\|g^*(\boldsymbol{Y}) - g(\boldsymbol{Y})\|^2\right]$$

since $g - g^*$ is an element of $\mathcal{G}_2(p; \mathbf{Y})$ as both g^* and g are. It follows that

$$\mathbb{E}\left[\|\vartheta - g(\boldsymbol{Y})\|^2\right] - \mathbb{E}\left[\|\vartheta - g^{\star}(\boldsymbol{Y})\|^2\right] \ge 0, \quad g \in \mathcal{G}_2(p; \boldsymbol{Y})$$

and g^* is an MMSE estimator.

Conversely, if g^* is an MMSE estimator, then (3) implies

$$\mathbb{E}\left[\|g^{\star}(\boldsymbol{Y}) - g(\boldsymbol{Y})\|^{2}\right] + 2\mathbb{E}\left[\left(\vartheta - g^{\star}(\boldsymbol{Y})\right)'\left(g^{\star}(\boldsymbol{Y}) - g(\boldsymbol{Y})\right)\right] \ge 0$$

for every g element of $\mathcal{G}_2(p; \mathbf{Y})$. Thus, with h an arbitrary element of $\mathcal{G}_2(p; \mathbf{Y})$ and t in \mathbb{R} , consider the estimator $g_t : \mathbb{R}^k \to \mathbb{R}^p$ given by

$$g_t(\boldsymbol{y}) = g^{\star}(\boldsymbol{t}) + th(\boldsymbol{y}), \quad \boldsymbol{y} \in \mathbb{R}^k.$$

If is plain that g_t is also an element of $\mathcal{G}_2(p; \mathbf{Y})$. Applying the last inequality with $g = g_t$ we conclude that

$$t^{2}\mathbb{E}\left[\|g(\mathbf{Y})\|^{2}\right] + 2t\mathbb{E}\left[\left(\vartheta - g^{\star}(\mathbf{Y})\right)'h(\mathbf{Y})\right] \ge 0, \quad t \in \mathbb{R}$$

and Fact 1.1 immediately leads to the Optimality Principle (2).

To identify the MMSE estimator we focus on the following problem: With $\boldsymbol{\xi}$ be a second-order \mathbb{R}^p -valued rv, we seek \boldsymbol{a}^* in \mathbb{R}^p such that

$$\mathbb{E}\left[\|oldsymbol{\xi}-oldsymbol{a}^{\star}\|^2
ight] \leq \mathbb{E}\left[\|oldsymbol{\xi}-oldsymbol{a}\|^2
ight], \quad oldsymbol{a}\in\mathbb{R}^p.$$

The solution to this problem is well known to be unique, and is given by

$$a^{\star} = \mathbb{E}\left[\boldsymbol{\xi}
ight].$$

Returning to the MMSE problem, we recall that

$$\mathbb{E}\left[\|\vartheta - g(\boldsymbol{Y})\|^2\right] = \mathbb{E}\left[\mathbb{E}\left[\|\vartheta - \boldsymbol{a}\|^2|\boldsymbol{Y} = \boldsymbol{y}\right]_{\boldsymbol{y}=\boldsymbol{Y},\boldsymbol{a}=g(\boldsymbol{Y})}\right]$$

for every estimator g in $\mathcal{G}_2(p; \mathbf{Y})$. This fact readily leads to concluding

$$g^{\star}(\boldsymbol{y}) = \mathbb{E}\left[\vartheta|\boldsymbol{Y} = \boldsymbol{y}\right], \quad \boldsymbol{y} \in \mathbb{R}^{k}.$$

It is customary to write

 $g^{\star}(\boldsymbol{Y}) = \mathbb{E}\left[\vartheta|\boldsymbol{Y}\right]$

where the right handside is understood as the conditional expectation of the rv ϑ given the σ -field generated by the rv Y. The reason to proceed via the Orthogonality Principle is to show the parallel with the next problem where only affine estimators are considered.

3 Linear Mean Square Error (LMSE) Estimation

Assume that the observation rv Y is also a second-order rv, i.e.,

$$\mathbb{E}\left[|Y_j|^2\right] < \infty, \quad j = 1, \dots, k.$$

The LMSE problem can be formulated as follows: Find ℓ^* in $\mathcal{L}(k; p)$ such that

$$\mathbb{E}\left[\|\vartheta - \ell^{\star}(\boldsymbol{Y})\|^{2}\right] \leq \mathbb{E}\left[\|\vartheta - \ell(\boldsymbol{Y})\|^{2}\right], \quad \ell \in \mathcal{L}(k; p).$$

We refer to this affine estimator ℓ^* in $\mathcal{L}(k; p)$ as the *Linear Mean Square Error* (LMSE) estimator of ϑ on the basis of Y. It is characterized by the following version of the *Orthogonality Principle*.

Theorem 3.1 The estimator ℓ^* in $\mathcal{L}(k; p)$ satisfies

$$\mathbb{E}\left[\|\vartheta - \ell^{\star}(\boldsymbol{Y})\|^{2}\right] \leq \mathbb{E}\left[\|\vartheta - \ell(\boldsymbol{Y})\|^{2}\right], \quad \ell \in \mathcal{L}(k; p)$$

if and only if the Orthogonality Principle

(4)
$$\mathbb{E}\left[\left(\vartheta - \ell^{\star}(\boldsymbol{Y})\right)'h(\boldsymbol{Y})\right] = 0, \quad h \in \mathcal{L}(k;p)$$

holds.

This characterization is also geometric in nature, pointing to the LMSE estimator to ℓ^* as the projection of ϑ on the subspace of second-order rvs

$$\left\{\ell(\boldsymbol{Y}):\ \ell\in\mathcal{L}(k;p)\right\}.$$

This is a also subspace of $L_2((\Omega, \mathcal{F}, \mathbb{P}); \mathbb{R}^p)$, with the Orthogonality Principle (4) stating that the error $\vartheta - g^*(\mathbf{Y})$ is orthogonal to the subspace $\{\ell(\mathbf{Y}) : \ell \in \mathcal{L}(k; p)\}$.

