ENEE 621/SPRING 2017

ENEE 621
SPRING 2017

ESTIMATION AND DETECTION THEORY

ANSWER KEY TO TEST # 1:

1.
1.a. Fix n > 0! and recall that

do(y) it fi(y) <nfoly), yeR.

Here, with the conventions implied by the definition of d,,, we have

ys -l dy(y) =1
-1<y<O0: dy(y) =0
O0<y<1l: dy(y)=0iff 1 <3n(l—y)
1<y <3 dy(y) =1
3<y: dy(y) =1

Collecting these facts we conclude that

C(d,) = {yeR: d,(y) =0}
(=1,0)U{y €[0,1): 1<3n(1—y)}. (1.1)

1.b. For n = 0, we know that Pp(d,) = 1 and Pp(d,) = 1 as explained in the Lecture
Notes. From now on, fix n > 0. We shall write

LN 0 if 0<n<3i
'f(”)E(l—s—) - Lo

'For n = 0, the test dy always selects the alternative.
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Obviously,

PF(dn) = P[dn<y) = 1|H: 0]
=1 —]P’[dn(Y) :O|H:O]
= 1—]P’[—1<Y§O|H:O]—IP[O<Y§1,1<377(1—Y)|H:0]

1
= 1-5-P0<Y<11<3n1-Y)H =0

1 1
_ —]P’{O<Y§1,O<Y<1—3—‘H:O}
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In a similar way, we get

Po(dy) = P[d)(Y)=1H = 1]

= 1-P[d,(Y) =0|H =1]

= 1-P[-1<Y<O0H=1-P0<Y <1,1<3p(1-Y)|H=1]
1-Pl0<Y <1,1<3p(l—Y)H=1]

_ 1—P[0<Y§1,0<Y<1—SL‘H:11
n

(1-2)°
- 1- / f1(9)dy

2 1 1
g‘f‘% if 2 <n.

In summary we conclude that

Pe(dy) = £ (L=t and Pofdy) =12 g5

N | —
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From these expressions it is then plain that

1
lim Pr(d,) = 5 and }gr(l) Pp(d,) =1

n—0

while 9
lim Pp(d,) =0 and lim Pp(d,) = =

17—00 7—00 3

Moreover, we get {Pp(d,), n >0} = (0,3] and {Pp(d,), n >0} = (3,1].
1.c. With the notation introduced in the Lecture Notes we have

V(p) = Jp(d*(p)) = Jp(dy)), p € (0,1]

where
_ Fo(l—P) - IL—p

n(p) ' 5

since here I'y = I'y = 1. It is now straightforward to see that

V(p) = pP[dyp(Y) = 0[H = 1] + (1 = p)P [dy)(Y) = 1|H = 0]
=P (1 - PD(dn(p))) +(1— p)PF(dn(p))

~o(iCw) ) ron (30 (o))

9
with
T(p) = tnp))
1 +
_ 1_—
( %@»
: 3
(3 —4p)* -5 H0<p=<jy 14
S i3 <p<1

It follows that

Vip) =
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It is a simple matter to check that the mapping p — V(p) is concave on [0, 1], and
differentiable on that interval except at p = % = Pm.
1.d. Fix n > 0. From Part b we see that

3(1 = Pp(dy)) = t(n)

while
2Pp(dy) = (1 —t(n)* = (1 =3(1 = Po(dy)))*,

whence

2Pp(dy) = (3Pp(dy) — 2)2 :
Therefore, since 2 < Pp(d,) for all n > 0, it follows that

2Py (d,) = 3Pp(d,) — 2,

and we conclude that

Pod,) = 2* V2P:(d,)

3
The ROC curve is now defined through the mapping I : [0, %} — [%, 1] given by

2+ +/2Pr
3 )

N | —

Here, contrary to what happens in the “usual” case (say the Gaussian case), the ROC
curve does not go from point (0,0) to point (1,1), but instead from (0, Z) to point (3,1)
— There is no curve defined over the entire interval [0, 1].

2.
For each 6 > 0 it is plain that Hy : Y ~ Fy means that under Hy the observation Y is
normally distributed with zero mean and variance 6.

