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ESTIMATION AND DETECTION THEORY

ANSWER KEY TO TEST # 1:

1.
1.a. Fix η > 01 and recall that

dη(y) iff f1(y) < ηf0(y), y ∈ R.

Here, with the conventions implied by the definition of dη, we have

y ≤ −1: dη(y) = 1
−1 < y ≤ 0: dη(y) = 0

0 < y ≤ 1: dη(y) = 0 iff 1 < 3η(1− y)
1 < y ≤ 3: dη(y) = 1

3 < y: dη(y) = 1

Collecting these facts we conclude that

C(dη) ≡ {y ∈ R : dη(y) = 0}
= (−1, 0) ∪ {y ∈ [0, 1) : 1 < 3η(1− y)} . (1.1)

1.b. For η = 0, we know that PF(dη) = 1 and PD(dη) = 1 as explained in the Lecture
Notes. From now on, fix η > 0. We shall write

t(η) ≡
(

1− 1

3η

)+

=


0 if 0 < η ≤ 1

3

1− 1
3η

if 1
3
≤ η.

1For η = 0, the test d0 always selects the alternative.
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Obviously,

PF(dη) = P [dη(Y ) = 1|H = 0]

= 1− P [dη(Y ) = 0|H = 0]

= 1− P [−1 < Y ≤ 0|H = 0]− P [0 < Y ≤ 1, 1 < 3η(1− Y )|H = 0]

= 1− 1

2
− P [0 < Y ≤ 1, 1 < 3η(1− Y )|H = 0]

=
1

2
− P

[
0 < Y ≤ 1, 0 < Y < 1− 1

3η

∣∣∣H = 0

]
=

1

2
−
∫ (1− 1

3η )
+

0

f0(y)dy

=
1

2
−
∫ t(η)

0

(1− y)dy

=
1

2
−
[
y − y2

2

]t(η)
0

=
1

2
(1− t(η))2

=


1
2

if 0 < η ≤ 1
3

1
18η2

if 1
3
≤ η.

(1.2)

In a similar way, we get

PD(dη) = P [dη(Y ) = 1|H = 1]

= 1− P [dη(Y ) = 0|H = 1]

= 1− P [−1 < Y ≤ 0|H = 1]− P [0 < Y ≤ 1, 1 < 3η(1− Y )|H = 1]

= 1− P [0 < Y ≤ 1, 1 < 3η(1− Y )|H = 1]

= 1− P
[
0 < Y ≤ 1, 0 < Y < 1− 1

3η

∣∣∣H = 1

]
= 1−

∫ (1− 1
3η )

+

0

f1(y)dy

= 1− 1

3

∫ t(η)

0

dy

= 1− 1

3
t(η)

=


1 if 0 < η ≤ 1

3

2
3

+ 1
9η

if 1
3
≤ η.

(1.3)

In summary we conclude that

PF(dη) =
1

2
(1− t(η))2 and PD(dη) = 1− t(η)

3
, η > 0.
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From these expressions it is then plain that

lim
η→0

PF(dη) =
1

2
and lim

η→0
PD(dη) = 1

while

lim
η→∞

PF(dη) = 0 and lim
η→∞

PD(dη) =
2

3
.

Moreover, we get {PF(dη), η > 0} =
(
0, 1

2

]
and {PD(dη), η > 0} =

(
2
3
, 1
]
.

1.c. With the notation introduced in the Lecture Notes we have

V (p) = Jp(d
?(p)) = Jp(dη(p)), p ∈ (0, 1]

where

η(p) =
Γ0(1− p)

Γ1p
=

1− p
p

since here Γ0 = Γ1 = 1. It is now straightforward to see that

V (p) = pP
[
dη(p)(Y ) = 0|H = 1

]
+ (1− p)P

[
dη(p)(Y ) = 1|H = 0

]
= p

(
1− PD(dη(p))

)
+ (1− p)PF (dη(p))

= p

(
1

3

(
1− 1

3η(p)

)+
)

+ (1− p)

1

2

(
1−

(
1− 1

3η(p)

)+
)2


=
p

3
· τ(p) +

1− p
2
· (1− τ(p))2

with

τ(p) ≡ t(η(p))

=

(
1− 1

3η(p)

)+

=
(3− 4p)+

3(1− p)
=


1− p

3(1−p) if 0 < p ≤ 3
4

0 if 3
4
≤ p < 1.