Basic ideas behind the proof of Theorem 3.1 _____ With affine estimator ℓ in $\mathcal{L}(k; p)$, this time we note that

$$\begin{split} & \mathbb{E}\left[\|\vartheta - \ell(\boldsymbol{Y})\|^2\right] \\ &= \mathbb{E}\left[(\vartheta - \ell(\boldsymbol{Y}))'\left(\vartheta - \ell(\boldsymbol{Y})\right)\right] \\ &= \mathbb{E}\left[\|\vartheta - \ell^{\star}(\boldsymbol{Y})\|^2\right] + 2\mathbb{E}\left[\left(\vartheta - \ell^{\star}(\boldsymbol{Y})\right)'\left(\ell^{\star}(\boldsymbol{Y}) - \ell(\boldsymbol{Y})\right)\right] \\ &\quad + \mathbb{E}\left[\|\ell^{\star}(\boldsymbol{Y}) - \ell(\boldsymbol{Y})\|^2\right] \end{split}$$

so that

(5)
$$\mathbb{E}\left[\|\vartheta - \ell(\boldsymbol{Y})\|^{2}\right] - \mathbb{E}\left[\|\vartheta - \ell(\boldsymbol{Y})\|^{2}\right] = \mathbb{E}\left[\|\ell^{\star}(\boldsymbol{Y}) - \ell(\boldsymbol{Y})\|^{2}\right] + 2\mathbb{E}\left[(\vartheta - \ell^{\star}(\boldsymbol{Y}))'\left(\ell^{\star}(\boldsymbol{Y}) - \ell(\boldsymbol{Y})\right)\right].$$

If ℓ^* in $\mathcal{L}_2(k; p)$ satisfies the Optimality Principle (4), then the equality (5) implies

$$\mathbb{E}\left[\|\vartheta - \ell(\boldsymbol{Y})\|^2\right] - \mathbb{E}\left[\|\vartheta - \ell^*(\boldsymbol{Y})\|^2\right] = \mathbb{E}\left[\|\ell^*(\boldsymbol{Y}) - \ell(\boldsymbol{Y})\|^2\right]$$

since $\ell - \ell^*$ is an element of $\mathcal{L}(k; p)$ as both ℓ^* and ℓ are. It follows that

$$\mathbb{E}\left[\|\vartheta - \ell(\boldsymbol{Y})\|^2\right] - \mathbb{E}\left[\|\vartheta - \ell^{\star}(\boldsymbol{Y})\|^2\right] \ge 0, \quad \ell \in \mathcal{L}(k; p)$$

and ℓ^{\star} is an LMSE estimator.

Conversely, if ℓ^* is an LMSE estimator, then (5) implies

$$\mathbb{E}\left[\|\ell^{\star}(\boldsymbol{Y}) - \ell(\boldsymbol{Y})\|^{2}\right] + 2\mathbb{E}\left[\left(\vartheta - \ell^{\star}(\boldsymbol{Y})\right)'\left(\ell^{\star}(\boldsymbol{Y}) - \ell(\boldsymbol{Y})\right)\right] \ge 0$$

for every ℓ element of $\mathcal{L}(k; p)$. Thus, with h an *arbitrary* element of $\mathcal{L}(k; p)$ and t in \mathbb{R} , consider the estimator $\ell_t : \mathbb{R}^k \to \mathbb{R}^p$ given by

$$\ell_t(oldsymbol{y}) = \ell^\star(oldsymbol{t}) + th(oldsymbol{y}), \quad oldsymbol{y} \in \mathbb{R}^k.$$

If is plain that g_t is also an element of $\mathcal{L}(k; p)$. Applying the last inequality with $\ell = \ell_t$ we conclude that

$$t^{2}\mathbb{E}\left[\|h(\boldsymbol{Y})\|^{2}\right] + 2t\mathbb{E}\left[\left(\vartheta - \ell^{\star}(\boldsymbol{Y})\right)'h(\boldsymbol{Y})\right] \ge 0, \quad t \in \mathbb{R}$$

and Fact 1.1 immediately leads to the Optimality Principle (4).

4 Algebraic characterization of the LMSE estimators

The main results concerning the *existence* and *algebraic characterization* of the LMSE estimators are given next. First some notation:We shall write

$$\boldsymbol{\mu}_Y = \mathbb{E}\left[\boldsymbol{Y}
ight] \quad ext{and} \quad \boldsymbol{\mu}_{artheta} = \mathbb{E}\left[artheta
ight].$$

Next, the appropriate covariance matrices are given by

$$\Sigma_{\vartheta Y} = \operatorname{Cov}\left[\vartheta, \boldsymbol{Y}\right] = \mathbb{E}\left[\left(\vartheta - \boldsymbol{\mu}_{\vartheta}\right)\left(\boldsymbol{Y} - \boldsymbol{\mu}_{Y}\right)'\right]$$

and

$$\Sigma_Y = \operatorname{Cov} \left[\boldsymbol{Y} \right] = \mathbb{E} \left[\left(\boldsymbol{Y} - \boldsymbol{\mu}_Y \right) \left(\boldsymbol{Y} - \boldsymbol{\mu}_Y \right)' \right].$$

The matrices $\Sigma_{\vartheta Y}$ and Σ_Y are $p \times k$ and $k \times k$ matrices, respectively.

