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DETECTION AND ESTIMATION
THEORY

THE PARAMETER ESTIMATION PROBLEM

Throughout, p, q and k are positive integers.

1 The basic setting
With Θ being a Borel subset of Rp, consider a parametrized family {Fθ, θ ∈ Θ} of
probability distributions on Rk. The problem considered here is that of estimating
θ on the basis of some Rk-valued observation Y whose statistical description
depends on θ.

The setting is alway understood as follows: Given some measurable space
(Ω,F), consider a rv Y : Ω→ Rk defined on it. With {Fθ, θ ∈ Θ}, we associate
a collection of probability measures {Pθ, θ ∈ Θ} defined on F such that

Pθ [Y ∈ B] =

∫
B

dFθ(y),
B ∈ B(Rk),
θ ∈ Θ.

The following concrete construction is standard: Take Ω = Rk and F =
B
(
Rk
)
, and define the rv Y : Ω→ Rk to be the identity mapping given by

Y (ω) = ω, ω ∈ Rk.

For each θ in Θ, the probability measure Pθ onF is the unique probability measure
induced by the probability distribution function Fθ through the requirement

Pθ [Y ∈ B] =

∫
B

dFθ(y),
B ∈ B(Rk),
θ ∈ Θ.

We will often assume the following absolute continuity assumption on the family
of probability distributions {Fθ, θ ∈ Θ}:

Condition (A): For each θ in Θ, the probability distribution Fθ on Rk is absolutely
continuous with respect to some distribution F on Rk.
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This is equivalent to requiring that for each θ in Θ, there exists a Borel mapping
fθ : Rk → R+ such that

Fθ(y) =

∫ y
−∞

fθ(η)dF (η), y ∈ Rk.(1)

For mathematical reasons we require that the mapping

Θ× Rk → R+ : (θ,y)→ fθ(y)

be Borel measurable. This condition is satisfied in all applications of interest.
Many results and statistical concepts take a very pleasing from in the context

of so-called exponential families.

Assume the family {Fθ, θ ∈ Θ} to satisfy Condition (A) with respect to the prob-
ability distribution F on Rk. The family {Fθ, θ ∈ Θ} is said to be an exponential
family (with respect to F ) if the corresponding density functions {fθ, θ ∈ Θ} are
of the form

fθ(y) = C(θ)q(y)eQ(θ)′K(y) F − a.e.(2)

for every θ in Θ with Borel mappings C : Θ → R+, Q : Θ → Rq, q : Rk → R+

and K : Rk → Rq.

For each θ in Θ, the requirement∫
Rk
fθ(y)dF (y) = 1

reads
C(θ)

∫
Rk
q(y)eQ(θ)′K(y)dF (y) = 1.

This is equivalent to
C(θ) > 0

and
0 <

∫
Rk
q(y)eQ(θ)′K(y)dF (y) <∞.
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2 Statistics
It is customary to refer to any Borel mapping T : Rk → Rq as a statistic.

A statistic T : Rk → Rq is sufficient for {Fθ, θ ∈ Θ}, or alternatively, for
estimating θ on the basis of Y , if there exists a mapping γ : Rq ×B(Rk)→ [0, 1]
which satisfies the following conditions:

(i) For every B in B(Rk), the mapping Rq → [0, 1] : t → γ(B; t) is Borel
measurable;

(ii) For every t in Rq, the mapping B(Rk) → [0, 1] : B → γ(B; t) is a
probability measure on B(Rk); and

(iii) For every θ in Θ, the property

Pθ [Y ∈ B|T (Y ) = t] = γ(B; t) Pθ − a.s.
B ∈ B(Rk)
t ∈ Rq

holds.

In other words, the statistic T : Rk → Rq is sufficient for {Fθ, θ ∈ Θ} if the
conditional distribution of Y under Pθ given T (Y ) does not depend on θ. Several
observations to keep in mind:

(i) The statistic T : Rk → Rk given by

T (y) = y, y ∈ Rk

is always a sufficient statistic; we shall refer to it as the trivial sufficient
statistic.

(ii) Consider a statistic T : Rk → Rq. If it is sufficient for {Fθ, θ ∈ Θ}, then
the statistic T̃ : Rk → Rr given by

T̃ (y) = g(T (y)), y ∈ Rk

for some Borel mapping g : Rq → Rr is not necessarily sufficient – Just
take

g(t) = 0r, t ∈ Rq.

(iii) On the other hand, if for some Borel mapping g : Rq → Rr, the statistic
T̃ : Rk → Rr given above is sufficient for {Fθ, θ ∈ Θ}, then the statistic
T : Rk → Rq is necessarily sufficient for {Fθ, θ ∈ Θ}.
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Two statistics T1 : Rk → Rq1 and T2 : Rk → Rq2 (with q1 and q2 possibly
different) are said to be (essentially) equivalent under the family {Fθ, θ ∈ Θ} if
there exists Borel mappings g12 : Rq1 → Rq2 and g21 : Rq2 → Rq1 such that

Pθ [T2(Y ) = g21(T1(Y )] = 1, θ ∈ Θ(3)

and
Pθ [T1(Y ) = g12(T2(Y )] = 1, θ ∈ Θ(4)

In many cases, q1 = q2 = q and the mappings g12, g21 : Rq → Rq can be taken
to be bijections which are inverses of each other, say g12 = g with bijective Borel
mapping g : Rq → Rq and g21 = g−1.

The family {Fθ, θ ∈ Θ} is complete if whenever we consider a Borel mapping
ψ : Rk → R such that

Eθ [|ψ(Y )|] <∞, θ ∈ Θ

the condition
Eθ [ψ(Y )] = 0, θ ∈ Θ

implies
Pθ [ψ(Y ) = 0] = 1, θ ∈ Θ.

The next result gives a simple implication for complete families in terms of pos-
sible sufficient statistics.

Lemma 2.1 If the family {Fθ, θ ∈ Θ} is complete, then there exists no non-
trivial sufficient statistic for estimating θ on the basis of Y in the sense that for
each i = 1, . . . , k, we have

Pθ [Yi = Eθ [Yi|T (Y )]] = 1, θ ∈ Θ(5)

Proof. We shall assume first that the finite mean condition

Eθ [|Yi|] <∞,
i = 1, . . . , k
θ ∈ Θ.
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holds. It follows that for each t in Rq, the conditional expectations

Eθ [Yi|T (Y ) = t] ,
i = 1, . . . , k
θ ∈ Θ.

are all well defined and finite.
Consider now a sufficient statistic T : Rk → Rq which is sufficient for

{Fθ, θ ∈ Θ}. Thus, for each t in Rq, we conclude that

Eθ [Yi|T (Y ) = t] =

∫
Rk
ηidγ(η, t),

i = 1, . . . , k
θ ∈ Θ.

where the notation is the one appearing in the definition of sufficiency for the
statistic T : Rk → Rq.

We define the Borel mapping h : Rk × Rq → Rk componentwise by

hi(y; t) ≡ yi −
∫
Rk
ηidγ(η, t),

i = 1, . . . , k
y ∈ Rk

t ∈ Rq

Note that
hi(Y ;T (Y )) = Yi − Eθ [Yi|T (Y )] , θ ∈ Θ

and by iterated conditioning, we can conclude that

Eθ [hi(Y ;T (Y ))] = Eθ [Yi]− Eθ [Eθ [Yi|T (Y )]] = 0,
i = 1, . . . , k
θ ∈ Θ

It is also plain that

Eθ [|hi(Y ;T (Y ))|] ≤ 2Eθ [|Yi|] <∞,
i = 1, . . . , k
θ ∈ Θ.