With distinct 6y and 0 in (0, 00), consider the binary hypothesis testing problem

Hi: Y ~F,

Hy: Y ~F, (1.5)

For n > 0, consider the corresponding test d,, : R — {0,1}. In a routine manner we find

dy(y) =0 iff  fo,(y) < nfe(y)
iff

1 1 0
iff — )2 <log(n* 2 R.

For future use, write
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2.a. Assume 0 < 6y < 0; — The test d,, now reads
d,(y) =0 iff y?* < T(n;00,01), yeER.

If 2 < % then log (772 : Z—1> < 0 and T'(n;60,601) < 0. Thus, d, always selects the

91 ) 0
alternative Hy,, whence Py, [d,(Y) = 1] =1 and Py, [d,(Y) =1] = 1.
If %11 < n?, then T'(n;0,6,) > 0 and

dy(y) =0 iff |y </ T(n;00,601), yeR.

It follows that

Py, [dy(Y) =1] = 1Py, [_ T(n;60,01) <Y <~/ T(n; 90,91)]
T(77; 907 01) Y T(n7 607 91)
= 1-P < <
" 2 Vo, bo
— 1 . @ T<?77 90701) . (b o T(777 90791)
b0 to
P SR N ALY (1.6)
to
Similar calculations show that
Py, [d,(Y)=1] = 2[1-0 T("?;‘” o) (1.7)
1
Combining the two cases we get
: +
Py, [d,(Y)=1=2[1-a Z@%%QL . h=0,1. (1.8)
h

To obtain the Neyman-Pearson tests we proceed as follows: Fix « in (0,1). We seek
n > 0 such that Py, [d,(Y) = 1] = a. This leads to the equation

T(n; +
o1 ) Tl 6)" ) _
)
or equivalently
T(n;6p,01)"
@ (77’ 07 1) :1_g
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Note that 1 — 5 > % Any solution is characterized by

T (0 (1 5)Y'

which requires T'(n; 0y, 01) > 0, namely 90 < n?. Therefore, the desired 7 satisfies

_T<ns;;o;91>:(q>—l (1-2))" ana zl<77

It is easy to check that any solution to the first equation automatically satisfies the
required inequality.

Therefore, the Neyman-Pearson test dxp(a; g, 01) for testing Hy, against Hy, takes the
form

dxe(aifo,01)(y) =0 iff [yl < V-7 (1-3), yeR
Note that the region
Cldnp(; 0, 60)) = {yeR lyl < /8o - &~ 1( )}
- (VR () (-5)

does not depend on the actual value of 6.
2.b. Assume 0 < 6, < 6y — The test d,, now reads

dn(y iff 4> > T(n;600,61), yeR.

If ‘90 < 1%, then log (17 9—1> > 0 but T'(n;6p,6:) < 0. Thus, d, always selects the null
hypothe51s Hy,, whence Py, [d,(Y) = 1] = 0 and Py, [d,(Y) = 1] = 0.
Ifn? < ? o>, then log <77 %) 0 and T'(n; 6y, 01) > 0, whence

dy(y) =0 iff |y[>/T(n;00,01), yeR.

It follows that

Boy [d(Y) = 1) = Bay [—v/T(r:00.00) <Y < /T (i, 1)

_ PGO . T(na 907 91) S Y S T(n7 90a ‘91)
0o Voo to
- P T(77790,91) ol - T(nveoael)
00 90
PP Y A2V By (1.10)
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Similar calculations show that

T(n; to, 91)

Py, [d,(Y)=1] = 2@ 7 — 1. (1.11)
1
Combining the two cases we get
T (n; 00, 0,)F
Py, [d, (V) = 1] = 20 (: . DM ST (1.12)
h

To obtain the Neyman-Pearson tests we proceed as follows: Fix a in (0,1). We seek
n > 0 such that Py, [d,(Y) = 1] = a. This leads to the equation

T(n; +
o | Lm0 00T
0o
or equivalently
o T(n;00,60)" ) 1+«

o 2

Here we have £ > % Any solution is characterized by

2
T(n;00,00)" o T+a\)’
0o B 2 ’

thereby requiring T'(n; 6y, 61) > 0, namely < n? < z—(l’. Therefore, the desired n satisfies

1 (]};60761) 1 1 o 2 2 (90
) and 7N < )

It is easy to check that any solution to the first equation automatically satisfies the
required inequality.