Theorem 4.1 There always exists an affine estimator ℓ^* in $\mathcal{L}(k; p)$ which satisfies

$$\mathbb{E}\left[\|\vartheta - \ell^{\star}(\boldsymbol{Y})\|^{2}\right] \leq \mathbb{E}\left[\|\vartheta - \ell(\boldsymbol{Y})\|^{2}\right], \quad \ell \in \mathcal{L}(k; p).$$

With such an estimator $\ell^* : \mathbb{R}^k \to \mathbb{R}^p$ being given by

$$\ell^{\star}(\boldsymbol{y}) = A^{\star}\boldsymbol{y} + \boldsymbol{b}^{\star}, \quad \boldsymbol{y} \in \mathbb{R}^{k}$$

for some $p \times k$ matrix A^* and a vector \mathbf{b}^* in \mathbb{R}^p , then A^* and \mathbf{b}^* satisfy the normal equations

(6) $A^*\Sigma_Y = \Sigma_{\vartheta Y}$ and (7) $\boldsymbol{b}^* = \boldsymbol{\mu}_{\vartheta} - A^*\boldsymbol{\mu}_Y.$

The normal equations (6)-(7) have a unique solution when Σ_Y is invertible.

Corollary 4.1 If Σ_Y is invertible, then the LMSE estimator ℓ^* is uniquely determined by

$$\ell^{\star}(\boldsymbol{y}) = \boldsymbol{\mu}_{artheta} + \Sigma_{artheta Y} \Sigma_Y^{-1} \left(\boldsymbol{y} - \boldsymbol{\mu}_Y
ight), \quad \boldsymbol{y} \in \mathbb{R}^k.$$

If Σ_Y is not invertible, there is still uniqueness in the following sense; see analogy with Corollary 2.1.

Corollary 4.2 Let ℓ_1^{\star} and ℓ_2^{\star} be affine estimators in $\mathcal{L}(k; p)$ such that

$$\mathbb{E}\left[\|\vartheta - \ell_i^{\star}(\boldsymbol{Y})\|^2\right] \le \mathbb{E}\left[\|\vartheta - \ell(\boldsymbol{Y})\|^2\right], \quad \ell \in \mathcal{L}(k; p)$$

for each i = 1, 2, then we have

$$\mathbb{P}\left[\ell_1^{\star}(\boldsymbol{Y}) = \ell_2^{\star}(\boldsymbol{Y})\right] = 1.$$

5 A PROOF OF THEOREM 4.1

In analogy with the notation used for MMSE estimators, we shall write

$$\ell^{\star}(oldsymbol{y}) = \widehat{\mathbb{E}}\left[artheta|oldsymbol{Y} = oldsymbol{y}
ight], \quad oldsymbol{y} \in \mathbb{R}^k$$

and

$$\ell^{\star}(\boldsymbol{Y}) = \widehat{\mathbb{E}}\left[\vartheta|\boldsymbol{Y}\right].$$

This last rv is unambiguously defined (in the a.s. sense) in view of Corollary 4.2.

5 A proof of Theorem 4.1

The proof has three parts:

Part 1: Given the $p \times k$ matrix A, there is always a best vector $\boldsymbol{b} = \boldsymbol{b}(A)$ in \mathbb{R}^p For any $p \times k$ matrix A and vector \boldsymbol{b} in \mathbb{R}^p , note that

(8)

$$\mathbb{E}\left[\|\vartheta - (A\boldsymbol{Y} + \boldsymbol{b})\|^{2}\right] = \mathbb{E}\left[\|(\vartheta - \boldsymbol{\mu}_{\vartheta}) - A(\boldsymbol{Y} - \boldsymbol{\mu}_{Y}) + (\boldsymbol{\mu}_{\vartheta} - (A\boldsymbol{\mu}_{Y} + \boldsymbol{b}))\|^{2}\right] = \mathbb{E}\left[\|(\vartheta - \boldsymbol{\mu}_{\vartheta}) - A(\boldsymbol{Y} - \boldsymbol{\mu}_{Y})\|^{2}\right] + \|\boldsymbol{\mu}_{\vartheta} - (A\boldsymbol{\mu}_{Y} + \boldsymbol{b})\|^{2} \le \mathbb{E}\left[\|(\vartheta - \boldsymbol{\mu}_{\vartheta}) - A(\boldsymbol{Y} - \boldsymbol{\mu}_{Y})\|^{2}\right]$$

if we select $\boldsymbol{b} = \boldsymbol{b}(A)$ with

$$\boldsymbol{b}(A) = \boldsymbol{\mu}_{\vartheta} - A\boldsymbol{\mu}_{Y},$$

so that (7) holds.

Part 2: The optimal $p \times k$ matrix A is characterized by the normal equations (6)-(7) Part 1 shows that any LMSE estimator $\ell^* : \mathbb{R}^k \to \mathbb{R}^p$ is of the form

$$\ell^{\star}(\boldsymbol{y}) = A^{\star}\boldsymbol{y} + \boldsymbol{b}^{\star}, \quad \boldsymbol{y} \in \mathbb{R}^{k}$$

with b^* necessarily given by

$$\boldsymbol{b}^{\star} = \boldsymbol{\mu}_{\vartheta} - A^{\star} \boldsymbol{\mu}_{Y}.$$

The Orthogonality Principle states that A^* and b^* are completely characterized by

$$\mathbb{E}\left[\left(\vartheta - \left(A^{\star}\boldsymbol{Y} + \boldsymbol{b}^{\star}\right)\right)'\left(C\boldsymbol{Y} + \boldsymbol{c}\right)\right] = 0$$

5 A PROOF OF THEOREM 4.1

for every $p \times k$ matrix C and and every c in \mathbb{R}^p . This last relation is equivalent to

$$\mathbb{E}\left[\left(\vartheta - \left(A^{\star}\boldsymbol{Y} + \boldsymbol{b}^{\star}\right)\right)' C\boldsymbol{Y}\right] = 0$$

since $\mathbb{E} \left[\vartheta - (A^* Y + b^*) \right] = \mathbf{0}_p$ - This fact is just the fact, established later (in Section 6) that the LMSE estimator is unbiased in the sense that

$$\mathbb{E}\left[\widehat{\mathbb{E}}\left[\vartheta|\boldsymbol{Y}
ight]
ight]=\mathbb{E}\left[\vartheta
ight].$$