For each i = 1, . . . .k, consider the Borel mapping ψi : Rk → R given by

ψi(y) ≡ hi(y, T (y)), y ∈ Rk

The discussion so far implies

Eθ [|ψi(Y )|] <∞, θ ∈ Θ

with
Eθ [ψi(Y )] = 0, θ ∈ Θ.
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The completeness of the family {Fθ, θ ∈ Θ} now gives

Pθ [ψi(Y ) = 0] = 1, θ ∈ Θ

and this establishes (5).
If the finite mean condition fails to hold, i.e., Eθ [|Yi|] = ∞ for some i =

1, . . . , k and some θ in Θ, then we proceed as follows: Let g : R → R denote a
strictly increasing bijection that maps R into (−1, 1), i.e., g(x) = 2

π
arctanx for

each x in R. Then, define the Rk-valued rv Z componentwise by

Zi = g(Yi), i = 1, . . . , k.

It is plain that Eθ [|Zi|] <∞ since |Zi| ≤ 1.
Write

Gθ(z) ≡ Pθ [Z ≤ z] ,
z ∈ Rk

θ ∈ Θ.
(6)

It is also easy to see that the family {Gθ, θ ∈ Θ} is also a complete family. Next,
if T : Rk → Rq is a sufficient statistic for {Fθ, θ ∈ Θ}, then T̃ : Rk → Rq given
by

T̃ (z) ≡ T (g−1(z1), . . . , g
−1(zk)), z ∈ Rk

is also a sufficient statistic for {Gθ, θ ∈ Θ}: Indeed for each θ in Θ, we have

Pθ
[
Z ∈ B

∣∣∣T̃ (Z) = t̃
]

= Pθ
[
(g(Y1), . . . , g(Yk)) ∈ B

∣∣∣T (Y ) = t̃
]

=

∫
Bg

dγ(η; t̃), B ∈ B(Rq)(7)

where Bg is the Borel subset of Rk given by

Bg ≡
{
y ∈ Rk : (g(y1), . . . , g(yk)) ∈ B

}
.

By the first part of the proof it follows that

Pθ
[
Zi = Eθ

[
Zi|T̃ (Z)

]]
= 1, θ ∈ Θ(8)

Equivalently,

Pθ
[
Yi = g−1 (Eθ [g(Yi)|T (Y )])

]
= 1, θ ∈ Θ(9)
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3 Finite mean estimators
An estimator for θ on the basis of Y is any Borel mapping g : Rk → Rp. We
define the estimation error at θ (in Θ) associated with the estimator g : Rk → Rp

as the rv εg(θ;Y ) given by

εg(θ;Y ) = g(Y )− θ.

An estimator g : Rk → Rp is said to be a finite mean estimator if

Eθ [|gi(Y )|] <∞, i = 1, . . . , p
θ ∈ Θ.

The bias of the finite mean estimator g : Rk → Rp at θ is well defined and given
by

bθ(g) = Eθ [εg(θ;Y )] = Eθ [g(Y )]− θ.

The finite mean estimator g : Rk → Rp is said to be unbiased at θ if bθ(g) = 0.
Furthermore, the finite mean estimator g : Rk → Rp is said to be unbiased if

Eθ [g(Y )] = θ, θ ∈ Θ.

Under the completeness of the family {Fθ, θ ∈ Θ}, unbiased estimators for θ
on the basis of Y are essentially unique in the following sense.

Lemma 3.1 Assume the family {Fθ, θ ∈ Θ} to be complete. If the finite mean
estimators g1, g2 : Rk → Rp are unbiased, then

Pθ [g1(Y ) = g2(Y )] = 1, θ ∈ Θ.

Proof. With finite mean estimators g1, g2 : Rk → Rp, introduce the Borel map-
ping ψ : Rk → Rp given by

ψ(y) ≡ g1(y)− g2(y), y ∈ Rk.

Fix i = 1, . . . , p and θ in Θ. The finite mean assumption implies

Eθ [|ψi(Y )|] ≤ Eθ [|g1,i(Y )|] + Eθ [|g2,i(Y )|] <∞
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while the fact that these estimators are unbiased yields

Eθ [ψi(Y )] = Eθ [g1,i(Y )]− Eθ [g2,i(Y )] = θi − θi = 0,

By the completeness of the the family {Fθ, θ ∈ Θ} we conclude

Pθ [ψi(Y ) = 0] = 1, θ ∈ Θ

and the desired result is obtained.

4 Finite variance estimators
An estimator g : Rk → Rp is a finite variance estimator if

Eθ
[
|gi(Y )|2

]
<∞, i = 1, . . . , p

θ ∈ Θ.

Obviously, a finite variance estimator is also a finite mean estimator. The error
covariance of the finite variance estimator g : Rk → Rp at θ is the p × p matrix
Σθ(g) given by

Σθ(g) = Eθ [εg(θ;Y )εg(θ;Y )′] .

In general, in spite of the terminology, the matrix Σθ(g) is not the covariance
matrix of the error g(Y ); in fact we have

Σθ(g) = Covθ [g(Y )] + bθ(g)bθ(g)′, θ ∈ Θ.

A finite variance estimator g? : Rk → Rp is said to be a Minimum Variance
Unbiased Estimator (MVUE) if it is unbiased and

Σθ(g
?) ≤ Σθ(g), θ ∈ Θ

for any other finite variance unbiased estimator g : Rk → Rp.

Alternatively, a finite variance estimator g? : Rk → Rp is said to be an MVUE if
it is an unbiased estimator and

Covθ [g?(Y )] ≤ Covθ [g(Y )] , θ ∈ Θ

for any other finite variance unbiased estimator g : Rk → Rp. The basic question
of finding MVUEs is addressed next.



5 THE RAO-BLACKWELL THEOREM 9

5 The Rao-Blackwell Theorem
A basic step in the search for MVUEs is provided by the Rao-Blackwell Theorem.
But first an additional concept is needed.

A statistic T : Rk → Rq is said to be a complete sufficient statistic for {Fθ, θ ∈ Θ}
if it is a sufficient statistic for {Fθ, θ ∈ Θ} with the property that the family
{Hθ, θ ∈ Θ} of probability distributions on Rq is complete where

Hθ(t) = Pθ [T (Y ) ≤ t] , t ∈ Rq

θ ∈ Θ.

This notion has an easy and important consequence for finding MVUEs.

Lemma 5.1 Let T : Rk → Rq be a complete sufficient statistic for {Fθ, θ ∈ Θ}.
If the Borel mappings g̃1, g̃2 : Rq → Rp have the property that for each i = 1, 2,
the estimator g̃i ◦ T : Rk → Rp is a finite mean unbiased estimator for θ on the
basis of Y , then

Pθ [g̃1(T (Y ) = g̃2(T (Y ))] = 1, θ ∈ Θ.(10)

Proof. Under the foregoing assumptions, we note that

Eθ [g̃i(T (Y )] = θ,
i = 1, 2
θ ∈ Θ

whence Eθ [g̃1(T (Y )− g̃1(T (Y )] = 0 for each θ in Θ. The conclusion (10) now
follows by the complete sufficiency of the statistic T : Rk → Rq.

