ENEE 621
SPRING 2017
ESTIMATION AND DETECTION THEORY ANSWER KEY TO TEST \# 1:
1.
1.a. Fix $\eta>0^{1}$ and recall that

$$
d_{\eta}(y) \quad \text { iff } \quad f_{1}(y)<\eta f_{0}(y), \quad y \in \mathbb{R}
$$

Here, with the conventions implied by the definition of d_{η}, we have

$y \leq-1:$	$d_{\eta}(y)=1$
$-1<y \leq 0:$	$d_{\eta}(y)=0$
$0<y \leq 1:$	$d_{\eta}(y)=0$ iff $1<3 \eta(1-y)$
$1<y \leq 3:$	$d_{\eta}(y)=1$
$3<y:$	$d_{\eta}(y)=1$

Collecting these facts we conclude that

$$
\begin{align*}
C\left(d_{\eta}\right) & \equiv\left\{y \in \mathbb{R}: d_{\eta}(y)=0\right\} \\
& =(-1,0) \cup\{y \in[0,1): 1<3 \eta(1-y)\} \tag{1.1}
\end{align*}
$$

1.b. For $\eta=0$, we know that $P_{\mathrm{F}}\left(d_{\eta}\right)=1$ and $P_{\mathrm{D}}\left(d_{\eta}\right)=1$ as explained in the Lecture Notes. From now on, fix $\eta>0$. We shall write

$$
t(\eta) \equiv\left(1-\frac{1}{3 \eta}\right)^{+}= \begin{cases}0 & \text { if } 0<\eta \leq \frac{1}{3} \\ 1-\frac{1}{3 \eta} & \text { if } \frac{1}{3} \leq \eta\end{cases}
$$

[^0]Obviously,

$$
\begin{align*}
P_{\mathrm{F}}\left(d_{\eta}\right) & =\mathbb{P}\left[d_{\eta}(Y)=1 \mid H=0\right] \\
& =1-\mathbb{P}\left[d_{\eta}(Y)=0 \mid H=0\right] \\
& =1-\mathbb{P}[-1<Y \leq 0 \mid H=0]-\mathbb{P}[0<Y \leq 1,1<3 \eta(1-Y) \mid H=0] \\
& =1-\frac{1}{2}-\mathbb{P}[0<Y \leq 1,1<3 \eta(1-Y) \mid H=0] \\
& =\frac{1}{2}-\mathbb{P}\left[0<Y \leq 1,\left.0<Y<1-\frac{1}{3 \eta} \right\rvert\, H=0\right] \\
& =\frac{1}{2}-\int_{0}^{\left(1-\frac{1}{3 \eta}\right)^{+}} f_{0}(y) d y \\
& =\frac{1}{2}-\int_{0}^{t(\eta)}(1-y) d y \\
& =\frac{1}{2}-\left[y-\frac{y^{2}}{2}\right]_{0}^{t(\eta)} \\
& =\frac{1}{2}(1-t(\eta))^{2} \\
& = \begin{cases}\frac{1}{2} \quad \text { if } 0<\eta \leq \frac{1}{3} \\
\frac{1}{18 \eta^{2}} & \text { if } \frac{1}{3} \leq \eta .\end{cases} \tag{1.2}
\end{align*}
$$

In a similar way, we get

$$
\begin{align*}
P_{\mathrm{D}}\left(d_{\eta}\right) & =\mathbb{P}\left[d_{\eta}(Y)=1 \mid H=1\right] \\
& =1-\mathbb{P}\left[d_{\eta}(Y)=0 \mid H=1\right] \\
& =1-\mathbb{P}[-1<Y \leq 0 \mid H=1]-\mathbb{P}[0<Y \leq 1,1<3 \eta(1-Y) \mid H=1] \\
& =1-\mathbb{P}[0<Y \leq 1,1<3 \eta(1-Y) \mid H=1] \\
& =1-\mathbb{P}\left[0<Y \leq 1,\left.0<Y<1-\frac{1}{3 \eta} \right\rvert\, H=1\right] \\
& =1-\int_{0}^{\left(1-\frac{1}{3 \eta}\right)^{+}} f_{1}(y) d y \\
& =1-\frac{1}{3} \int_{0}^{t(\eta)} d y \\
& =1-\frac{1}{3} t(\eta) \\
& = \begin{cases}1 & \text { if } 0<\eta \leq \frac{1}{3} \\
\frac{2}{3}+\frac{1}{9 \eta} & \text { if } \frac{1}{3} \leq \eta .\end{cases} \tag{1.3}
\end{align*}
$$

In summary we conclude that

$$
P_{\mathrm{F}}\left(d_{\eta}\right)=\frac{1}{2}(1-t(\eta))^{2} \quad \text { and } \quad P_{\mathrm{D}}\left(d_{\eta}\right)=1-\frac{t(\eta)}{3}, \quad \eta>0 .
$$

From these expressions it is then plain that

$$
\lim _{\eta \rightarrow 0} P_{\mathrm{F}}\left(d_{\eta}\right)=\frac{1}{2} \quad \text { and } \quad \lim _{\eta \rightarrow 0} P_{\mathrm{D}}\left(d_{\eta}\right)=1
$$

while

$$
\lim _{\eta \rightarrow \infty} P_{\mathrm{F}}\left(d_{\eta}\right)=0 \quad \text { and } \quad \lim _{\eta \rightarrow \infty} P_{\mathrm{D}}\left(d_{\eta}\right)=\frac{2}{3}
$$