But, by elementary properties of the trace operator, we get

$$\mathbb{E}\left[\left(\vartheta - (A^{\star}\boldsymbol{Y} + \boldsymbol{b}^{\star})\right)'C\boldsymbol{Y}\right] = \mathbb{E}\left[\operatorname{Tr}\left(\left(\vartheta - (A^{\star}\boldsymbol{Y} + \boldsymbol{b}^{\star})\right)'C\boldsymbol{Y}\right)\right] \\ = \mathbb{E}\left[\operatorname{Tr}\left(C\boldsymbol{Y}\left(\vartheta - (A^{\star}\boldsymbol{Y} + \boldsymbol{b}^{\star})\right)'C\boldsymbol{Y}\right)\right] \\ = \mathbb{E}\left[\operatorname{Tr}\left(\left(\vartheta - (A^{\star}\boldsymbol{Y} + \boldsymbol{b}^{\star})\right)\boldsymbol{C}\boldsymbol{Y}'\right)\right)\right] \\ = \mathbb{E}\left[\operatorname{Tr}\left(\left(\vartheta - (A^{\star}\boldsymbol{Y} + \boldsymbol{b}^{\star})\right)\boldsymbol{Y}'C'\right)\right] \\ = \operatorname{Tr}\left(\mathbb{E}\left[\left(\vartheta - (A^{\star}\boldsymbol{Y} + \boldsymbol{b}^{\star})\right)\boldsymbol{Y}'C'\right]\right) \\ = \operatorname{Tr}\left(\mathbb{E}\left[\left(\vartheta - (A^{\star}\boldsymbol{Y} + \boldsymbol{b}^{\star})\right)\boldsymbol{Y}'C'\right]\right) \\ = \operatorname{Tr}\left(\mathbb{E}\left[\left(\vartheta - (A^{\star}\boldsymbol{Y} + \boldsymbol{b}^{\star})\right)\boldsymbol{Y}'C'\right]\right) \\ = \operatorname{Tr}\left(\mathbb{E}\left[\left(\vartheta - (A^{\star}\boldsymbol{Y} - \boldsymbol{b}^{\star})\right)\boldsymbol{Y}'\right]C'\right) \\ = \operatorname{Tr}\left(\mathbb{E}\left[\left(\vartheta - \mu_{\vartheta} - A^{\star}\left(\boldsymbol{Y} - \mu_{Y}\right)\right)\boldsymbol{Y}'\right]C'\right) \\ = \operatorname{Tr}\left(\mathbb{E}\left[\left(\vartheta_{\vartheta Y} - A^{\star}\boldsymbol{\Sigma}_{Y}\right)C'\right)\right]$$

whence

$$\operatorname{Tr}\left(\left(\Sigma_{\vartheta Y} - A^{\star}\Sigma_{Y}\right)C'\right) = 0.$$

Since the $p \times k$ matrix C is *arbitrary*, we conclude that

$$\Sigma_{\vartheta Y} - A^* \Sigma_Y = \boldsymbol{O}_{p \times k}$$

and the normal equations (6) are now established.

Part 3: The existence of the optimal $p \times k$ **matrix** A^* If Σ_Y is invertible, then the normal equations can be solved. Just take

$$A^{\star} = \Sigma_{\vartheta Y} \left(\Sigma_Y \right)^{-1}.$$

If Σ_Y is not invertible, then proceed as follows: Since Σ_Y is a covariance matrix, it is symmetric and positive semi-definite, hence it can always be diagonalized: There exists a $k \times k$ matrix H such that

$$H'\Sigma_Y H = D$$

where

$$H'H = I_k$$
 (hence $H' = H^{-1}$)

and D is a $k \times k$ diagonal matrix. Therefore, $\Sigma_Y = HDH^{-1}$, and the normal equations can now be rewritten as

$$A^{\star}\Sigma_{Y} = A^{\star} \left(HDH^{-1} \right) = \Sigma_{\vartheta Y},$$

or equivalently,

$$A^{\star}HD = \Sigma_{\vartheta Y}H.$$

Thus, with arbitrary i = 1, ..., p and j = 1, ..., k, entrywise we have

$$((A^{\star}H)D)_{ij} = (\Sigma_{\vartheta Y}H)_{ij},$$

whence

$$\sum_{\ell=1}^{k} (A^{\star}H)_{i\ell} D_{\ell\ell} \delta_{\ell j} = (\Sigma_{\vartheta Y} H)_{ij}$$

Thus, (10)

$$(A^{\star}H)_{ij}D_{jj} = (\Sigma_{\vartheta Y}H)_{ij}$$

If $D_{jj} \neq 0$, it follows that

$$(\boldsymbol{a}_i^{\star})'\boldsymbol{h}_j = \frac{1}{D_{jj}}(\Sigma_{\vartheta Y}H)_{ij}.$$

6 **Properties of LMSE estimators**

These properties are easy consequences of the Orthogonality Principle.

Property A (LMSE estimators are unbiased) We have $\mathbb{E}\left[\widehat{\mathbb{E}}\left[\vartheta|\mathbf{Y}\right]\right] = \mathbb{E}\left[\vartheta\right].$

With v arbitrary in \mathbb{R}^p , apply the Orthogonality Principle with the (degenerate) affine estimator h_v in $\mathcal{L}(k; p)$ given by

$$h_{\boldsymbol{v}}(\boldsymbol{y}) = \boldsymbol{v}, \quad \boldsymbol{y} \in \mathbb{R}^k.$$

This yields

(11)
$$0 = \mathbb{E}\left[\left(\vartheta - \widehat{\mathbb{E}}\left[\vartheta|\mathbf{Y}\right]\right)'\boldsymbol{v}\right] = \left(\mathbb{E}\left[\vartheta\right] - \mathbb{E}\left[\widehat{\mathbb{E}}\left[\vartheta|\mathbf{Y}\right]\right]\right)'\boldsymbol{v}.$$

The result follows since v is arbitrary.