The Rao-Blackwell Theorem given next can be viewed as providing a variance
reduction algorithm.

Theorem 5.1 Let T : Rk → Rq be a sufficient statistic for {Fθ, θ ∈ Θ}. With
any finite variance estimator g : Rk → Rp, define the mapping ĝ : Rq → Rp given
by

ĝ(t) =

∫
Rk
g(y)dγ(y, t), t ∈ Rq(11)
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where the mapping γ : Rq ×B(Rk)→ [0, 1] is the one appearing in the definition
of the sufficiency of the statistic T : Rk → Rq.

The mapping ĝ ◦ T : Rk → Rp is a finite variance estimator for θ on the basis
of Y such that

bθ(ĝ ◦ T ) = bθ(g)

and
Σθ(ĝ ◦ T ) ≤ Σθ(g)

for every θ in Θ. Moreover,

Σθ(ĝ ◦ T ) = Σθ(g)

at some θ in Θ iff
Pθ [g(Y ) = ĝ(T (Y ))] = 1.

The “algorithm” that takes the estimator g into the estimator ĝ◦T does not change
the bias but reduces variability. These properties are simple consequences of
Jensen’s inequality (for conditional expectations) applied to the rv

v′ (g(Y )− θ) (g(Y )− θ)′ v, θ ∈ Θ

(combined with the law of iterated conditioning) once it is observed that

ĝ(T (Y )) = Eθ [g(Y )|T (Y )] , Pθ−a.s.

for every θ in Θ.

6 Finding MVUEs
The basic idea relies on Lemma 5.1 and on the Rao-Blackwell Theorem: Start
with a statistics T : Rk → Rq which is a sufficient statistic for {Fθ, θ ∈ Θ}.
By the Rao-Blackwell Theorem above, if there exists an unbiased estimator g :
Rk → Rp, then with the definition (11), the estimator ĝ ◦ T : Rk → Rp is also an
unbiased estimator for θ on the basis of Y with

Σθ(ĝ ◦ T ) ≤ Σθ(g), θ ∈ Θ.
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On the other hand, if gOther : Rk → Rp is another arbitrary unbiased estimator,
then define the mapping ĝOther : Rk → Rq given by

ĝOther(t) =

∫
Rk
gOther(y)dγ(y, t), t ∈ Rq.(12)

By the Rao-Blackwell Theorem the estimator ĝOther ◦ T : Rk → Rp is also an
unbiased estimator for θ on the basis of Y with

Σθ(ĝOther ◦ T ) ≤ Σθ(gOther), θ ∈ Θ.

Now, if the statistic T : Rk → Rq is a complete sufficient statistic for {Fθ, θ ∈
Θ}, then Lemma 5.1 implies

Pθ [ĝ ◦ T (Y ) = ĝOther ◦ T (Y )] = 1, θ ∈ Θ,

whence
Σθ(ĝ ◦ T ) = Σθ(ĝOther ◦ T ), θ ∈ Θ.

Therefore,

Σθ(ĝ ◦ T ) = Σθ(ĝOther ◦ T )

≤ Σθ(gOther), θ ∈ Θ(13)

and the estimator ĝ ◦ T : Rk → Rp is indeed MVUE since gOther : Rk → Rp is an
arbitrary unbiased estimator. These observations lead to the following strategy to
finding MVUEs:

(i) Find a complete sufficient statistic T : Rk → Rq for {Fθ, θ ∈ Θ}. In the
context of exponential families, Theorem 8.2 can be invoked;

(ii) Find a finite variance unbiased estimator g : Rk → Rp for θ on the basis of
Y . As there are no general procedure for doing so, this step often involves
some guessing based on the structure of the problem. However, there are
many situations where it it is possible to find rather easily a Borel mapping
g̃ : Rq → Rp such that g̃ ◦ T is an unbiased finite variance estimator for θ
on the basis of Y ;

(iii) From the estimator g obtained in (ii), generate the Borel mapping ĝ : Rq →
Rp as per the Rao-Blackwell Theorem.

As argued earlier, the estimator ĝ ◦ T is MVUE by the uniqueness result of
Lemma 5.1; this also implies that the essential uniqueness of the MVUE.
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7 An example
Consider the situation where the observation Y is given componentwise by

Yi = µai +Ni, i = 1, . . . , k

where the rvs N1, . . . , Nk are i.i.d. zero mean rvs with variance σ2 > 0, µ is a
scaling factor and the amplitudes a1, . . . , ak are known non-zero constants – We
shall assume

∑k
i=1 a

2
i > 0 so that ai 6= 0 for at least one index i = 1, . . . , k.

Under these assumptions,
Y ∼ N

(
µa, σ2Ik

)
with a ≡ (a1, . . . , ak)

′. Therefore,

fµ,σ2(y) =
k∏
i=1

1√
2πσ2

e−
(yi−µai)

2

2σ2

=

(
1√

2πσ2

)k
e−

1
2σ2

∑k
i=1(yi−µai)2

=

(
1√

2πσ2

)k
e−

1
2σ2

∑k
i=1(y2i−2µaiyi+µ2a2i ), y ∈ Rk(14)

Here µ 6= 0 in order to avoid trivial cases of limited interest. With θ = µ and
Θ ⊆ R (with σ2 known), it is easy to check that

(i) The family {Fθ, θ ∈ Θ} is an exponential family with

Q(θ) =
θ

σ2
, θ ∈ R

and

K(y) =
n∑
i=1

aiyi, y ∈ Rk.

(ii) The statistic K : Rk → R is a complete sufficient statistic as soon as Θ
contains a non-trivial interval; see Theorem 8.2.

(iii) Fix i = 1, . . . , k. For each c in R, the Borel mapping gi,c : Rk → R given
by

gi,c(y) = cyi, y ∈ Rk
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yields
Eθ [gi,c(Y )] = cEθ [Yi] = cµai.

Thus, the estimator gi,c : Rk → R will be a finite variance unbiased estima-
tor of µ on the basis Y if i and c are selected so that ai 6= 0 and cai = 1.

(iv) Fix θ in R. Having in mind to apply the Rao-Blackwell Theorem, we note
that

Eθ
[
gi,c(Y )

∣∣∣K(Y )
]

= cEθ
[
Yi

∣∣∣K(Y )
]

= cµai + cCov [Yi, K(Y )] Cov [K(Y )]−1
(

k∑
j=1

aj (Yj − µaj)

)
(15)

with

Cov [Yi, K(Y )] =
k∑
j=1

ajCov [Yi, Yj] = aiVar [Yi] = aiσ
2

and

Cov [K(Y )] = Var

[
k∑
j=1

ajYj

]
=

k∑
j=1

a2jσ
2.