Moreover, we get $\left\{P_{\mathrm{F}}\left(d_{\eta}\right), \eta>0\right\}=\left(0, \frac{1}{2}\right]$ and $\left\{P_{\mathrm{D}}\left(d_{\eta}\right), \eta>0\right\}=\left(\frac{2}{3}, 1\right]$. 1.c. With the notation introduced in the Lecture Notes we have

$$
V(p)=J_{p}\left(d^{\star}(p)\right)=J_{p}\left(d_{\eta(p)}\right), \quad p \in(0,1]
$$

where

$$
\eta(p)=\frac{\Gamma_{0}(1-p)}{\Gamma_{1} p}=\frac{1-p}{p}
$$

since here $\Gamma_{0}=\Gamma_{1}=1$. It is now straightforward to see that

$$
\begin{aligned}
V(p) & =p \mathbb{P}\left[d_{\eta(p)}(Y)=0 \mid H=1\right]+(1-p) \mathbb{P}\left[d_{\eta(p)}(Y)=1 \mid H=0\right] \\
& =p\left(1-P_{D}\left(d_{\eta(p)}\right)\right)+(1-p) P_{F}\left(d_{\eta(p)}\right) \\
& =p\left(\frac{1}{3}\left(1-\frac{1}{3 \eta(p)}\right)^{+}\right)+(1-p)\left(\frac{1}{2}\left(1-\left(1-\frac{1}{3 \eta(p)}\right)^{+}\right)^{2}\right) \\
& =\frac{p}{3} \cdot \tau(p)+\frac{1-p}{2} \cdot(1-\tau(p))^{2}
\end{aligned}
$$

with

$$
\begin{align*}
\tau(p) & \equiv t(\eta(p)) \\
& =\left(1-\frac{1}{3 \eta(p)}\right)^{+} \\
& =\frac{(3-4 p)^{+}}{3(1-p)}= \begin{cases}1-\frac{p}{3(1-p)} & \text { if } 0<p \leq \frac{3}{4} \\
0 & \text { if } \frac{3}{4} \leq p<1\end{cases} \tag{1.4}
\end{align*}
$$

It follows that

$$
\begin{aligned}
V(p) & = \begin{cases}\frac{p}{3}\left(1-\frac{p}{3(1-p)}\right)+(1-p)\left(\frac{p^{2}}{18(1-p)^{2}}\right) & \text { if } 0<p \leq \frac{3}{4} \\
\frac{1-p}{2} & \text { if } \frac{3}{4} \leq p<1\end{cases} \\
& = \begin{cases}\frac{p}{3}\left(1-\frac{p}{3(1-p)}\right)+\frac{p^{2}}{18(1-p)} & \text { if } 0<p \leq \frac{3}{4} \\
\frac{1-p}{2} & \text { if } \frac{3}{4} \leq p<1\end{cases} \\
& = \begin{cases}\frac{p(6-7 p)}{18(1-p)} & \text { if } 0<p \leq \frac{3}{4} \\
\frac{1-p}{2} & \text { if } \frac{3}{4} \leq p<1 .\end{cases}
\end{aligned}
$$

It is a simple matter to check that the mapping $p \rightarrow V(p)$ is concave on $[0,1]$, and differentiable on that interval except at $p=\frac{3}{r}=p_{\mathrm{m}}$.
1.d. Fix $\eta>0$. From Part b we see that

$$
3\left(1-P_{\mathrm{D}}\left(d_{\eta}\right)\right)=t(\eta)
$$

while

$$
2 P_{\mathrm{F}}\left(d_{\eta}\right)=(1-t(\eta))^{2}=\left(1-3\left(1-P_{\mathrm{D}}\left(d_{\eta}\right)\right)\right)^{2}
$$

whence

$$
2 P_{\mathrm{F}}\left(d_{\eta}\right)=\left(3 P_{\mathrm{D}}\left(d_{\eta}\right)-2\right)^{2}
$$

Therefore, since $\frac{2}{3}<P_{\mathrm{D}}\left(d_{\eta}\right)$ for all $\eta>0$, it follows that

$$
\sqrt{2 P_{\mathrm{F}}\left(d_{\eta}\right)}=3 P_{\mathrm{D}}\left(d_{\eta}\right)-2,
$$

and we conclude that

$$
P_{\mathrm{D}}\left(d_{\eta}\right)=\frac{2+\sqrt{2 P_{\mathrm{F}}\left(d_{\eta}\right)}}{3}
$$

The ROC curve is now defined through the mapping $\Gamma:\left[0, \frac{1}{2}\right] \rightarrow\left[\frac{2}{3}, 1\right]$ given by

$$
P_{\mathrm{D}}=\Gamma\left(P_{\mathrm{F}}\right)=\frac{2+\sqrt{2 P_{\mathrm{F}}}}{3}, \quad 0 \leq P_{\mathrm{F}} \leq \frac{1}{2}
$$

Here, contrary to what happens in the "usual" case (say the Gaussian case), the ROC curve does not go from point $(0,0)$ to point $(1,1)$, but instead from $\left(0, \frac{2}{3}\right)$ to point $\left(\frac{1}{2}, 1\right)$ - There is no curve defined over the entire interval $[0,1]$.
2.

For each $\theta>0$ it is plain that $H_{\theta}: Y \sim F_{\theta}$ means that under H_{θ} the observation Y is normally distributed with zero mean and variance θ.