Property B (Marginalization)

$$\widehat{\mathbb{E}}\left[\vartheta|\boldsymbol{Y}\right]_{i} = \widehat{\mathbb{E}}\left[\vartheta_{i}|\boldsymbol{Y}\right], \quad i = 1, \dots, p.$$

For each affine estimator ℓ in $\mathcal{L}(k; p)$, we have the decomposition

$$\mathbb{E}\left[\|\vartheta - \ell(\boldsymbol{Y})\|^2\right] = \sum_{i=1}^p \mathbb{E}\left[|\vartheta_i - \ell_i(\boldsymbol{Y})|^2\right].$$

We have

$$\ell(\boldsymbol{y}) = A \boldsymbol{y} + \boldsymbol{b}, \quad \boldsymbol{y} \in \mathbb{R}^k$$

where A is a $p \times k$ matrix and **b** an element of \mathbb{R}^p . Therefore, writing

$$A = \left[\begin{array}{c} \boldsymbol{a}_1' \\ \vdots \\ \boldsymbol{a}_p' \end{array} \right]$$

with a_1, \ldots, a_p elements of \mathbb{R}^k , we note that

$$\ell_i(\boldsymbol{y}) = (A\boldsymbol{y})_i + b_i = \boldsymbol{a}'_i \boldsymbol{y} + b_i, \quad \boldsymbol{y} \in \mathbb{R}^k.$$

It follows

(12)

$$\mathbb{E}\left[\|\vartheta - \ell(\boldsymbol{Y})\|^{2}\right] = \sum_{i=1}^{p} \mathbb{E}\left[|\vartheta_{i} - \boldsymbol{a}_{i}'\boldsymbol{Y} - b_{i}|^{2}\right] \\
\geq \sum_{i=1}^{p} \mathbb{E}\left[|\vartheta_{i} - \widehat{\mathbb{E}}\left[\vartheta_{i}|\boldsymbol{Y}\right]|^{2}\right]$$

and the desired result is straightforward by uniqueness.

Property C (Matrix version of the Orthogonality Principle)

With q a positive integer, it holds that

$$\mathbb{E}\left[\left(\vartheta - \widehat{\mathbb{E}}\left[\vartheta|\mathbf{Y}\right]\right)\ell(\mathbf{Y})'\right] = \boldsymbol{O}_{p \times q}, \quad \ell \in \mathcal{L}(k;q)$$

Any ℓ in $\mathcal{L}(k;q)$ can be written as

$$\ell(\boldsymbol{y}) = B\boldsymbol{y} + \boldsymbol{c}, \quad \boldsymbol{y} \in \mathbb{R}^k$$

with $q \times k$ matrix B and vector c in \mathbb{R}^q

Property D _____

If ϑ is a.s. constant, then

$$\mathbb{E}\left[\vartheta|\boldsymbol{Y}\right] = \vartheta \quad \mathbb{P} - a.s.$$

An easy consequence of the Orthogonality Principle as we note that

$$\vartheta - \mathbb{E}\left[\vartheta | \boldsymbol{Y}\right] = \ell(\boldsymbol{Y}) \quad \mathbb{P} - a.s.$$

for some ℓ in $\mathcal{L}(k; p)$.

Property E (Linearity)

With positive integer q, we have

$$\widehat{\mathbb{E}}\left[M\vartheta + \boldsymbol{m}|\boldsymbol{Y}\right] = M\widehat{\mathbb{E}}\left[\vartheta|\boldsymbol{Y}\right] + \boldsymbol{m} \quad \mathbb{P} - a.s.$$

where M is a $q \times p$ matrix and m is an element of \mathbb{R}^{q} .

Property F _____

If the rvs ϑ and \boldsymbol{Y} are related through

$$\vartheta = CY + c \quad \mathbb{P} - a.s.$$

where C is a $p \times k$ matrix and C is an element of \mathbb{R}^p , then

$$\widehat{\mathbb{E}}\left[\vartheta|\boldsymbol{Y}\right] = \vartheta \quad \mathbb{P} - a.s.$$

.

Property G

For every d in \mathbb{R}^k , we have

$$\widehat{\mathbb{E}}\left[artheta|oldsymbol{Y}+oldsymbol{d}
ight]=\widehat{\mathbb{E}}\left[artheta|oldsymbol{Y}
ight] \quad \mathbb{P}-a.s.$$

This property is an immediate consequence of the Orthogonality Principle upon noting the following equivalence: For every ℓ in $\mathcal{L}(k;p)$, there exists a unique $\tilde{\ell}$ in $\mathcal{L}(k;p)$ such that

$$\ell(oldsymbol{y}+oldsymbol{d})=\widetilde{\ell}(oldsymbol{y}), \quad oldsymbol{y}\in\mathbb{R}^k.$$

Conversely, for every $\tilde{\ell}$ in $\mathcal{L}(k; p)$, there exists a unique ℓ in $\mathcal{L}(k; p)$ such that

$$\widetilde{\ell}(oldsymbol{y}) = \ell(oldsymbol{y} + oldsymbol{d}), \quad oldsymbol{y} \in \mathbb{R}^k.$$

Just take

$$\ell(oldsymbol{y}) = ilde{\ell}(oldsymbol{y} - oldsymbol{d}), \quad oldsymbol{y} \in \mathbb{R}^k.$$

Property H __

With D an invertible $k \times k$ matrix, we have

$$\widehat{\mathbb{E}}\left[artheta|Doldsymbol{Y}
ight] = \widehat{\mathbb{E}}\left[artheta|oldsymbol{Y}
ight] \quad \mathbb{P}-a.s.$$

It follows from Properties G and H that

$$\widehat{\mathbb{E}}\left[\vartheta|D\boldsymbol{Y}+\boldsymbol{d}\right] = \widehat{\mathbb{E}}\left[\vartheta|\boldsymbol{Y}\right] \quad \mathbb{P}-a.s.$$

for any invertible $k \times k$ matrix D and every d in \mathbb{R}^k .