Therefore,

cEθ
[
Yi

∣∣∣K(Y )
]

= cµai +
cai∑k
j=1 a

2
j

(
k∑
j=1

aj (Yj − µaj)

)

=
cai∑k
j=1 a

2
j

·
k∑
j=1

ajYj

=
1∑k
j=1 a

2
j

·
k∑
j=1

ajYj(16)

(v) The calculations above show that here the estimator ĝ : R→ R is given by

ĝ(t) =
t∑k

j=1 a
2
j

, t ∈ R.(17)
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Regardless of θ in R, it is plain that

Eθ
[
gi,c(Y )

∣∣∣K(Y )
]

= ĝ(K(Y )) Pθ-a.s.

with Eθ [ĝ(K(Y ))] = µ. It follows that the finite variance estimator ĝ ◦K
is an unbiased estimator for µ on the basis of Y , and is MVUE.

With θ = (µ, σ2) and Θ ⊆ R× (0,∞), it is easy to check the following:

(i) As before the family {Fθ, θ ∈ Θ} is an exponential family but this time we
have

Q(θ) =

 µ
σ2

− 1
2σ2

 , θ = (µ, σ2) ∈ R× (0,∞)

and

K(y) =

 Kµ(y)

Kσ2(y)

 , y ∈ Rk

with

Kµ(y) =
n∑
i=1

aiyi

and

Kσ2(y) =
n∑
i=1

y2i .

(ii) By Theorem 8.2, the two-dimensional statistic K : Rk → R2 is a complete
sufficient statistic as soon as the set

Q(Θ) =

 1

2σ2

 2µ

−1

 , (µ, σ2) ∈ Θ


contains a non-trivial rectangle. This will happen if both µ and σ2 lie in
intervals.

(iii) Obviously the estimator ĝ◦Kµ : Rk → R where ĝ : R→ R is given by (17)
is an unbiased finite variance estimator of µ on the basis of Y . Applying
the Rao-Blackwell Theorem to it (with complete sufficient two-dimensional
statistic K : Rk → R2 we readily conclude that the estimator ĝ ◦Kµ is still
an MVUE in this new setting



7 AN EXAMPLE 15

(iv) We need to find an unbiased finite variance estimator of σ2 on the basis of
Y . To do this, we note the following. Fix θ in Θ. We have

Eθ [Kσ2(Y )] = Eθ

[
k∑
i=1

Y 2
i

]

=
k∑
i=1

(
σ2 + µ2a2i

)
= kσ2 + µ2

(
k∑
i=1

a2i

)
(18)

while

Eθ
[
Kµ(Y )2

]
= Eθ

( k∑
i=1

aiYi

)2


= Varθ

[
k∑
i=1

aiYi

]
+ (Eθ [Kµ(Y )])2

=
k∑
i=1

Varθ [aiYi] +

(
k∑
i=1

µa2i

)2

= σ2

(
k∑
i=1

a2i

)
+ µ2

(
k∑
i=1

a2i

)2

=

(
k∑
i=1

a2i

)(
σ2 + µ2

(
k∑
i=1

a2i

))
(19)

It follows that

Eθ

[
Kµ(Y )2∑k

i=1 a
2
i

]
= σ2 + µ2

(
k∑
i=1

a2i

)
so that

Eθ [Kσ2(Y )]− Eθ

[
Kµ(Y )2∑k

i=1 a
2
i

]
= (k − 1)σ2

whence

Eθ

[
1

k − 1
·

(
Kσ2(Y )− Kµ(Y )2∑k

i=1 a
2
i

)]
= σ2.
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The estimator gMVU : Rk → R2 given by

gMVU(y) ≡

 Kµ(y)∑k
i=1 a

2
i

1
k−1 ·

(
Kσ2(y)− Kµ(y)2∑k

i=1 a
2
i

)  , y ∈ Rk

is MVUE.

8 Exponential families and sufficient statistics
An exponential family always admits at least one sufficient statistic.

Theorem 8.1 Assume {Fθ, θ ∈ Θ} to be an exponential family (with respect
to F ) with representation (2). Then, the mapping K : Rk → Rq is a sufficient
statistic for {Fθ, θ ∈ Θ}.

The sufficient statistic K : Rk → Rq for {Fθ, θ ∈ Θ} admits a simple charac-
terization as a complete sufficient statistic.

Theorem 8.2 Assume {Fθ, θ ∈ Θ} to be an exponential family (with respect
to F ) with representation (2). Then, the mapping K : Rk → Rq is a complete
sufficient statistic for {Fθ, θ ∈ Θ} if the set

Q(Θ) = {Q(θ) : θ ∈ Θ}

contains a q-dimensional rectangle.

Proof. Consider a Borel mapping ψ : Rq → R such that

Eθ [|ψ(K(Y ))|] <∞, θ ∈ Θ.

We need to show that if

Eθ [ψ(K(Y ))] = 0, θ ∈ Θ
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then
Pθ[ψ(K(Y )) = 0] = 1, θ ∈ Θ.

The integrability conditions are equivalent to∫
Rk
|ψ(K(y))|q(y)eQ(θ)′K(y)dF (y) <∞, θ ∈ Θ.

With u = (u1, . . . , uq)
′ in Cq, we note that∫
Rk
|ψ(K(y))q(y)eu

′K(y)|dF (y) <∞

as soon as <(u) = ((<(u1), . . . ,<(uq))
′ lies in Q(Θ). This is a consequence of

the fact that

|ψ(K(y))q(y)eu
′K(y)| = q(y)|ψ(K(y))| · |eu′K(y)|

where ∣∣∣eu′K(y)
∣∣∣ =

∣∣∣∣∣
q∏
i=1

euiKi(y)

∣∣∣∣∣
=

∣∣∣∣∣
q∏
i=1

e(<(ui)+j=(ui))Ki(y)

∣∣∣∣∣
=

q∏
i=1

∣∣e(<(ui)+j=(ui))Ki(y)
∣∣

=

q∏
i=1

e<(ui)Ki(y)(20)

so that∫
Rk
|ψ(K(y))q(y)eu

′K(y)|dF (y) =

∫
Rk
|ψ(K(y))|q(y)e<(u)′K(y)dF (y).

Let R denote a q-dimensional rectangle contained in Q(Θ), say,

R =

q∏
i=1

[ai, bi] ⊆ Q(Θ).
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The arguments given above then show that on the superset R? of R given by

R? =

q∏
i=1

([ai, bi] + jR) ,

the C-valued integral

ψ̂(u) ≡
∫
Rk
ψ(K(y))q(y)eu

′K(y)dF (y)

is well defined as soon as u = (u1, . . . , uq)
′ lies in R? (hence in R).

Under the enforced assumptions on the mapping ψ : Rq → R, we have

ψ̂(u) = 0, u ∈ R.

Standard properties of functions of complex variables imply that

ψ̂(u) = 0, u ∈ R?.

In particular, given the form of R?, we also have

ψ̂(a+ ju) = 0, u ∈ Rq

where a = (a1, . . . , aq). It now follows the theory of Fourier transforms that

ψ(K(y))q(y)ea
′K(y) = 0 F − aa.e.

and the desired conclusion is readily obtained.

9 The Cramèr-Rao bounds – Assumptions
The Cramèr-Rao bound requires certain technical conditions to be satisfied by the
family {Fθ, θ ∈ Θ}.