Therefore, the Neyman-Pearson test dyp(a; g, 01) for testing Hy, against Hy, takes the
form

1
de(etn,0)) =0 i Iyl > Voo (150, yer

Again we note that the set

Cdnp (00, 01)) = {yER: |y|>¢)_1(1+a>-\/9_0}
_ [_\/9_0@_1(1;04)7\/9_0.@_1(1;@)}6 (1.13)
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does not depend on 6.

3.
Fix 6y and 6, so that 0 < 6y < #;. By Problem 2.a we know that for each « in (0, 1)
there exists a Neyman-Pearson test dyp(c; 6y, 601) of size a for testing Hy, against Hy,;
its region is given by

O (dnp (00, 015 ) = (—\/e_o-cb—l (1 - —) NS (1 - E)) (1.14)

Note that C(dxp (6o, 01; «)) does not depend on 6; as long as 6y < 0.

3.a. With 0y = {1} and ©; = (1, 00), it is plain from the remark above that a UMP
test dymp(a) of size « exists for testing Hy = Hy,—; against the composite hypothesis
H, = Hy, 0 € (1,00), its region being given by

(67

C(dxp(th,1; @) = <_CD_1 (1 N %) @7 (1 B §>>

Just use 0y = 1 in (1.14).

3.c. (We solve Part 3.b. later). Assume 6y = (0, 1] and 6, = (1,00). Pick ¢ in (0, 1].
By the arguments given earlier, the UMP test dynmp(a; o) of size a for testing the simple
null hypothesis Hy = H, against the composite alternative Hy = Hy, 0 € (1,00) is given
by

. _ (8]
dosp(; o) (y) =0 iff \y]<\/5-<131<1—§>, yeR

with region

C’(dUMp(a;U)):(—\/E~<I>_1 (1_—) Nz = (1_9)).

2
The test dymp(a; o) is characterized by
0>1
Py [d(Y) = 1] <Py [dume(a;0)(Y) =1], .5 (1.15)

This suggests that by proper selection of the parameter o in (0, 1], the test dyyp(a; o)
might also be used to implement the UMP test dynp () of size « for testing the composite
null hypothesis Hy = Hy, 6 € (0,1] against the composite alternative H; = Hy, 0 €
(1,00). Such a test dump(e) is characterized by

g>1

Py [d(Y) = 1] < Py [dump () (V) = 1], _ Dio.1]0-

(1.16)

Since D1,a € Dy, it is plain from (1.15) and (1.16) that we can take dymp(a) =
dunp(ov; o) provided the test dymp(a; o) itself is also in Do 1ja-
Thus, we need to answer the following question: Does there exist o in (0, 1] such that

P, [dump(a;0) (V) =1 <a, 0<o <L (1.17)
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Given o in (0, 1], fix ¢’ in (0, 1]. We note that

_ ]P’UIH\;; >4/~ _1(1_%”
_ 1-@0,[\/}% <\/§q’1(1_%>]

where we have defined

Floio)=2(1-a 3-@*(1—9) . 0>0,0 >0
o’ 2

Given o > 0, the mapping ¢’ — F(0;0’) is strictly increasing on (0, co) with

F(oi0) =2 (1 — (cp—l (1 - %))) —

Therefore, the requirement (1.17) that the test dymp(c; o) be an element of D14
amounts to

sup (P, [dump(a;0)(Y) =1]) < a, (1.19)

o’€(0,1]

(e (5o (1-9))) <o

But strict monotonicity and continuity imply that

i, GO (G 0-9))) 20 (70 (-5))

(with the supremum achieved at ¢’ = 1) and the question reduces to finding o in (0, 1]

such that
2(1—c1><\/3-<1>*1 (1—%))) < a. (1.20)

or equivalently

This constraint is equivalent to

- pze(E e (i-3)

hence ¢ > 1 by mononotonicity! This shows that dymp(c; o) with ¢ = 1 satisfies the
requirement (1.17) and dyyp(a) = dymp(a; 1) as desired!
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3.b. We now turn to the case ©y = (0,1) and ¢, = (1,00). Recall from Part 3.c that
the test dymp(a; 1) is characterized by

g>1

P, [d(Y) = 1] < Py [dUMP(O‘; 1)(Y) = 1] ) de D(O 1),a-

(1.21)
On the other hand, the desired UMP test dyyp () of size a that tests the composite null

hypothesis Hy = Hy, 6 € (0,1) against the composite alternative H; = Hy, 6 € (1,00)
is characterized by the inequalities

g>1

Py [d(Y) =1] <Py [dose(@)(V) =11, o

(1.22)