Property H is an immediate consequence of the following equivalence: For every ℓ in $\mathcal{L}(k; p)$, the estimator $\tilde{\ell} : \mathbb{R}^k \to \mathbb{R}^p$ given by

$$ilde{\ell}(oldsymbol{y}) = \ell(Doldsymbol{y}), \quad oldsymbol{y} \in \mathbb{R}^k$$

is an affine estimator in $\mathcal{L}(k; p)$. Conversely, for every $\tilde{\ell}$ in $\mathcal{L}(k; p)$, there exists a unique affine estimator ℓ in $\mathcal{L}(k; p)$ such that

$$\widetilde{\ell}(oldsymbol{y}) = \ell(Doldsymbol{y}), \quad oldsymbol{y} \in \mathbb{R}^k.$$

Just take

$$\ell(\boldsymbol{y}) = \widetilde{\ell}(D^{-1}\boldsymbol{y}), \quad \boldsymbol{y} \in \mathbb{R}^k.$$

Property I

If the rvs ϑ and \boldsymbol{Y} are uncorrelated, i.e.,

$$\Sigma_{\vartheta Y} = \boldsymbol{O}_{p \times k},$$

then

$$\widehat{\mathbb{E}}\left[\vartheta|\boldsymbol{Y}\right] = \mathbb{E}\left[\vartheta\right] \quad \mathbb{P} - a.s.$$

The Orthogonality Principle states that

$$\mathbb{E}\left[\left(\vartheta - \widehat{\mathbb{E}}\left[\vartheta|\boldsymbol{Y}\right]\right)' \ell(\boldsymbol{Y})\right] = 0, \quad \ell \in \mathcal{L}(k;p).$$

We note that

(13)
$$\mathbb{E}\left[\vartheta'\ell(\boldsymbol{Y})\right] = \mathbb{E}\left[\left(\vartheta - \mathbb{E}\left[\vartheta\right]\right)'\ell(\boldsymbol{Y})\right] + \mathbb{E}\left[\mathbb{E}\left[\vartheta\right]'\ell(\boldsymbol{Y})\right] \\ = \mathbb{E}\left[\mathbb{E}\left[\vartheta\right]'\ell(\boldsymbol{Y})\right]$$

because the the rvs ϑ and \boldsymbol{Y} are uncorrelated. The Orthogonality Principle now takes the form

$$\mathbb{E}\left[\left(\mathbb{E}\left[\vartheta\right] - \widehat{\mathbb{E}}\left[\vartheta|\mathbf{Y}\right]\right)' \ell(\mathbf{Y})\right] = 0, \quad \ell \in \mathcal{L}(k;p)$$

and the conclusion follows.

The next three properties involve the \mathbb{R}^k -valued rv Y and the \mathbb{R}^m -valued rv Z with k and m arbitrary positive integers. Both rvs are *second-order* rvs.

Property J _____

If the \mathbb{R}^k -valued rv Y and the \mathbb{R}^m -valued rv Z are uncorrelated, then

$$\widehat{\mathbb{E}}\left[\vartheta|\boldsymbol{Y},\boldsymbol{Z}\right] = \widehat{\mathbb{E}}\left[\vartheta|\boldsymbol{Y}\right] + \widehat{\mathbb{E}}\left[\vartheta|\boldsymbol{Z}\right] \quad \mathbb{P}-a.s.$$

whenever

$$\mathbb{E}\left[\vartheta\right] = \mathbf{0}_p.$$

Any affine estimator ℓ in $\mathcal{L}(k+m;p)$ is of the form

$$\ell(\boldsymbol{y}, \boldsymbol{z}) = A_y \boldsymbol{y} + A_z \boldsymbol{z} + \boldsymbol{b}, \qquad \boldsymbol{y} \in \mathbb{R}^k \\ \boldsymbol{z} \in \mathbb{R}^m$$

where A_y and A_z are $p \times k$ and $p \times m$ matrices, and **b** an element in \mathbb{R}^p . In particular,

$$\mathbb{E}\left[\vartheta|\boldsymbol{Y},\boldsymbol{Z}\right] = \ell^{\star}(\boldsymbol{Y},\boldsymbol{Z}) \quad \mathbb{P}-a.s.$$

with affine estimator ℓ^{\star} in $\mathcal{L}(k+m;p)$ of the form

$$\ell^{\star}(\boldsymbol{y}, \boldsymbol{z}) = A_{y}^{\star}\boldsymbol{y} + A_{z}^{\star}\boldsymbol{z} + \boldsymbol{b}^{\star}, \qquad \boldsymbol{y} \in \mathbb{R}^{k} \\ \boldsymbol{z} \in \mathbb{R}^{m}$$

where A_y^* and A_z^* are $p \times k$ and $p \times m$ matrices, and b^* an element in \mathbb{R}^p . Since μ_ϑ we recall that b^* is given by

$$\boldsymbol{b}^{\star} = -A_{y}^{\star}\boldsymbol{\mu}_{Y} - A_{z}^{\star}\boldsymbol{\mu}_{Z}.$$

so that

$$\ell^{\star}(\boldsymbol{y}, \boldsymbol{z}) = A_{y}^{\star}\left(\boldsymbol{y} - \boldsymbol{\mu}_{Y}
ight) + A_{z}^{\star}\left(\boldsymbol{z} - \boldsymbol{\mu}_{Z}
ight), \qquad oldsymbol{y} \in \mathbb{R}^{k} \ \boldsymbol{z} \in \mathbb{R}^{m}.$$