CR1 The parameter set Θ is an open set in Rp;

CR2a The probability distributions {Fθ, θ ∈ Θ} are all absolutely continuous
with respect to the same distribution F : Rk → R+.1 Thus, for each θ in Θ,
there exists a Borel mapping fθ : Rk → R+ such that

Fθ(y) =

∫ y
−∞

fθ(η)dF (η), y ∈ Rk;

1The is essentially Condition (A) introduced earlier.
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CR2b The density functions {fθ, θ ∈ Θ} all have the same support in the sense
that the set {y ∈ Rk : fθ(y) > 0} is the same for all θ in Θ. Let S denote
this common support;

CR3 For each θ in Θ, the gradient∇θfθ(y) exists and is finite on S;

CR4 For each θ in Θ, the square integrability condition

Eθ

[∣∣∣∣ ∂∂θi log fθ(Y )

∣∣∣∣2
]
<∞, i = 1, . . . , p

holds;

CR5 For each θ in Θ, the regularity conditions

∂

∂θi

∫
S

fθ(y)dF (y) =

∫
S

(
∂

∂θi
fθ(y)

)
dF (y), i = 1, . . . , p

hold. This is equivalent to asking∫
S

(
∂

∂θi
fθ(y)

)
dF (y) = 0, i = 1, . . . , p

since ∫
S

fθ(y)dF (y) = 1.

Under Conditions (CR1)–(CR4), define the Fisher information matrix M(θ) at
parameter θ in Θ as the p× p matrix given entrywise by

Mij(θ) = Eθ
[
∂

∂θi
log fθ(Y ) · ∂

∂θj
log fθ(Y )

]
, i, j = 1, . . . , p,

or equivalently,

M(θ) = Eθ
[
(∇θ log fθ(Y )) (∇θ log fθ(Y ))′

]
.
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10 The Cramèr-Rao bounds
The Cramèr-Rao bounds hold for the following class of finite variance estimators.

A finite variance estimator g : Rk → Rp is a regular estimator (with respect to the
family {Fθ, θ ∈ Θ}) if the regularity conditions

∂

∂θi

(∫
S

g(y)fθ(y)dF (y)

)
=

∫
S

g(y)

(
∂

∂θi
fθ(y)

)
dF (y), i = 1, . . . , p

hold for all θ in Θ.

The regularity of an estimator g : Rk → Rp amounts to

∂

∂θi
(Eθ [g(Y )]) = Eθ

[
g(Y )

(
∂

∂θi
log fθ(Y )

)]
, i = 1, . . . , p.

The generalized Cramèr-Rao bound is given first

Theorem 10.1 Assume Conditions (CR1)–(CR5). If the Fisher information ma-
trix M(θ) is invertible for each θ in Θ, then every regular estimator g : Rk → Rp

(with respect to the family {Fθ, θ ∈ Θ}) obeys the lower bound

Σθ(g) ≥ bθ(g)bθ(g)′ + (Ip +∇θbθ(g))M(θ)−1 (Ip +∇θbθ(g))′ .

Equality holds at θ in Θ if and only if there exists a p× p matrix K(θ) such that

g(y)− θ = bθ(g) +K(θ)∇θ log fθ(y) F − a.e.

with
K(θ) = (Ip +∇θbθ(g))M(θ)−1.

The classical Cramèr-Rao bound holds for unbiased estimators, and arises as
a simple corollary of Theorem 10.1.
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Theorem 10.2 Assume Conditions (CR1)–(CR5). If the Fisher information ma-
trix M(θ) is invertible for each θ in Θ, then every unbiased regular estimator
g : Rk → Rp (with respect to the family {Fθ, θ ∈ Θ}) obeys the lower bound

Σθ(g) ≥M(θ)−1.

Equality holds at θ in Θ if and only if there exists a p× p matrix K(θ) such that

g(y)− θ = K(θ)∇θ log fθ(y) F − a.e.

with
K(θ) = M(θ)−1.

.

The Fisher information matrix is often computed through an alternate expres-
sion given next. It requires three additional conditions. The first one provides
smoothness beyond (CR3).

CR6 For each θ in Θ, the partial derivatives

∂2

∂θi∂θj
fθ(y), i, j = 1, . . . , p

all exist and are finite on S;

CR7 For each θ in Θ,∫
S

∣∣∣∣ ∂2

∂θi∂θj
fθ(y)

∣∣∣∣ dF (y), <∞, i, j = 1, . . . , p;

CR8 For each θ in Θ, the regularity conditions

∂2

∂θi∂θj

∫
S

fθ(y)dF (y) =

∫
S

∂2

∂θi∂θj
fθ(y)dF (y), i, j = 1, . . . , p

hold. In the same manner as in (CR5), this is equivalent to asking∫
S

∂2

∂θi∂θj
fθ(y)dF (y) = 0, i, j = 1, . . . , p.
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Lemma 10.1 Under Conditions (CR1)–(CR8), the Fisher information matrix takes
the form

Mij(θ) = −Eθ
[

∂2

∂θi∂θj
log fθ(Y )

]
, i, j = 1, . . . , p

Proof. Fix i, j = 1, . . . , p and θ in Θ. For each y in S, under (CR3) and (CR6)
we note that
∂2

∂θi∂θj
log fθ(y) =

∂

∂θi

(
∂

∂θj
log fθ(y)

)
=

∂

∂θi

(
1

fθ(y)

∂

∂θj
fθ(y)

)
= − 1

fθ(y)2
· ∂
∂θi

fθ(y) · ∂
∂θj

fθ(y) +
1

fθ(y)
· ∂
∂θi

(
∂

∂θj
fθ(y)

)
= − 1

fθ(y)2
· ∂
∂θi

fθ(y) · ∂
∂θj

fθ(y) +
1

fθ(y)
· ∂2

∂θi∂θj
fθ(y)

= − ∂

∂θi
log fθ(y) · ∂

∂θj
log fθ(y) +

1

fθ(y)
· ∂2

∂θi∂θj
fθ(y).(21)

Note that

Eθ
[

1

fθ(Y )
·
∣∣∣∣ ∂2

∂θi∂θj
fθ(Y )

∣∣∣∣] =

∫
S

∣∣∣∣ ∂2

∂θi∂θj
fθ(y)

∣∣∣∣ dF (y) <∞

by virtue of (CR7). Thus, taking expectations with respect to Pθ we conclude that

Eθ
[

∂2

∂θi∂θj
log fθ(Y )

]
= −Eθ

[
∂

∂θi
log fθ(Y ) · ∂

∂θj
log fθ(Y )

]
+ Eθ

[
1

fθ(Y )
· ∂2

∂θi∂θj
fθ(Y )

]
= −Mij(θ) + Eθ

[
1

fθ(Y )
· ∂2

∂θi∂θj
fθ(Y )

]
= −Mij(θ) +

∫
S

∂2

∂θi∂θj
fθ(y)dF (y)

= −Mij(θ)

as we invoke Condition (CR8).
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11 Facts and arguments
Two key facts flow from the assumptions: Fix θ in Θ. From (CR3) and (CR5),
we get

Eθ [∇θ log fθ(Y )] = 0p.

Recall that
Eθ [g(Y )] = θ + bθ(g), θ ∈ Θ.

Thus, if the estimator g : Rk → Rp is regular, differentiating and using (CR3), we
conclude that

Ip +∇θbθ(g) = Eθ
[
g(Y ) (∇θ log fθ(Y ))′

]
.