(1.4)

It follows that

V (p) =


p
3

(
1− p

3(1−p)

)
+ (1− p)

(
p2

18(1−p)2

)
if 0 < p ≤ 3

4

1−p
2

if 3
4
≤ p < 1

=


p
3

(
1− p

3(1−p)

)
+ p2

18(1−p) if 0 < p ≤ 3
4

1−p
2

if 3
4
≤ p < 1

=


p(6−7p)
18(1−p) if 0 < p ≤ 3

4

1−p
2

if 3
4
≤ p < 1.
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It is a simple matter to check that the mapping p → V (p) is concave on [0, 1], and
differentiable on that interval except at p = 3

r
= pm.

1.d. Fix η > 0. From Part b we see that

3 (1− PD(dη)) = t(η)

while
2PF(dη) = (1− t(η))2 = (1− 3 (1− PD(dη)))

2 ,

whence
2PF(dη) = (3PD(dη)− 2)2 .

Therefore, since 2
3
< PD(dη) for all η > 0, it follows that√

2PF(dη) = 3PD(dη)− 2,

and we conclude that

PD(dη) =
2 +

√
2PF(dη)

3
.

The ROC curve is now defined through the mapping Γ : [0, 1
2
]→ [2

3
, 1] given by

PD = Γ(PF) =
2 +
√

2PF

3
, 0 ≤ PF ≤

1

2
.

Here, contrary to what happens in the “usual” case (say the Gaussian case), the ROC
curve does not go from point (0, 0) to point (1, 1), but instead from (0, 2

3
) to point (1

2
, 1)

– There is no curve defined over the entire interval [0, 1].

2.
For each θ > 0 it is plain that Hθ : Y ∼ Fθ means that under Hθ the observation Y is
normally distributed with zero mean and variance θ.

With distinct θ0 and θ1 in (0,∞), consider the binary hypothesis testing problem

H1 : Y ∼ Fθ1
H0 : Y ∼ Fθ0 .

(1.5)

For η > 0, consider the corresponding test dη : R→ {0, 1}. In a routine manner we find

dη(y) = 0 iff fθ1(y) < ηfθ0(y)

iff
1√

2πθ1
e
− y2

2θ1 < η · 1√
2πθ0

e
− y2

2θ0 , y ∈ R

iff

(
1

θ0
− 1

θ1

)
y2 < log

(
η2 · θ1

θ0

)
, y ∈ R.

For future use, write

T (η; θ0, θ1) ≡
(

1

θ0
− 1

θ1

)−1
· log

(
η2 · θ1

θ0

)
.
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2.a. Assume 0 < θ0 < θ1 – The test dη now reads

dη(y) = 0 iff y2 < T (η; θ0, θ1), y ∈ R.

If η2 ≤ θ0
θ1

, then log
(
η2 · θ1

θ0

)
≤ 0 and T (η; θ0, θ1) ≤ 0. Thus, dη always selects the

alternative Hθ1 , whence Pθ0 [dη(Y ) = 1] = 1 and Pθ1 [dη(Y ) = 1] = 1.
If θ0

θ1
< η2, then T (η; θ0, θ1) > 0 and

dη(y) = 0 iff |y| <
√
T (η; θ0, θ1), y ∈ R.

It follows that

Pθ0 [dη(Y ) = 1] = 1− Pθ0
[
−
√
T (η; θ0, θ1) < Y <

√
T (η; θ0, θ1)

]
= 1− Pθ0

−√T (η; θ0, θ1)

θ0
<

Y√
θ0
<

√
T (η; θ0, θ1)

θ0


= 1−

Φ

√T (η; θ0, θ1)

θ0

− Φ

−√T (η; θ0, θ1)

θ0


= 2

1− Φ

√T (η; θ0, θ1)

θ0

 . (1.6)

Similar calculations show that

Pθ1 [dη(Y ) = 1] = 2

1− Φ

√T (η; θ0, θ1)

θ1

 . (1.7)