The Orthogonality Principle will read

(14)
$$\mathbb{E}\left[\left(\vartheta - \widehat{\mathbb{E}}\left[\vartheta | \boldsymbol{Y}, \boldsymbol{Z}\right]\right)' \ell(\boldsymbol{Y}, \boldsymbol{Z})\right] = 0, \quad \ell \in \mathcal{L}(k+m; p).$$

With the notation introduced earlier we see that

$$\left(\vartheta - \widehat{\mathbb{E}}\left[\vartheta|\mathbf{Y}, \mathbf{Z}\right]\right)' \ell(\mathbf{Y}, \mathbf{Z})$$

$$= \left(\vartheta - A_y^* \mathbf{Y} - A_z^* \mathbf{Z} - \mathbf{b}^*\right)' \left(A_y \mathbf{Y} + A_z \mathbf{Z} + \mathbf{b}\right)$$

$$= \left(\vartheta - A_y^* \left(\mathbf{Y} - \boldsymbol{\mu}_Y\right) - A_z^* \left(\mathbf{Z} - \boldsymbol{\mu}_Z\right)\right)' \left(A_y \mathbf{Y} + A_z \mathbf{Z} + \mathbf{b}\right)$$

$$= \left(\vartheta - A_y^* \left(\mathbf{Y} - \boldsymbol{\mu}_Y\right) - A_z^* \left(\mathbf{Z} - \boldsymbol{\mu}_Z\right)\right)' \left(A_y \mathbf{Y} + \mathbf{b}\right)$$

$$+ \left(\vartheta - A_y^* \left(\mathbf{Y} - \boldsymbol{\mu}_Y\right) - A_z^* \left(\mathbf{Z} - \boldsymbol{\mu}_Z\right)\right)' A_z \mathbf{Z}$$
(15)

Next, upon taking $A_z = O_{p \times m}$ in (15) and using the resulting (14), we conclude that

$$0 = \mathbb{E}\left[\left(\vartheta - A_y^{\star}\left(\boldsymbol{Y} - \boldsymbol{\mu}_Y\right) - A_z^{\star}\left(\boldsymbol{Z} - \boldsymbol{\mu}_Z\right)\right)' \left(A_y \boldsymbol{Y} + \boldsymbol{b}\right)\right]$$

$$= \mathbb{E}\left[\left(\vartheta - A_{y}^{\star}\left(\boldsymbol{Y} - \boldsymbol{\mu}_{Y}\right)\right)'\left(A_{y}\boldsymbol{Y} + \boldsymbol{b}\right)\right] \\ - \mathbb{E}\left[\left(A_{z}^{\star}\left(\boldsymbol{Z} - \boldsymbol{\mu}_{Z}\right)\right)'\left(A_{y}\boldsymbol{Y} + \boldsymbol{b}\right)\right] \\ (16) = \mathbb{E}\left[\left(\vartheta - A_{y}^{\star}\left(\boldsymbol{Y} - \boldsymbol{\mu}_{Y}\right)\right)'\left(A_{y}\boldsymbol{Y} + \boldsymbol{b}\right)\right]$$

as we make use of the fact that the rvs Y and Z are uncorrelated. It follows that

$$\widehat{\mathbb{E}}\left[\vartheta|\boldsymbol{Y}\right] = A_y^{\star}\left(\boldsymbol{Y} - \boldsymbol{\mu}_Y\right) \quad \mathbb{P} - a.s.$$

by the Orthogonality Principle characterizing the LMMSE estimator of ϑ on the basis of *Y*.

To proceed, take $A_y = O_{p \times k}$ and $b = 0_p$ in (15) and use the resulting (14). This gives

$$0 = \mathbb{E}\left[\left(\vartheta - A_{y}^{\star}(\boldsymbol{Y} - \boldsymbol{\mu}_{Y}) - A_{z}^{\star}(\boldsymbol{Z} - \boldsymbol{\mu}_{Z})\right)' A_{z}\boldsymbol{Z}\right]$$
$$= \mathbb{E}\left[\left(\vartheta - A_{z}^{\star}(\boldsymbol{Z} - \boldsymbol{\mu}_{Z})\right)' A_{z}\boldsymbol{Z}\right] - \mathbb{E}\left[\left(A_{y}^{\star}(\boldsymbol{Y} - \boldsymbol{\mu}_{Y})\right)' A_{z}\boldsymbol{Z}\right]$$
$$= \mathbb{E}\left[\left(\vartheta - A_{z}^{\star}(\boldsymbol{Z} - \boldsymbol{\mu}_{Z})\right)' A_{z}\boldsymbol{Z}\right]$$

as we make use of the fact that the rvs Y and Z are uncorrelated. It follows that

$$\widehat{\mathbb{E}}\left[\vartheta|\mathbf{Z}\right] = A_z^{\star}\left(\mathbf{Z} - \boldsymbol{\mu}_Z\right) \quad \mathbb{P} - a.s.$$

by the Orthogonality Principle characterizing the LMMSE estimator of ϑ on the basis of Z.

To conclude the proof we note that

(18)

$$\widehat{\mathbb{E}}\left[\vartheta|\boldsymbol{Y},\boldsymbol{Z}\right] = \ell^{\star}(\boldsymbol{Y},\boldsymbol{Z}) \\
= A_{y}^{\star}\left(\boldsymbol{Y}-\boldsymbol{\mu}_{Y}\right) + A_{z}^{\star}\left(\boldsymbol{Z}-\boldsymbol{\mu}_{Z}\right) \\
= \widehat{\mathbb{E}}\left[\vartheta|\boldsymbol{Y}\right] + \widehat{\mathbb{E}}\left[\vartheta|\boldsymbol{Z}\right] \quad \mathbb{P}-a.s.$$

as desired.