Therefore,

Ip +∇θbθ(g)

= Eθ
[
(g(Y )− Eθ [g(Y )]) · (∇θ log fθ(Y ))′

]
= Eθ

[
(g(Y )− θ − bθ(g)) · (∇θ log fθ(Y ))′

]
.

When p = 1, this last relation forms the basis for a proof via the Cauchy-
Schwarz inequality. An alternate proof, valid for arbitrary p, can be obtained as
follows: Introduce the Rp-valued rv U(θ,Y ) given by

U(θ,Y ) = g(Y )− θ − bθ(g)− (Ip +∇θbθ(g))M(θ)−1∇θ log fθ(Y ), θ ∈ Θ.

Note that the rv U(θ,Y ) has zero mean since

Eθ [U(θ,Y )]

= Eθ [g(Y )]− θ − bθ(g)− (Ip +∇θbθ(g))M(θ)−1Eθ [∇θ log fθ(Y )]

= 0p.

The Cramèr-Rao bound is equivalent to the statement that the covariance matrix
Covθ[U(θ,Y )] is positive semi-definite! Indeed, it is straightforward to check that

Covθ[U(θ,Y )] = Eθ [U(θ,Y )U(θ,Y )′]

= Σθ(g)− bθ(g)bθ(g)′

− (Ip +∇θbθ(g))M(θ)−1 (Ip +∇θbθ(g))′ .(22)

In particular, Covθ[U(θ,Y )] = Op iff

Pθ [U(θ,Y ) = 0p] = 1,

a condition equivalent to

g(Y ) = θ + bθ(g) + (Ip +∇θbθ(g))M(θ)−1∇θ log fθ(Y ) Pθ-a.s.
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12 Efficiency
As the Cramèr-Rao bounds provide a hard limit on the performance of regular
estimators, it is natural to wonder whether the bounds can be achieved. To explore
this issue we introduce the notion of efficient estimators.

A finite variance unbiased estimator g : Rk → Rp is an efficient estimator if it
achieves the Cràmer-Rao bound on Θ, namely

Σθ(g) = M(θ)−1, θ ∈ Θ.

Efficiency is meaningless for unbiased estimators! Efficient estimators can be
given a complete characterization.

Lemma 12.1 Assume Conditions (CR1)–(CR5) to hold. A regular estimator g :
Rk → Rp that is also efficient satisfies the relations

g(y)− θ = M(θ)−1∇θ log fθ(y) F − a.e. on S(23)

for each θ on Θ. Conversely, any estimator g : Rk → Rp which satisfies

g(y)− θ = M(θ)−1∇θ log fθ(y) F − a.e. on S(24)

on Θ is an efficient regular estimator.

Proof. Assume first that the estimator g : Rk → Rp is both regular and efficient.
Being regular, the classical Cramèr-Rao bounds hold with

Σθ(g) ≥M(θ)−1, θ ∈ Θ.

Being efficient, we have Σθ(g) = M(θ)−1 for each θ in Θ, and by the second half
of Theorem 10.2 we conclude that (23) holds.

Conversely, recall the Conditions (CR1)–(CR5). If the estimator g : Rk → Rp

satisfies (24), then for each θ in Θ, we have

g(Y )− θ = M(θ)−1∇θ log fθ(Y ) Pθ-a.s.(25)
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By Condition (CR4), the estimator g : Rk → Rp is a finite variance estimator,
with

Eθ [g(Y )] = θ + Eθ
[
M(θ)−1∇θ log fθ(Y )

]
= θ(26)

as we invoke Condition (CR5) – The estimator g : Rk → Rp is unbiased.
Next, fix i, j = 1, . . . , p. Using (24) we get

gj(y)

(
∂

∂θi
log fθ(y)

)
=

(
θj +

(
M(θ)−1∇θ log fθ(y)

)
j

)( ∂

∂θi
log fθ(y)

)
= θi ·

∂

∂θi
log fθ(y) +

(
M(θ)−1∇θ log fθ(y)

)
j
· ∂
∂θi

log fθ(y)

= θi ·
∂

∂θi
log fθ(y) +

p∑
`=1

M(θ)−1j`
∂

∂θ`
log fθ(y) · ∂

∂θi
log fθ(y) F − a.e. on S

It follows that

= Eθ
[
gj(Y )

(
∂

∂θi
log fθ(Y )

)]
= θj · Eθ

[
∂

∂θi
log fθ(Y )

]
+

p∑
`=1

M(θ)−1j` · Eθ
[
∂

∂θ`
log fθ(Y ) · ∂

∂θi
log fθ(Y )

]

=

p∑
`=1

M(θ)−1j` · Eθ
[
∂

∂θ`
log fθ(Y ) · ∂

∂θi
log fθ(Y )

]

=

p∑
`=1

M(θ)−1j` M(θ)`i

= δji

by virtue of Condition (CR5). It follows that

Eθ
[
g(Y )

(
∂

∂θi
log fθ(Y )

)]
= Ip

whence

∂

∂θi
(Eθ [g(Y )]) = Eθ

[
g(Y )

(
∂

∂θi
log fθ(Y )

)]
, i = 1, . . . , p.
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as we have shown that the estimator g : Rk → Rp is unbiased. This establishes
the regularity of the estimator.

Its efficiency is now immediate since for each θ in Θ: Indeed on account of
(25) we have

Σθ(g) = Eθ
[
(g(Y )− θ) (g(Y )− θ)′

]
= Eθ

[
M(θ)−1∇θ log fθ(Y )

(
M(θ)−1∇θ log fθ(Y

)′]
= M(θ)−1Eθ [∇θ log fθ(Y )∇θ log fθ(Y )′]M(θ)−1

= M(θ)−1M(θ)M(θ)−1

= M(θ)−1(27)

since M(θ) is a symmetric matrix.

As an immediate corollary we have the following.

Corollary 12.1 Assume Conditions (CR1)–(CR5) to hold. If an efficient regular
estimator g : Rk → Rp exists, it is essentially unique on S in the sense that if
g1, g2 : Rk → Rp are two efficient regular estimators, then g1(y) = g2(y) F -a.e.
on S.

It should be pointed out that efficiency may lead to awkward estimators: For
instance assume that the observation Y is given by

Y =
√
θ ·X +N

where the rvs X and N are i.i.d. Gaussian rvs with zero mean and unit variance.
Here θ > 0 and unknown. In other words, Fθ is a Gaussian distribution with zero
mean and variance 1 + θ. It is easily checked that the estimator g? : R→ R given
by

g?(y) = y2 − 1, y ∈ R

is a regular estimator for θ on the basis of Y .
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13 Cramèr-Rao bounds for exponential families
Assume the family {Fθ, θ ∈ Θ} to be an exponential family (with respect to F )
with density functions of the form

fθ(y) = C(θ)q(y)eQ(θ)′K(y) F − a.e.

for every θ in Θ with Borel mappings C : Θ → R+, Q : Θ → Rq, q : Rk → R+

and K : Rk → Rq. Conditions (CR2)–(CR8) can now be expressed more simply
as follows:

Condition (CR2a) is obviously satisfied . Note that fθ(y) > 0 if and only if
q(y) > 0, whence{

y ∈ Rk : fθ(y) > 0
}

=
{
y ∈ Rk : q(y) > 0

}
for each θ in Θ, and (CR2b) holds.