With distinct θ_{0} and θ_{1} in $(0, \infty)$, consider the binary hypothesis testing problem

$$
\begin{array}{ll}
H_{1}: & Y \sim F_{\theta_{1}} \tag{1.5}\\
H_{0}: & Y \sim F_{\theta_{0}} .
\end{array}
$$

For $\eta>0$, consider the corresponding test $d_{\eta}: \mathbb{R} \rightarrow\{0,1\}$. In a routine manner we find

$$
\begin{array}{rll}
d_{\eta}(y)=0 & \text { iff } & f_{\theta_{1}}(y)<\eta f_{\theta_{0}}(y) \\
& \text { iff } & \frac{1}{\sqrt{2 \pi \theta_{1}}} e^{-\frac{y^{2}}{2 \theta_{1}}}<\eta \cdot \frac{1}{\sqrt{2 \pi \theta_{0}}} e^{-\frac{y^{2}}{2 \theta_{0}}}, \quad y \in \mathbb{R} \\
& \text { iff } & \left(\frac{1}{\theta_{0}}-\frac{1}{\theta_{1}}\right) y^{2}<\log \left(\eta^{2} \cdot \frac{\theta_{1}}{\theta_{0}}\right), \quad y \in \mathbb{R} .
\end{array}
$$

For future use, write

$$
T\left(\eta ; \theta_{0}, \theta_{1}\right) \equiv\left(\frac{1}{\theta_{0}}-\frac{1}{\theta_{1}}\right)^{-1} \cdot \log \left(\eta^{2} \cdot \frac{\theta_{1}}{\theta_{0}}\right)
$$

2.a. Assume $0<\theta_{0}<\theta_{1}$ - The test d_{η} now reads

$$
d_{\eta}(y)=0 \quad \text { iff } \quad y^{2}<T\left(\eta ; \theta_{0}, \theta_{1}\right), \quad y \in \mathbb{R} .
$$

If $\eta^{2} \leq \frac{\theta_{0}}{\theta_{1}}$, then $\log \left(\eta^{2} \cdot \frac{\theta_{1}}{\theta_{0}}\right) \leq 0$ and $T\left(\eta ; \theta_{0}, \theta_{1}\right) \leq 0$. Thus, d_{η} always selects the alternative $H_{\theta_{1}}$, whence $\mathbb{P}_{\theta_{0}}\left[d_{\eta}(Y)=1\right]=1$ and $\mathbb{P}_{\theta_{1}}\left[d_{\eta}(Y)=1\right]=1$.

If $\frac{\theta_{0}}{\theta_{1}}<\eta^{2}$, then $T\left(\eta ; \theta_{0}, \theta_{1}\right)>0$ and

$$
d_{\eta}(y)=0 \quad \text { iff } \quad|y|<\sqrt{T\left(\eta ; \theta_{0}, \theta_{1}\right)}, \quad y \in \mathbb{R} .
$$

It follows that

$$
\begin{align*}
\mathbb{P}_{\theta_{0}}\left[d_{\eta}(Y)=1\right] & =1-\mathbb{P}_{\theta_{0}}\left[-\sqrt{T\left(\eta ; \theta_{0}, \theta_{1}\right)}<Y<\sqrt{T\left(\eta ; \theta_{0}, \theta_{1}\right)}\right] \\
& =1-\mathbb{P}_{\theta_{0}}\left[-\sqrt{\frac{T\left(\eta ; \theta_{0}, \theta_{1}\right)}{\theta_{0}}}<\frac{Y}{\sqrt{\theta_{0}}}<\sqrt{\frac{T\left(\eta ; \theta_{0}, \theta_{1}\right)}{\theta_{0}}}\right] \\
& =1-\left(\Phi\left(\sqrt{\frac{T\left(\eta ; \theta_{0}, \theta_{1}\right)}{\theta_{0}}}\right)-\Phi\left(-\sqrt{\frac{T\left(\eta ; \theta_{0}, \theta_{1}\right)}{\theta_{0}}}\right)\right) \\
& =2\left(1-\Phi\left(\sqrt{\frac{T\left(\eta ; \theta_{0}, \theta_{1}\right)}{\theta_{0}}}\right)\right) \tag{1.6}
\end{align*}
$$

Similar calculations show that

$$
\begin{equation*}
\mathbb{P}_{\theta_{1}}\left[d_{\eta}(Y)=1\right]=2\left(1-\Phi\left(\sqrt{\frac{T\left(\eta ; \theta_{0}, \theta_{1}\right)}{\theta_{1}}}\right)\right) \tag{1.7}
\end{equation*}
$$

Combining the two cases we get

$$
\begin{equation*}
\mathbb{P}_{\theta_{h}}\left[d_{\eta}(Y)=1\right]=2\left(1-\Phi\left(\sqrt{\frac{T\left(\eta ; \theta_{0}, \theta_{1}\right)^{+}}{\theta_{h}}}\right)\right), \quad h=0,1 \tag{1.8}
\end{equation*}
$$

To obtain the Neyman-Pearson tests we proceed as follows: Fix α in $(0,1)$. We seek $\eta>0$ such that $\mathbb{P}_{\theta_{0}}\left[d_{\eta}(Y)=1\right]=\alpha$. This leads to the equation

$$
2\left(1-\Phi\left(\sqrt{\frac{T\left(\eta ; \theta_{0}, \theta_{1}\right)^{+}}{\theta_{0}}}\right)\right)=\alpha
$$

or equivalently

$$
\Phi\left(\sqrt{\frac{T\left(\eta ; \theta_{0}, \theta_{1}\right)^{+}}{\theta_{0}}}\right)=1-\frac{\alpha}{2} .
$$

Note that $1-\frac{\alpha}{2}>\frac{1}{2}$. Any solution is characterized by

$$
\frac{T\left(\eta ; \theta_{0}, \theta_{1}\right)^{+}}{\theta_{0}}=\left(\Phi^{-1}\left(1-\frac{\alpha}{2}\right)\right)^{2}
$$

which requires $T\left(\eta ; \theta_{0}, \theta_{1}\right)>0$, namely $\frac{\theta_{0}}{\theta_{1}}<\eta^{2}$. Therefore, the desired η satisfies

$$
\frac{T\left(\eta ; \theta_{0}, \theta_{1}\right)}{\theta_{0}}=\left(\Phi^{-1}\left(1-\frac{\alpha}{2}\right)\right)^{2} \quad \text { and } \quad \frac{\theta_{0}}{\theta_{1}}<\eta^{2}
$$

It is easy to check that any solution to the first equation automatically satisfies the required inequality.