(

$$\widehat{\mathbb{E}}\left[\vartheta|\boldsymbol{Y},\boldsymbol{Z}\right] = \widehat{\mathbb{E}}\left[\vartheta|\boldsymbol{Y}\right] + \widehat{\mathbb{E}}\left[\vartheta|\boldsymbol{Z}\right] - \mathbb{E}\left[\vartheta\right] \quad \mathbb{P} - a.s.$$

Property F applied to the zero-mean rv $\vartheta - \mathbb{E}[\vartheta]$ gives

$$\mathbb{E}\left[\vartheta - \mathbb{E}\left[\vartheta\right]|\boldsymbol{Y}, \boldsymbol{Z}\right] = \mathbb{E}\left[\vartheta|\boldsymbol{Y}, \boldsymbol{Z}\right] - \mathbb{E}\left[\vartheta\right] \quad \mathbb{P} - a.s.$$

while Property J applied to the zero-mean rv $\vartheta - \mathbb{E} \left[\vartheta \right]$ yields

(19)

$$\widehat{\mathbb{E}}\left[\vartheta - \mathbb{E}\left[\vartheta\right]|\boldsymbol{Y}, \boldsymbol{Z}\right] = \widehat{\mathbb{E}}\left[\vartheta - \mathbb{E}\left[\vartheta\right]|\boldsymbol{Y}\right] + \widehat{\mathbb{E}}\left[\vartheta - \mathbb{E}\left[\vartheta\right]|\boldsymbol{Z}\right] \\
= \widehat{\mathbb{E}}\left[\vartheta|\boldsymbol{Y}\right] - \mathbb{E}\left[\vartheta\right] + \widehat{\mathbb{E}}\left[\vartheta|\boldsymbol{Z}\right] - \mathbb{E}\left[\vartheta\right] \\
= \widehat{\mathbb{E}}\left[\vartheta|\boldsymbol{Y}\right] + \widehat{\mathbb{E}}\left[\vartheta|\boldsymbol{Z}\right] - 2\mathbb{E}\left[\vartheta\right] \quad \mathbb{P} - a.s$$

where the last step follows by Property F. Comparing we get the result.

Property L ____

More generally, with arbitrary \mathbb{R}^k -valued rv Y and \mathbb{R}^m -valued rv Z, we have

$$\widehat{\mathbb{E}}\left[\vartheta|\boldsymbol{Y},\boldsymbol{Z}\right] = \widehat{\mathbb{E}}\left[\vartheta|\boldsymbol{Y}\right] + \widehat{\mathbb{E}}\left[\vartheta|\boldsymbol{Z} - \widehat{\mathbb{E}}\left[\boldsymbol{Z}|\boldsymbol{Y}\right]\right] - \mathbb{E}\left[\vartheta\right] \quad \mathbb{P} - a.s$$

The rv $Z - \widehat{\mathbb{E}}[Z|Y]$ is known as the *(linear) innovations* in Z with respect to Y. The rvs Y and $Z - \widehat{\mathbb{E}}[Z|Y]$ are always uncorrelated.

We start by noting that

$$\widehat{\mathbb{E}}\left[\boldsymbol{Z}|\boldsymbol{Y}\right] = A^{\star}\boldsymbol{Y} + \boldsymbol{b}^{\star}$$

for some $m \times k$ matrix A^* and an element \boldsymbol{b}^* of \mathbb{R}^m .

Thus, with

$$\boldsymbol{V} \equiv \boldsymbol{Z} - \mathbb{E}\left[\boldsymbol{Z}|\boldsymbol{Y}\right],$$

it holds that

$$\begin{bmatrix} \mathbf{Y} \\ \mathbf{V} \end{bmatrix} = D \begin{bmatrix} \mathbf{Y} \\ \mathbf{Z} \end{bmatrix} + \begin{bmatrix} \mathbf{0}_k \\ -\mathbf{b}^* \end{bmatrix}$$

with $(m+k) \times (m+k)$ matrix R given by

$$D = \left[\begin{array}{cc} \boldsymbol{I}_k & \boldsymbol{O}_{k \times m} \\ -A^{\star} & \boldsymbol{I}_m \end{array} \right]$$

Observe that the equation

$$\begin{bmatrix} \boldsymbol{I}_k & \boldsymbol{O}_{k \times m} \\ -A^{\star} & \boldsymbol{I}_m \end{bmatrix} \begin{bmatrix} \boldsymbol{y} \\ \boldsymbol{z} \end{bmatrix} = \begin{bmatrix} \boldsymbol{0}_k \\ \boldsymbol{0}_m \end{bmatrix}$$

implies

$$\boldsymbol{I}_k \boldsymbol{y} + \boldsymbol{O}_{k \times m} \boldsymbol{z} = \boldsymbol{0}_k$$

and

$$-A^{\star}\boldsymbol{y}+\boldsymbol{I}_{m}\boldsymbol{z}=\boldsymbol{0}_{m}.$$

7 THE GAUSSIAN CASE

The first equation implies $y = 0_k$; replacing this fact into the second equation we get $z = 0_m$. In other words, Ker(D) is reduced to the zero vector in \mathbb{R}^{k+m} , and is therefore invertible.

As a result,

$$\begin{bmatrix} \mathbf{Y} \\ \mathbf{Z} \end{bmatrix} = D^{-1} \begin{bmatrix} \mathbf{Y} \\ \mathbf{V} \end{bmatrix} + D^{-1} \begin{bmatrix} \mathbf{0}_k \\ -\mathbf{b}^* \end{bmatrix}.$$

Invoking Property G and Property H we conclude that

$$\widehat{\mathbb{E}}\left[artheta|oldsymbol{Y},oldsymbol{Z}
ight] = \widehat{\mathbb{E}}\left[artheta|oldsymbol{Y},oldsymbol{V}
ight]$$

and the desired conclusion now follows by Property K since rvs Y and $Z - \widehat{\mathbb{E}}[Z|Y]$ are always uncorrelated (as an immediate consequence of the Orthoganility Principle).

7 The Gaussian case