Next, upon assuming the existence of the various derivatives, we observe that

∂

∂θi
log fθ(y) =

∂

∂θi
logC(θ) +

(
∂

∂θi
Q(θ)

)′
K(y),

i = 1, . . . , p
y ∈ S.(28)

Therefore, (CR3) holds when the mappings C : Θ → R+ and Q : Θ → Rq are
differentiable. It follows that (CR4) is now equivalent to

Eθ
[
|K`(Y )|2

]
<∞, ` = 1, . . . , p.(29)

Furthermore, the regularity condition (CR5) is easily seen to be equivalent to(
∂

∂θi
Q(θ)

)′
Eθ [K(Y )] = − ∂

∂θi
logC(θ),

θ ∈ Θ
i = 1, . . . , p.

(30)

Combining (28) and (30) we get

∂

∂θi
log fθ(y) =

(
∂

∂θi
Q(θ)

)′
(K(y)− Eθ [K(Y )]) ,

i = 1, . . . , p
y ∈ S.(31)

It is now straightforward to see that the Fisher information matrix is given entry-
wise by the expressions

Mij(θ) =

(
∂

∂θi
Q(θ)

)′
Covθ [K(Y )]

(
∂

∂θj
Q(θ)

)
,

i, j = 1, . . . , p
θ ∈ Θ

(32)
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The regularity of a finite variance estimator g : Rk → Rp can be expressed as
follows: Fix θ in Θ and i = 1, . . . , p: Using Condition (CR5) and (31) we get

Eθ
[
g(Y )

(
∂

∂θi
log fθ(Y )

)]
= Eθ

[
(g(Y )− Eθ [g(Y )])

(
∂

∂θi
log fθ(Y )

)]
= Eθ

[
(g(Y )− Eθ [g(Y )])

(
∂

∂θi
Q(θ)

)′
(K(Y )− Eθ [K(Y )])

]
= Eθ

[
(g(Y )− Eθ [g(Y )]) (K(Y )− Eθ [K(Y )])′

]( ∂

∂θi
Q(θ)

)′
= Covθ [g(Y ), K(Y )]

(
∂

∂θi
Q(θ)

)′
and regularity can be expressed as

∂

∂θi
Eθ [g(Y )] = Covθ [g(Y ), K(Y )]

(
∂

∂θi
Q(θ)

)′
,

i = 1, . . . , p
θ ∈ Θ

As we turn to the additional conditions (CR6)-(CR8), we see from (28) that

∂2

∂θi∂θj
log fθ(y)

=
∂2

∂θi∂θj
logC(θ) +

(
∂2

∂θi∂θj
Q(θ)

)′
K(y),

i, j = 1, . . . , p
y ∈ S.(33)

upon assuming the existence of the various additional derivatives.
Therefore, (CR6) holds when the mappings C : Θ → R+ and Q : Θ → Rq

are twice differentiable, and (CR7) holds as soon as∫
S

|K`(y)|dF (y) <∞, ` = 1, . . . , p

The case p = 1 with q = 1
Under these conditions K : R → R is a bone fide estimator of θ on the basis of
Y . Using the condition for regularity given above (with g = K), we see that this
estimator will be regular if

d

dθ
Eθ [K(Y )] =

d

dθ
Q(θ) · Varθ [K(Y )] , θ ∈ Θ.(34)
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Using the earlier calculations, we note that

1 +
d

dθ
bθ(K) =

d

dθ
Eθ [K(Y )] =

d

dθ
Q(θ) · Varθ [K(Y )] ,

M(θ) =

(
d

dθ
Q(θ)

)2

· Varθ [K(Y )]

and
∂

∂θ
log fθ(y) =

d

dθ
Q(θ) · (K(y)− Eθ [K(Y )]) , y ∈ S.

It is now easy to check that(
1 +

d

dθ
bθ(K)

)
M(θ)−1 · ∂

∂θ
log fθ(y) = K(y)− Eθ [K(Y )] , y ∈ S

so that

K(y)− θ(35)

= bθ(K) +

(
1 +

d

dθ
bθ(K)

)
M(θ)−1

∂

∂θ
log fθ(y) y ∈ S

for every θ in Θ. Invoking Theorem 10.1 we conclude that the estimator K : R→
R satisfies the Cramèr-Rao bound with equality.

If the estimator K : R→ R is also unbiased , i.e.,

Eθ [K(Y )] = θ, θ ∈ Θ,

the condition (34) for its regularity now reads

d

dθ
Q(θ) · Varθ [K(Y )] = 1, θ ∈ Θ

whence
M(θ) =

d

dθ
Q(θ), θ ∈ Θ.

The estimator K : R→ R obviously achieves the Cramèr-Rao bound since

Varθ [K(Y )] = M(θ)−1, θ ∈ Θ.

Therefore, the (assumed) regular unbiased estimator K : R → R is MVUE
amongst all regular unbiased estimators (upon applying the Cramèr-Rao bound).
If in addition, K : R → R is also a complete sufficient statistic for the family
{Fθ, θ ∈ Θ}, then it is also MVUE (among all unbiased finite variance estima-
tors) by by the discussion in Section 6.
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14 The i.i.d. case
In many situations the data to be used for estimating the parameter θ is obtained by
collecting i.i.d. samples from the underlying distribution. Formally, let {Fθ, θ ∈
Θ} denote the usual collection of probability distributions on Rk. With positive
integer n, let Y 1, . . . ,Y n be i.i.d. Rk-valued rvs, each distributed according to Fθ
under Pθ. Thus, for each θ in Θ we have

Pθ[Y 1 ∈ B1, . . . ,Y n ∈ Bn] =
n∏
i=1

Pθ[Y i ∈ Bi],
Bi ∈ B(Rk),
i = 1, . . . , n.

Let F (n)
θ denote the corresponding probability distributions on Rnk, namely

F
(n)
θ (y1, . . . ,yn) = Pθ[Y 1 ≤ y1, . . . ,Y n ≤ yn]

=
n∏
i=1

Pθ[Y i ≤ yi]

=
n∏
i=1

Fθ(yi),
yi ∈ Rk

i = 1, . . . , n
(36)

When n ≥ 2 the family {F (n)
θ , θ ∈ Θ} is never complete even if the family

{Fθ, θ ∈ Θ} is complete.

The following hereditary properties are easily shown.

1. If the family {Fθ, θ ∈ Θ} is absolutely continuous with respect to the dis-
tribution F on Rk with density functions {fθ, θ ∈ Θ}, then the family
{F (n)

θ , θ ∈ Θ} is also absolutely continuous but with respect to the distri-
bution F (n) on Rnk given by

F (n)(y1, . . . ,yn) =
n∏
i=1

F (yi),
yi ∈ Rk

i = 1, . . . , n

For each θ in Θ, he corresponding density function f (n)
θ : Rnk → R+ is

given by

f (n)(y1, . . . ,yn) =
n∏
i=1

f(yi),
yi ∈ Rk

i = 1, . . . , n.
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2. Assume the family {Fθ, θ ∈ Θ} to be an exponential family (with respect
to F ) with density functions of the form

fθ(y) = C(θ)q(y)eQ(θ)′K(y) F − a.e.

for every θ in Θ with Borel mappings C : Θ → R+, Q : Θ → Rq, q :

Rk → R+ and K : Rk → Rq. Then, the family {F (n)
θ , θ ∈ Θ} is also an

exponential family (with respect to F (n)) with density functions of the form

f
(n)
θ (y1, . . . ,yn) = C(θ)nq(n)(y1, . . . ,yn)eQ(θ)′K(n)(y1,...,yn) F (n) − a.e.

for each θ in Θ, where

q(n)(y1, . . . ,yn) =
n∏
i=1

q(yi),
yi ∈ Rk

i = 1, . . . , n

and

K(n)(y1, . . . ,yn) =
n∑
i=1

K(yi),
yi ∈ Rk

i = 1, . . . , n.