Therefore, the Neyman-Pearson test $d_{\mathrm{NP}}\left(\alpha ; \theta_{0}, \theta_{1}\right)$ for testing $H_{\theta_{0}}$ against $H_{\theta_{1}}$ takes the form

$$
d_{\mathrm{NP}}\left(\alpha ; \theta_{0}, \theta_{1}\right)(y)=0 \quad \text { iff } \quad|y|<\sqrt{\theta_{0}} \cdot \Phi^{-1}\left(1-\frac{\alpha}{2}\right), \quad y \in \mathbb{R}
$$

Note that the region

$$
\begin{align*}
C\left(d_{\mathrm{NP}}\left(\alpha ; \theta_{0}, \theta_{1}\right)\right) & =\left\{y \in \mathbb{R}:|y|<\sqrt{\theta_{0}} \cdot \Phi^{-1}\left(1-\frac{\alpha}{2}\right)\right\} \\
& =\left(-\sqrt{\theta_{0}} \cdot \Phi^{-1}\left(1-\frac{\alpha}{2}\right), \sqrt{\theta_{0}} \cdot \Phi^{-1}\left(1-\frac{\alpha}{2}\right)\right) \tag{1.9}
\end{align*}
$$

does not depend on the actual value of θ_{1}.
2.b. Assume $0<\theta_{1}<\theta_{0}$ - The test d_{η} now reads

$$
d_{\eta}(y)=0 \quad \text { iff } \quad y^{2}>T\left(\eta ; \theta_{0}, \theta_{1}\right), \quad y \in \mathbb{R}
$$

If $\frac{\theta_{0}}{\theta_{1}}<\eta^{2}$, then $\log \left(\eta^{2} \cdot \frac{\theta_{1}}{\theta_{0}}\right)>0$ but $T\left(\eta ; \theta_{0}, \theta_{1}\right)<0$. Thus, d_{η} always selects the null hypothesis $H_{\theta_{0}}$, whence $\mathbb{P}_{\theta_{0}}\left[d_{\eta}(Y)=1\right]=0$ and $\mathbb{P}_{\theta_{1}}\left[d_{\eta}(Y)=1\right]=0$.

If $\eta^{2} \leq \frac{\theta_{0}}{\theta_{1}}$, then $\log \left(\eta^{2} \cdot \frac{\theta_{1}}{\theta_{0}}\right) \leq 0$ and $T\left(\eta ; \theta_{0}, \theta_{1}\right) \geq 0$, whence

$$
d_{\eta}(y)=0 \quad \text { iff } \quad|y|>\sqrt{T\left(\eta ; \theta_{0}, \theta_{1}\right)}, \quad y \in \mathbb{R}
$$

It follows that

$$
\begin{align*}
\mathbb{P}_{\theta_{0}}\left[d_{\eta}(Y)=1\right] & =\mathbb{P}_{\theta_{0}}\left[-\sqrt{T\left(\eta ; \theta_{0}, \theta_{1}\right)} \leq Y \leq \sqrt{T\left(\eta ; \theta_{0}, \theta_{1}\right)}\right] \\
& =\mathbb{P}_{\theta_{0}}\left[-\sqrt{\frac{T\left(\eta ; \theta_{0}, \theta_{1}\right)}{\theta_{0}}} \leq \frac{Y}{\sqrt{\theta_{0}}} \leq \sqrt{\frac{T\left(\eta ; \theta_{0}, \theta_{1}\right)}{\theta_{0}}}\right] \\
& =\Phi\left(\sqrt{\frac{T\left(\eta ; \theta_{0}, \theta_{1}\right)}{\theta_{0}}}\right)-\Phi\left(-\sqrt{\frac{T\left(\eta ; \theta_{0}, \theta_{1}\right)}{\theta_{0}}}\right) \\
& =2 \Phi\left(\sqrt{\frac{T\left(\eta ; \theta_{0}, \theta_{1}\right)}{\theta_{0}}}\right)-1 . \tag{1.10}
\end{align*}
$$

ENEE 621/SPRING 2017

Similar calculations show that

$$
\begin{equation*}
\mathbb{P}_{\theta_{1}}\left[d_{\eta}(Y)=1\right]=2 \Phi\left(\sqrt{\frac{T\left(\eta ; \theta_{0}, \theta_{1}\right)}{\theta_{1}}}\right)-1 \tag{1.11}
\end{equation*}
$$

Combining the two cases we get

$$
\begin{equation*}
\mathbb{P}_{\theta_{h}}\left[d_{\eta}(Y)=1\right]=2 \Phi\left(\sqrt{\frac{T\left(\eta ; \theta_{0}, \theta_{1}\right)^{+}}{\theta_{h}}}\right)-1, \quad h=0,1 \tag{1.12}
\end{equation*}
$$

To obtain the Neyman-Pearson tests we proceed as follows: Fix α in $(0,1)$. We seek $\eta>0$ such that $\mathbb{P}_{\theta_{0}}\left[d_{\eta}(Y)=1\right]=\alpha$. This leads to the equation

$$
2 \Phi\left(\sqrt{\frac{T\left(\eta ; \theta_{0}, \theta_{1}\right)^{+}}{\theta_{0}}}\right)-1=\alpha
$$

or equivalently

$$
\Phi\left(\sqrt{\frac{T\left(\eta ; \theta_{0}, \theta_{1}\right)^{+}}{\theta_{0}}}\right)=\frac{1+\alpha}{2} .
$$

Here we have $\frac{1+\alpha}{2}>\frac{1}{2}$. Any solution is characterized by

$$
\frac{T\left(\eta ; \theta_{0}, \theta_{1}\right)^{+}}{\theta_{0}}=\left(\Phi^{-1}\left(\frac{1+\alpha}{2}\right)\right)^{2}
$$

thereby requiring $T\left(\eta ; \theta_{0}, \theta_{1}\right)>0$, namely $<\eta^{2}<\frac{\theta_{0}}{\theta_{1}}$. Therefore, the desired η satisfies

$$
\frac{T\left(\eta ; \theta_{0}, \theta_{1}\right)}{\theta_{0}}=\left(\Phi^{-1}\left(\frac{1+\alpha}{2}\right)\right)^{2} \quad \text { and } \quad \eta^{2}<\frac{\theta_{0}}{\theta_{1}}
$$

It is easy to check that any solution to the first equation automatically satisfies the required inequality.