It is of course tempting to conjecture that dymp(a) = dymp(a; 1) here as well — How-
ever, beware of the inclusion Do, € D(0,1),o! Nevertheless we see that this conjecture
will hold if we show that (i) the equality D10 = D0,1), holds (although we have
the inclusion Dy 11,0 € D(o,1),) and that (ii) the inequalities (1.22) are implied by the
inequalities (1.21)! A moment of reflection should convince you that only (i) needs to
be established, and that this equality is an easy immediate consequence of the following
fact.

For each d in D, the mapping (0,00) — [0,1] : § — Py [d(Y) = 1] is continuous.

This can be shown as follows. Pick d in D and 6 > 0. For every 6’ > 0 note that

Py [d(Y) = 1] = e fo(y)dy.

With e > 0in (0,6) and ¢ in (0 — €,0 + €) we have the following obvious inequalities:

foly) = e 20

IN

A
° |
®
D
+
NJ

= e fecly) yeER (1.23)

with
f&—l—s(y)dy =1L

It follows from the Dominated Convergence Theorem that

i [ gawds= [ gy = [
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for any any sequence Ny — (0,1) : n — 6,, such that lim,,_,, #,, = 6. This establishes the
desired continuity.

4.
4.a. Fix d in D. For each p in P,;, we note that
Jp(d) = Ep[C(H,d(Y))]
M-1
= pmEp [C(H,d(Y))|H = m]
m=0
M-1
= 3 puEp [Clm. d(Y))|H = m] (1.24)
m=0

with the quantities
Ep [C(m,d(Y))|H =m], m=0,1,...,M —1
independent of p. For arbitrary p, and p, in P, it is now plain that

J>\p1+(1_>\)p0 (d) = )\Jpl (d) + (1 — /\)Jpo (d), AE (0, 1)

Now recall that
V(p) = inf Jp(d), p € Pu

deD

so that
deD

pc PM
Therefore, fix d in D. For arbitrary p, and p, in Py we get

Ip,+a-np,(d) = Ap,(d) + (1= A)Jp,(d)
> ANV(p)+ 1A —=XNV(py), A€ (0,1). (1.25)

V(p) < Jp(d),

and the conclusion
AV(py) + (1 =NV (py) <V(Ap + (1= AN)py), A€(0,1)
follows.

4.b. We have

o . [For all p in Py, since
Ipr(d) = Jp(d) the mapping p — Jp(d*) is constant]
JMaX(d*)

inf JMax(d)

deD

= inf | sup Jp(d
deD (peg?u p( >>

> inf Jp-(d)

deD

= V(pH). (1.26)

v
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Because V(p*) = Jp*(d*) we conclude that

']Max(d*) = ég% JMaX(d)7

and d* is indeed a minimax strategy.

4.c. The assumption V(p*) = Jp*(d*) immediately yields

V(p*) > inf [ sup Jp(d) (1.27)
deD PePu
by virtue of (1.26). It follows that
inf [ sup Jp(d) | <V(p*) < sup V(p) = sup <inf Jp(d)>. (1.28)
d€D \ pePy PPy PPy \9€P
On the other hand the inequality
sup V(p) < inf [ sup Jp(d) (1.29)
PPy d€D \ pePy

always holds as a result of the obvious inequalities

P € Pu

V(p) S Jp(d) S JMax<d)v deD.

The proof is as in the binary case.
Combining the inequalities (1.28) and (1.29) yields the Minimax Equality

su inf Jp(d) | = inf | sup Jp(d 1.30
peg)M (dED p( )) deD (pe?gu Pl )> ( )

as well as the fact that

V(p*) = sup V(p).
pePM

In short, p* is a maximum of the mapping Py; — R : p — V(p).