Combining the two cases we get

Pθh [dη(Y ) = 1] = 2

1− Φ

√T (η; θ0, θ1)+

θh

 , h = 0, 1. (1.8)

To obtain the Neyman-Pearson tests we proceed as follows: Fix α in (0, 1). We seek
η > 0 such that Pθ0 [dη(Y ) = 1] = α. This leads to the equation

2

1− Φ

√T (η; θ0, θ1)+

θ0

 = α,

or equivalently

Φ

√T (η; θ0, θ1)+

θ0

 = 1− α

2
.
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Note that 1− α
2
> 1

2
. Any solution is characterized by

T (η; θ0, θ1)
+

θ0
=
(

Φ−1
(

1− α

2

))2
,

which requires T (η; θ0, θ1) > 0, namely θ0
θ1
< η2. Therefore, the desired η satisfies

T (η; θ0, θ1)

θ0
=
(

Φ−1
(

1− α

2

))2
and

θ0
θ1
< η2.

It is easy to check that any solution to the first equation automatically satisfies the
required inequality.

Therefore, the Neyman-Pearson test dNP(α; θ0, θ1) for testing Hθ0 against Hθ1 takes the
form

dNP(α; θ0, θ1)(y) = 0 iff |y| <
√
θ0 · Φ−1

(
1− α

2

)
, y ∈ R.

Note that the region

C(dNP(α; θ0, θ1)) =
{
y ∈ R : |y| <

√
θ0 · Φ−1

(
1− α

2

)}
=

(
−
√
θ0 · Φ−1

(
1− α

2

)
,
√
θ0 · Φ−1

(
1− α

2

))
(1.9)

does not depend on the actual value of θ1.
2.b. Assume 0 < θ1 < θ0 – The test dη now reads

dη(y) = 0 iff y2 > T (η; θ0, θ1), y ∈ R.

If θ0
θ1
< η2, then log

(
η2 · θ1

θ0

)
> 0 but T (η; θ0, θ1) < 0. Thus, dη always selects the null

hypothesis Hθ0 , whence Pθ0 [dη(Y ) = 1] = 0 and Pθ1 [dη(Y ) = 1] = 0.

If η2 ≤ θ0
θ1

, then log
(
η2 · θ1

θ0

)
≤ 0 and T (η; θ0, θ1) ≥ 0, whence

dη(y) = 0 iff |y| >
√
T (η; θ0, θ1), y ∈ R.

It follows that

Pθ0 [dη(Y ) = 1] = Pθ0
[
−
√
T (η; θ0, θ1) ≤ Y ≤

√
T (η; θ0, θ1)

]
= Pθ0

−√T (η; θ0, θ1)

θ0
≤ Y√

θ0
≤

√
T (η; θ0, θ1)

θ0


= Φ

√T (η; θ0, θ1)

θ0

− Φ

−√T (η; θ0, θ1)

θ0


= 2Φ

√T (η; θ0, θ1)

θ0

− 1. (1.10)
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Similar calculations show that

Pθ1 [dη(Y ) = 1] = 2Φ

√T (η; θ0, θ1)

θ1

− 1. (1.11)

Combining the two cases we get

Pθh [dη(Y ) = 1] = 2Φ

√T (η; θ0, θ1)+

θh

− 1, h = 0, 1. (1.12)

To obtain the Neyman-Pearson tests we proceed as follows: Fix α in (0, 1). We seek
η > 0 such that Pθ0 [dη(Y ) = 1] = α. This leads to the equation

2Φ

√T (η; θ0, θ1)+

θ0

− 1 = α,

or equivalently

Φ

√T (η; θ0, θ1)+

θ0

 =
1 + α

2
.

Here we have 1+α
2
> 1

2
. Any solution is characterized by

T (η; θ0, θ1)
+

θ0
=

(
Φ−1

(
1 + α

2

))2

,

thereby requiring T (η; θ0, θ1) > 0, namely < η2 < θ0
θ1

. Therefore, the desired η satisfies

T (η; θ0, θ1)

θ0
=

(
Φ−1

(
1 + α

2

))2

and η2 <
θ0
θ1
.

It is easy to check that any solution to the first equation automatically satisfies the
required inequality.