Therefore, the Neyman-Pearson test $d_{\mathrm{NP}}\left(\alpha ; \theta_{0}, \theta_{1}\right)$ for testing $H_{\theta_{0}}$ against $H_{\theta_{1}}$ takes the form

$$
d_{\mathrm{NP}}\left(\alpha ; \theta_{0}, \theta_{1}\right)(y)=0 \quad \text { iff } \quad|y|>\sqrt{\theta_{0}} \cdot \Phi^{-1}\left(\frac{1+\alpha}{2}\right), \quad y \in \mathbb{R}
$$

Again we note that the set

$$
\begin{align*}
C\left(d_{\mathrm{NP}}\left(\alpha ; \theta_{0}, \theta_{1}\right)\right) & =\left\{y \in \mathbb{R}:|y|>\Phi^{-1}\left(\frac{1+\alpha}{2}\right) \cdot \sqrt{\theta_{0}}\right\} \\
& =\left[-\sqrt{\theta_{0}} \cdot \Phi^{-1}\left(\frac{1+\alpha}{2}\right), \sqrt{\theta_{0}} \cdot \Phi^{-1}\left(\frac{1+\alpha}{2}\right)\right]^{c} \tag{1.13}
\end{align*}
$$

does not depend on θ_{1}.
3.

Fix θ_{0} and θ_{1} so that $0<\theta_{0}<\theta_{1}$. By Problem 2.a we know that for each α in $(0,1)$ there exists a Neyman-Pearson test $d_{\mathrm{NP}}\left(\alpha ; \theta_{0}, \theta_{1}\right)$ of size α for testing $H_{\theta_{0}}$ against $H_{\theta_{1}}$; its region is given by

$$
\begin{equation*}
C\left(d_{\mathrm{NP}}\left(\theta_{0}, \theta_{1} ; \alpha\right)\right)=\left(-\sqrt{\theta_{0}} \cdot \Phi^{-1}\left(1-\frac{\alpha}{2}\right), \sqrt{\theta_{0}} \cdot \Phi^{-1}\left(1-\frac{\alpha}{2}\right)\right) . \tag{1.14}
\end{equation*}
$$

Note that $C\left(d_{\mathrm{NP}}\left(\theta_{0}, \theta_{1} ; \alpha\right)\right)$ does not depend on θ_{1} as long as $\theta_{0}<\theta_{1}$.
3.a. With $\Theta_{0}=\{1\}$ and $\Theta_{1}=(1, \infty)$, it is plain from the remark above that a UMP test $d_{\mathrm{UMP}}(\alpha)$ of size α exists for testing $H_{0}=H_{\theta_{0}=1}$ against the composite hypothesis $H_{1} \equiv H_{\theta}, \theta \in(1, \infty)$, its region being given by

$$
C\left(d_{\mathrm{NP}}\left(\theta_{1}, 1 ; \alpha\right)\right)=\left(-\Phi^{-1}\left(1-\frac{\alpha}{2}\right), \Phi^{-1}\left(1-\frac{\alpha}{2}\right)\right)
$$

Just use $\theta_{0}=1$ in (1.14).
3.c. (We solve Part 3.b. later). Assume $\Theta_{0}=(0,1]$ and $\theta_{1}=(1, \infty)$. Pick σ in $(0,1]$. By the arguments given earlier, the UMP test $d_{\mathrm{UMP}}(\alpha ; \sigma)$ of size α for testing the simple null hypothesis $H_{0} \equiv H_{\sigma}$ against the composite alternative $H_{1} \equiv H_{\theta}, \theta \in(1, \infty)$ is given by

$$
d_{\mathrm{UMP}}(\alpha ; \sigma)(y)=0 \quad \text { iff } \quad|y|<\sqrt{\sigma} \cdot \Phi^{-1}\left(1-\frac{\alpha}{2}\right), \quad y \in \mathbb{R}
$$

with region

$$
C\left(d_{\mathrm{UMP}}(\alpha ; \sigma)\right)=\left(-\sqrt{\sigma} \cdot \Phi^{-1}\left(1-\frac{\alpha}{2}\right), \sqrt{\sigma} \cdot \Phi^{-1}\left(1-\frac{\alpha}{2}\right)\right) .
$$

The test $d_{\mathrm{UMP}}(\alpha ; \sigma)$ is characterized by

$$
\mathbb{P}_{\theta}[d(Y)=1] \leq \mathbb{P}_{\theta}\left[d_{\mathrm{UMP}}(\alpha ; \sigma)(Y)=1\right], \quad \begin{gather*}
 \tag{1.15}\\
\\
\end{gather*}
$$