3. Assuming (CR1), if the family {Fθ, θ ∈ Θ} satisfies Conditions (CR2)–
(CR5) (with respect to F ), then the family {F (n)

θ , θ ∈ Θ} also satisfies
Conditions (CR2)–(CR5) (with respect to F (n)), and the Fisher information
matrices are related through the relation

M (n)(θ) = nM(θ), θ ∈ Θ.

15 Asymptotic theory – Types of estimators
We are often interested in situations where the parameter θ is estimated on the
basis of multiple Rk-valued samples, say Y 1, . . . ,Y n for n large. The most com-
mon situation is that when the incoming observations form a sequence {Y n, n =
1, 2, . . .} of i.i.d. Rk-valued rvs (as described earlier). However, in some applica-
tions the variates {Y n, n = 1, 2, . . .} may be correlated, e.g., the rvs {Y n, n =
1, 2, . . .} form a Markov chain.

In general, for each n = 1, 2, . . ., let gn : Rnk → Rk be an estimator for θ on
the basis of the Rk-valued observations Y 1, . . . ,Y n. We shall write

Y (n) =

 Y 1
...
Y n

 , n = 1, 2, . . .
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The estimators {gn, n = 1, 2, . . .} are (weakly) consistent at θ (in Θ) if the rvs
{gn(Y (n)), n = 1, 2, . . .} converge in probability to θ under Pθ, i.e., for every
ε > 0,

lim
n→∞

Pθ
[
‖gn(Y (n))− θ‖ > ε

]
= 0.

A stronger notion arises by requiring that convergence takes place in the al-
most sure sense, rather than convergence in probability.

The estimators {gn, n = 1, 2, . . .} are (strongly) consistent at θ (in Θ) if the rvs
{gn(Y (n)), n = 1, 2, . . .} converge a.s. to θ under Pθ, i.e.,

lim
n→∞

gn(Y (n)) = θ Pθ − a.s.

As expected, strong consistency implies (weak) consistency. In many cases,
consistency is often associated with the Law of Large Numbers. This rises a natu-
ral question as to whether the underlying convergence admits rate of convergence
which is characterized by a Central Limit-like Theorem. Here is one way to for-
malize this notion.

The estimators {gn, n = 1, 2, . . .} are asymptotically normal at θ (in Θ) if there
exists a p× p positive semi-definite matrix Σ(θ) with the property that

√
n
(
gn(Y (n))− θ

)
=⇒n N(0p,Σ(θ)).

Lack of bias in the sense that

Eθ
[
gn(Y (n))

]
= θ,

θ ∈ Θ
n = 1, 2, . . .

may not always be possible to achieve. Instead we often settle for an asymptotic
notion of unbiasedness.

The estimators {gn, n = 1, 2, . . .} are asymptotically unbiased at θ (in Θ) if for
each n = 1, 2, . . ., the estimator is a finite mean estimator and

lim
n→∞

Eθ
[
gn(Y (n))

]
= θ.
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This is equivalent to
lim
n→∞

bθ(gn) = 0p.

Assume that for each n = 1, 2, . . ., the family of distributions {F (n)
θ , θ ∈ Θ} satis-

fies the appropriate conditions (CR2)–(CR5). The estimators {gn, n = 1, 2, . . .}
are asymptotically efficient at θ (in Θ) if

lim
n→∞

(
Σθ(gn)−M (n)(θ)−1

)
= Op×p, θ ∈ Θ

provided the Fisher information matrices {M (n)(θ), n = 1, 2, . . .} are invertible
for each θ in Θ.

16 Maximum likelihood estimation methods
Assume (CR2a) to hold. A Borel mapping gML : Rk → Θ is called a maximum
likelihood estimator of θ on the basis of Y if

fgML(y)(y) = max (fθ(y), θ ∈ Θ) , y ∈ Rk.

This definition implicitly assumes that at the observation point y, the supremum

sup (fθ(y), θ ∈ Θ)

is indeed achieved at some point in Θ. Note that (i) maximum likelihood estima-
tors may not exist or (ii) may not be unique. Often these problems are handled by
altering the selection of the density functions {fθ, θ ∈ Θ}.

The maximum likelihood estimator of θ on the basis of Y can equivalently be
defined by

log fgML(y)(y) = max (log fθ(y), θ ∈ Θ) , y ∈ Rk

under the convention log 0 = −∞. This equation is known as the maximum
likelihood equation.
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This observation leads to the following characterization: Assume Int(Θ) to
be non-empty and that condition (CR2) holds. Also assume that condition (CR3)
holds for all θ in Int(Θ) (rather than for all θ in Θ). Then

∇θ log fθ(y)
∣∣∣
θ=gML(y)

= 0p y ∈ S

provided
gML(y) ∈ Int(Θ).

When a sufficient statistics exists, the ML estimates can always expressed in
terms of it. This is a consequence of the Factorization Theorem.

Theorem 16.1 Assume that Condition (CR2a) holds and that for each y in S,
the ML estimate gML(y) exists. If the statistic T : Rk → Rq is sufficient for the
family {Fθ, θ ∈ Θ}, then there exists a Borel mapping GML : Rq → Θ such that

gML(y) = GML(T (y)) F − a.e. on S.

There are relationships between efficiency and ML estimators.

Theorem 16.2 Assume Conditions (CR1)–(CR5) to hold, and that for each θ in
Θ, the Fisher information matrix M(θ) is invertible. Assume further that for each
y in S, the ML estimate gML(y) exists. Then every regular estimator g : Rk → Rp

which achieves the generalized Cramér-Rao bound must necessarily satisfy the
equality

g(y) = gML(y) + bgML(y)(g) F − a.e. on S.

Corollary 16.1 Under the assumptions of Theorem 16.2, if the regular estimator
g : Rk → Rp is efficient, then it must necessarily be an ML estimator.

There exists a rich asymptotic theory for ML estimators. The result given next
assumes the availability of i.i.d. samples
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Theorem 16.3 Assume Conditions (CR1)–(CR8) to hold. For each n = 1, 2, . . .,
assume that for each y(n) in Sn, the ML estimate gn,ML(y(n)) exists. Then the
following statements hold.

(i) The ML estimators {gn,ML, n = 1, 2, . . .} are strongly consistent, i.e., for
each θ in Θ,

lim
n→∞

gn,ML(Y (n)) = θ Pθ − a.s.

(ii) The ML estimators {gn,ML, n = 1, 2, . . .} are asymptotically normal, i.e.,
for each θ in Θ,

√
n
(
gn,ML(Y (n))− θ

)
=⇒n N(0p,M(θ)−1)

under Pθ provided the Fisher information matrix M(θ) is invertible.