Therefore, the Neyman-Pearson test dNP(α; θ0, θ1) for testing Hθ0 against Hθ1 takes the
form

dNP(α; θ0, θ1)(y) = 0 iff |y| >
√
θ0 · Φ−1

(
1 + α

2

)
, y ∈ R.

Again we note that the set

C(dNP(α; θ0, θ1)) =

{
y ∈ R : |y| > Φ−1

(
1 + α

2

)
·
√
θ0

}
=

[
−
√
θ0 · Φ−1

(
1 + α

2

)
,
√
θ0 · Φ−1

(
1 + α

2

)]c
(1.13)
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does not depend on θ1.

3.
Fix θ0 and θ1 so that 0 < θ0 < θ1. By Problem 2.a we know that for each α in (0, 1)
there exists a Neyman-Pearson test dNP(α; θ0, θ1) of size α for testing Hθ0 against Hθ1 ;
its region is given by

C(dNP(θ0, θ1;α)) =
(
−
√
θ0 · Φ−1

(
1− α

2

)
,
√
θ0 · Φ−1

(
1− α

2

))
. (1.14)

Note that C(dNP(θ0, θ1;α)) does not depend on θ1 as long as θ0 < θ1.
3.a. With Θ0 = {1} and Θ1 = (1,∞), it is plain from the remark above that a UMP

test dUMP(α) of size α exists for testing H0 = Hθ0=1 against the composite hypothesis
H1 ≡ Hθ, θ ∈ (1,∞), its region being given by

C(dNP(θ1, 1;α)) =
(
−Φ−1

(
1− α

2

)
,Φ−1

(
1− α

2

))
Just use θ0 = 1 in (1.14).
3.c. (We solve Part 3.b. later). Assume Θ0 = (0, 1] and θ1 = (1,∞). Pick σ in (0, 1].
By the arguments given earlier, the UMP test dUMP(α;σ) of size α for testing the simple
null hypothesis H0 ≡ Hσ against the composite alternative H1 ≡ Hθ, θ ∈ (1,∞) is given
by

dUMP(α;σ)(y) = 0 iff |y| <
√
σ · Φ−1

(
1− α

2

)
, y ∈ R

with region

C(dUMP(α;σ)) =
(
−
√
σ · Φ−1

(
1− α

2

)
,
√
σ · Φ−1

(
1− α

2

))
.

The test dUMP(α;σ) is characterized by

Pθ [d(Y ) = 1] ≤ Pθ [dUMP(α;σ)(Y ) = 1] ,
θ > 1

d ∈ Dσ,α.
(1.15)

This suggests that by proper selection of the parameter σ in (0, 1], the test dUMP(α;σ)
might also be used to implement the UMP test dUMP(α) of size α for testing the composite
null hypothesis H0 ≡ Hθ, θ ∈ (0, 1] against the composite alternative H1 ≡ Hθ, θ ∈
(1,∞). Such a test dUMP(α) is characterized by

Pθ [d(Y ) = 1] ≤ Pθ [dUMP(α)(Y ) = 1] ,
θ > 1

d ∈ D(0,1],α.
(1.16)

Since D(0,1],α ⊆ Dσ,α, it is plain from (1.15) and (1.16) that we can take dUMP(α) =
dUMP(α;σ) provided the test dUMP(α;σ) itself is also in D(0,1],α.

Thus, we need to answer the following question: Does there exist σ in (0, 1] such that

Pσ′ [dUMP(α;σ)(Y ) = 1] ≤ α, 0 < σ′ ≤ 1. (1.17)
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Given σ in (0, 1], fix σ′ in (0, 1]. We note that

Pσ′ [dUMP(α;σ)(Y ) = 1]

= Pσ′

[
|Y | ≥

√
σ · Φ−1

(
1− α

2

)]
= Pσ′

[∣∣∣∣ Y√σ′
∣∣∣∣ ≥√ σ

σ′
· Φ−1

(
1− α

2

)]
= 1− Pσ′

[∣∣∣∣ Y√σ′
∣∣∣∣ <√ σ

σ′
· Φ−1

(
1− α

2

)]
= 1−

(
Φ

(√
σ

σ′
· Φ−1

(
1− α

2

))
− Φ

(
−
√
σ

σ′
· Φ−1

(
1− α

2

)))
= F (σ;σ′) (1.18)

where we have defined

F (σ;σ′) ≡ 2

(
1− Φ

(√
σ

σ′
· Φ−1

(
1− α

2

)))
, σ > 0, σ′ > 0.