This suggests that by proper selection of the parameter σ in $(0,1]$, the test $d_{\text {UMP }}(\alpha ; \sigma)$ might also be used to implement the UMP test $d_{\text {UMP }}(\alpha)$ of size α for testing the composite null hypothesis $H_{0} \equiv H_{\theta}, \theta \in(0,1]$ against the composite alternative $H_{1} \equiv H_{\theta}, \quad \theta \in$ $(1, \infty)$. Such a test $d_{\mathrm{UMP}}(\alpha)$ is characterized by

$$
\mathbb{P}_{\theta}[d(Y)=1] \leq \mathbb{P}_{\theta}\left[d_{\mathrm{UMP}}(\alpha)(Y)=1\right], \quad \begin{gather*}
\theta>1 \tag{1.16}\\
\mathcal{D}_{(0,1], \alpha}
\end{gather*}
$$

Since $\mathcal{D}_{(0,1], \alpha} \subseteq \mathcal{D}_{\sigma, \alpha}$, it is plain from (1.15) and (1.16) that we can take $d_{\mathrm{UMP}}(\alpha)=$ $d_{\mathrm{UMP}}(\alpha ; \sigma)$ provided the test $d_{\mathrm{UMP}}(\alpha ; \sigma)$ itself is also in $\mathcal{D}_{(0,1], \alpha}$.

Thus, we need to answer the following question: Does there exist σ in $(0,1]$ such that

$$
\begin{equation*}
\mathbb{P}_{\sigma^{\prime}}\left[d_{\mathrm{UMP}}(\alpha ; \sigma)(Y)=1\right] \leq \alpha, \quad 0<\sigma^{\prime} \leq 1 \tag{1.17}
\end{equation*}
$$

Given σ in $(0,1]$, fix σ^{\prime} in $(0,1]$. We note that

$$
\begin{align*}
& \mathbb{P}_{\sigma^{\prime}}\left[d_{\mathrm{UMP}}(\alpha ; \sigma)(Y)=1\right] \\
& \quad=\mathbb{P}_{\sigma^{\prime}}\left[|Y| \geq \sqrt{\sigma} \cdot \Phi^{-1}\left(1-\frac{\alpha}{2}\right)\right] \\
& \quad=\mathbb{P}_{\sigma^{\prime}}\left[\left|\frac{Y}{\sqrt{\sigma^{\prime}}}\right| \geq \sqrt{\frac{\sigma}{\sigma^{\prime}}} \cdot \Phi^{-1}\left(1-\frac{\alpha}{2}\right)\right] \\
& \quad=1-\mathbb{P}_{\sigma^{\prime}}\left[\left|\frac{Y}{\sqrt{\sigma^{\prime}}}\right|<\sqrt{\frac{\sigma}{\sigma^{\prime}}} \cdot \Phi^{-1}\left(1-\frac{\alpha}{2}\right)\right] \\
& \quad=1-\left(\Phi\left(\sqrt{\frac{\sigma}{\sigma^{\prime}}} \cdot \Phi^{-1}\left(1-\frac{\alpha}{2}\right)\right)-\Phi\left(-\sqrt{\frac{\sigma}{\sigma^{\prime}}} \cdot \Phi^{-1}\left(1-\frac{\alpha}{2}\right)\right)\right) \\
& \quad=F\left(\sigma ; \sigma^{\prime}\right) \tag{1.18}
\end{align*}
$$

where we have defined

$$
F\left(\sigma ; \sigma^{\prime}\right) \equiv 2\left(1-\Phi\left(\sqrt{\frac{\sigma}{\sigma^{\prime}}} \cdot \Phi^{-1}\left(1-\frac{\alpha}{2}\right)\right)\right), \quad \sigma>0, \sigma^{\prime}>0
$$

Given $\sigma>0$, the mapping $\sigma^{\prime} \rightarrow F\left(\sigma ; \sigma^{\prime}\right)$ is strictly increasing on $(0, \infty)$ with

$$
F(\sigma ; \sigma)=2\left(1-\Phi\left(\Phi^{-1}\left(1-\frac{\alpha}{2}\right)\right)\right)=\alpha .
$$

Therefore, the requirement (1.17) that the test $d_{\mathrm{UMP}}(\alpha ; \sigma)$ be an element of $\mathcal{D}_{(0,1], \alpha}$ amounts to

$$
\begin{equation*}
\sup _{\sigma^{\prime} \in(0,1]}\left(\mathbb{P}_{\sigma^{\prime}}\left[d_{\mathrm{UMP}}(\alpha ; \sigma)(Y)=1\right]\right) \leq \alpha, \tag{1.19}
\end{equation*}
$$

or equivalently

$$
\sup _{\sigma^{\prime} \in(0,1]}\left(2\left(1-\Phi\left(\sqrt{\frac{\sigma}{\sigma^{\prime}}} \cdot \Phi^{-1}\left(1-\frac{\alpha}{2}\right)\right)\right)\right) \leq \alpha .
$$

But strict monotonicity and continuity imply that

$$
\sup _{\sigma^{\prime} \in(0,1]}\left(2\left(1-\Phi\left(\sqrt{\frac{\sigma}{\sigma^{\prime}}} \cdot \Phi^{-1}\left(1-\frac{\alpha}{2}\right)\right)\right)\right)=2\left(1-\Phi\left(\sqrt{\sigma} \cdot \Phi^{-1}\left(1-\frac{\alpha}{2}\right)\right)\right)
$$

(with the supremum achieved at $\sigma^{\prime}=1$) and the question reduces to finding σ in $(0,1$] such that

$$
\begin{equation*}
2\left(1-\Phi\left(\sqrt{\sigma} \cdot \Phi^{-1}\left(1-\frac{\alpha}{2}\right)\right)\right) \leq \alpha \tag{1.20}
\end{equation*}
$$

This constraint is equivalent to

$$
1-\frac{\alpha}{2} \leq \Phi\left(\sqrt{\sigma} \cdot \Phi^{-1}\left(1-\frac{\alpha}{2}\right)\right)
$$

hence $\sigma \geq 1$ by mononotonicity! This shows that $d_{\mathrm{UMP}}(\alpha ; \sigma)$ with $\sigma=1$ satisfies the requirement (1.17) and $d_{\mathrm{UMP}}(\alpha)=d_{\mathrm{UMP}}(\alpha ; 1)$ as desired!
3.b. We now turn to the case $\Theta_{0}=(0,1)$ and $\theta_{1}=(1, \infty)$. Recall from Part 3.c that the test $d_{\mathrm{UMP}}(\alpha ; 1)$ is characterized by

$$
\mathbb{P}_{\theta}[d(Y)=1] \leq \mathbb{P}_{\theta}\left[d_{\mathrm{UMP}}(\alpha ; 1)(Y)=1\right], \quad \begin{gather*}
\theta>1 \tag{1.21}\\
\mathcal{D}_{(0,1], \alpha}
\end{gather*}
$$

On the other hand, the desired UMP test $d_{\mathrm{UMP}}(\alpha)$ of size α that tests the composite null hypothesis $H_{0} \equiv H_{\theta}, \theta \in(0,1)$ against the composite alternative $H_{1} \equiv H_{\theta}, \theta \in(1, \infty)$ is characterized by the inequalities

$$
\mathbb{P}_{\theta}[d(Y)=1] \leq \mathbb{P}_{\theta}\left[d_{\mathrm{UMP}}(\alpha)(Y)=1\right], \quad \begin{gather*}
\theta>1 \tag{1.22}\\
\end{gather*} \quad d \in \mathcal{D}_{(0,1), \alpha} .
$$

It is of course tempting to conjecture that $d_{\mathrm{UMP}}(\alpha)=d_{\mathrm{UMP}}(\alpha ; 1)$ here as well - However, beware of the inclusion $\mathcal{D}_{(0,1], \alpha} \subseteq \mathcal{D}_{(0,1), \alpha}$! Nevertheless we see that this conjecture will hold if we show that (i) the equality $\mathcal{D}_{(0,1], \alpha}=\mathcal{D}_{(0,1), \alpha}$ holds (although we have the inclusion $\left.\mathcal{D}_{(0,1], \alpha} \subseteq \mathcal{D}_{(0,1), \alpha}\right)$ and that (ii) the inequalities (1.22) are implied by the inequalities (1.21)! A moment of reflection should convince you that only (i) needs to be established, and that this equality is an easy immediate consequence of the following fact.

For each d in \mathcal{D}, the mapping $(0, \infty) \rightarrow[0,1]: \theta \rightarrow \mathbb{P}_{\theta}[d(Y)=1]$ is continuous.
This can be shown as follows. Pick d in \mathcal{D} and $\theta>0$. For every $\theta^{\prime}>0$ note that

$$
\mathbb{P}_{\theta^{\prime}}[d(Y)=1]=\int_{C(d)^{c}} f_{\theta^{\prime}}(y) d y
$$

With $\varepsilon>0$ in $(0, \theta)$ and θ^{\prime} in $(\theta-\varepsilon, \theta+\varepsilon)$ we have the following obvious inequalities:

$$
\begin{align*}
f_{\theta^{\prime}}(y) & =\frac{1}{\sqrt{2 \pi \theta^{\prime}}} e^{-\frac{y^{2}}{2 \theta^{\prime}}} \\
& \leq \frac{1}{\sqrt{2 \pi \theta^{\prime}}} e^{-\frac{y^{2}}{2(\theta+\varepsilon)}} \\
& \leq \frac{1}{\sqrt{2 \pi(\theta-\varepsilon)}} e^{-\frac{y^{2}}{2(\theta+\varepsilon)}} \\
& =\sqrt{\frac{\theta+\varepsilon}{\theta-\varepsilon}} \cdot f_{\theta+\varepsilon}(y), \quad y \in \mathbb{R} \tag{1.23}
\end{align*}
$$

with

$$
\int_{\mathbb{R}} f_{\theta+\varepsilon}(y) d y=1
$$

It follows from the Dominated Convergence Theorem that

$$
\lim _{n \rightarrow \infty} \int_{C(d)^{c}} f_{\theta_{n}}(y) d y=\int_{C(d)^{c}} \lim _{n \rightarrow \infty} f_{\theta_{n}}(y) d y=\int_{C(d)^{c}} f_{\theta}(y) d y
$$

for any any sequence $\mathbb{N}_{0} \rightarrow(0,1): n \rightarrow \theta_{n}$ such that $\lim _{n \rightarrow \infty} \theta_{n}=\theta$. This establishes the desired continuity.
4. \qquad
4.a. Fix d in \mathcal{D}. For each \boldsymbol{p} in \mathcal{P}_{M}, we note that

$$
\begin{align*}
J_{\boldsymbol{p}}(d) & =\mathbb{E}_{\boldsymbol{p}}[C(H, d(\boldsymbol{Y}))] \\
& =\sum_{m=0}^{M-1} p_{m} \mathbb{E} \boldsymbol{p}[C(H, d(\boldsymbol{Y})) \mid H=m] \\
& =\sum_{m=0}^{M-1} p_{m} \mathbb{E} \boldsymbol{p}[C(m, d(\boldsymbol{Y})) \mid H=m] \tag{1.24}
\end{align*}
$$

with the quantities

$$
\mathbb{E}_{\boldsymbol{p}}[C(m, d(\boldsymbol{Y})) \mid H=m], \quad m=0,1, \ldots, M-1
$$

independent of \boldsymbol{p}. For arbitrary \boldsymbol{p}_{0} and \boldsymbol{p}_{1} in \mathcal{P}_{M} it is now plain that

$$
J_{\lambda} \boldsymbol{p}_{1}+(1-\lambda) \boldsymbol{p}_{0}(d)=\lambda J_{\boldsymbol{p}_{1}}(d)+(1-\lambda) J_{\boldsymbol{p}_{0}}(d), \quad \lambda \in(0,1) .
$$

Now recall that

$$
V(\boldsymbol{p}) \equiv \inf _{d \in \mathcal{D}} J_{\boldsymbol{p}}(d), \quad \boldsymbol{p} \in \mathcal{P}_{M}
$$

so that

$$
V(\boldsymbol{p}) \leq J_{\boldsymbol{p}}(d), \quad d \in \mathcal{D}, \quad \boldsymbol{p} \in \mathcal{P}_{M} .
$$

Therefore, fix d in \mathcal{D}. For arbitrary \boldsymbol{p}_{0} and \boldsymbol{p}_{1} in \mathcal{P}_{M} we get

$$
\begin{align*}
J_{\lambda \boldsymbol{p}_{1}+(1-\lambda) \boldsymbol{p}_{0}}(d) & =\lambda J_{\boldsymbol{p}_{1}}(d)+(1-\lambda) J_{\boldsymbol{p}_{0}}(d) \\
& \geq \lambda V\left(\boldsymbol{p}_{1}\right)+(1-\lambda) V\left(\boldsymbol{p}_{0}\right), \quad \lambda \in(0,1) . \tag{1.25}
\end{align*}
$$

and the conclusion

$$
\lambda V\left(\boldsymbol{p}_{1}\right)+(1-\lambda) V\left(\boldsymbol{p}_{0}\right) \leq V\left(\lambda \boldsymbol{p}_{1}+(1-\lambda) \boldsymbol{p}_{0}\right), \quad \lambda \in(0,1)
$$

follows.
4.b. We have

$$
\begin{align*}
J_{\boldsymbol{p}^{\star}}\left(d^{\star}\right) & =J_{\boldsymbol{p}}\left(d^{\star}\right) \quad\left[\text { For all } \boldsymbol{p} \text { in } \mathcal{P}_{M}\right. \text { since } \\
& =J_{\mathrm{Max}}\left(d^{\star}\right) \\
& \geq \inf _{d \in \mathcal{D}} J_{\mathrm{Max}}(d) \\
& =\inf _{d \in \mathcal{D}}\left(\sup _{\boldsymbol{p} \in \mathcal{P}_{M}} J_{\boldsymbol{p}}(d)\right) \\
& \geq \inf _{d \in \mathcal{D}} J_{\boldsymbol{p}^{\star}}(d) \\
& =V\left(\boldsymbol{p}^{\star}\right) .
\end{align*}
$$

Because $V\left(\boldsymbol{p}^{\star}\right)=J_{\boldsymbol{p}^{\star}}\left(d^{\star}\right)$ we conclude that

$$
J_{\operatorname{Max}}\left(d^{\star}\right)=\inf _{d \in \mathcal{D}} J_{\operatorname{Max}}(d)
$$

and d^{\star} is indeed a minimax strategy.
4.c. The assumption $V\left(\boldsymbol{p}^{\star}\right)=J_{\boldsymbol{p}^{\star}}\left(d^{\star}\right)$ immediately yields

$$
\begin{equation*}
V\left(\boldsymbol{p}^{\star}\right) \geq \inf _{d \in \mathcal{D}}\left(\sup _{\boldsymbol{p} \in \mathcal{P}_{M}} J_{\boldsymbol{p}}(d)\right) \tag{1.27}
\end{equation*}
$$

by virtue of (1.26). It follows that

$$
\begin{equation*}
\inf _{d \in \mathcal{D}}\left(\sup _{\boldsymbol{p} \in \mathcal{P}_{M}} J_{\boldsymbol{p}}(d)\right) \leq V\left(\boldsymbol{p}^{\star}\right) \leq \sup _{\boldsymbol{p} \in \mathcal{P}_{M}} V(\boldsymbol{p})=\sup _{\boldsymbol{p} \in \mathcal{P}_{M}}\left(\inf _{d \in \mathcal{D}} J_{\boldsymbol{p}}(d)\right) \tag{1.28}
\end{equation*}
$$

On the other hand the inequality

$$
\begin{equation*}
\sup _{\boldsymbol{p} \in \mathcal{P}_{M}} V(\boldsymbol{p}) \leq \inf _{d \in \mathcal{D}}\left(\sup _{\boldsymbol{p} \in \mathcal{P}_{M}} J_{\boldsymbol{p}}(d)\right) \tag{1.29}
\end{equation*}
$$

always holds as a result of the obvious inequalities

$$
V(\boldsymbol{p}) \leq J_{\boldsymbol{p}}(d) \leq J_{\operatorname{Max}}(d), \quad \begin{aligned}
\boldsymbol{p} \in \mathcal{P}_{M} \\
d \in \mathcal{D}
\end{aligned}
$$

The proof is as in the binary case.
Combining the inequalities (1.28) and (1.29) yields the Minimax Equality

$$
\begin{equation*}
\sup _{\boldsymbol{p} \in \mathcal{P}_{M}}\left(\inf _{d \in \mathcal{D}} J_{\boldsymbol{p}}(d)\right)=\inf _{d \in \mathcal{D}}\left(\sup _{\boldsymbol{p} \in \mathcal{P}_{M}} J_{\boldsymbol{p}}(d)\right) \tag{1.30}
\end{equation*}
$$

as well as the fact that

$$
V\left(\boldsymbol{p}^{\star}\right)=\sup _{\boldsymbol{p} \in \mathcal{P}_{M}} V(\boldsymbol{p})
$$

In short, \boldsymbol{p}^{\star} is a maximum of the mapping $\mathcal{P}_{M} \rightarrow \mathbb{R}: \boldsymbol{p} \rightarrow V(\boldsymbol{p})$.

[^0]: ${ }^{1}$ For $\eta=0$, the test d_{0} always selects the alternative.