Given σ > 0, the mapping σ′ → F (σ;σ′) is strictly increasing on (0,∞) with

F (σ;σ) = 2
(

1− Φ
(

Φ−1
(

1− α

2

)))
= α.

Therefore, the requirement (1.17) that the test dUMP(α;σ) be an element of D(0,1],α

amounts to
sup

σ′∈(0,1]
(Pσ′ [dUMP(α;σ)(Y ) = 1]) ≤ α, (1.19)

or equivalently

sup
σ′∈(0,1]

(
2

(
1− Φ

(√
σ

σ′
· Φ−1

(
1− α

2

))))
≤ α.

But strict monotonicity and continuity imply that

sup
σ′∈(0,1]

(
2

(
1− Φ

(√
σ

σ′
· Φ−1

(
1− α

2

))))
= 2

(
1− Φ

(√
σ · Φ−1

(
1− α

2

)))
(with the supremum achieved at σ′ = 1) and the question reduces to finding σ in (0, 1]
such that

2
(

1− Φ
(√

σ · Φ−1
(

1− α

2

)))
≤ α. (1.20)

This constraint is equivalent to

1− α

2
≤ Φ

(√
σ · Φ−1

(
1− α

2

))
,

hence σ ≥ 1 by mononotonicity! This shows that dUMP(α;σ) with σ = 1 satisfies the
requirement (1.17) and dUMP(α) = dUMP(α; 1) as desired!
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3.b. We now turn to the case Θ0 = (0, 1) and θ1 = (1,∞). Recall from Part 3.c that
the test dUMP(α; 1) is characterized by

Pθ [d(Y ) = 1] ≤ Pθ [dUMP(α; 1)(Y ) = 1] ,
θ > 1

d ∈ D(0,1],α.
(1.21)

On the other hand, the desired UMP test dUMP(α) of size α that tests the composite null
hypothesis H0 ≡ Hθ, θ ∈ (0, 1) against the composite alternative H1 ≡ Hθ, θ ∈ (1,∞)
is characterized by the inequalities

Pθ [d(Y ) = 1] ≤ Pθ [dUMP(α)(Y ) = 1] ,
θ > 1

d ∈ D(0,1),α.
(1.22)

It is of course tempting to conjecture that dUMP(α) = dUMP(α; 1) here as well – How-
ever, beware of the inclusion D(0,1],α ⊆ D(0,1),α! Nevertheless we see that this conjecture
will hold if we show that (i) the equality D(0,1],α = D(0,1),α holds (although we have
the inclusion D(0,1],α ⊆ D(0,1),α) and that (ii) the inequalities (1.22) are implied by the
inequalities (1.21)! A moment of reflection should convince you that only (i) needs to
be established, and that this equality is an easy immediate consequence of the following
fact.

For each d in D, the mapping (0,∞)→ [0, 1] : θ → Pθ [d(Y ) = 1] is continuous.

This can be shown as follows. Pick d in D and θ > 0. For every θ′ > 0 note that

Pθ′ [d(Y ) = 1] =

∫
C(d)c

fθ′(y)dy.

With ε > 0 in (0, θ) and θ′ in (θ − ε, θ + ε) we have the following obvious inequalities:

fθ′(y) =
1√
2πθ′

e−
y2

2θ′

≤ 1√
2πθ′

e−
y2

2(θ+ε)

≤ 1√
2π(θ − ε)

e−
y2

2(θ+ε)

=

√
θ + ε

θ − ε
· fθ+ε(y), y ∈ R (1.23)

with ∫
R
fθ+ε(y)dy = 1.

It follows from the Dominated Convergence Theorem that

lim
n→∞

∫
C(d)c

fθn(y)dy =

∫
C(d)c

lim
n→∞

fθn(y)dy =

∫
C(d)c

fθ(y)dy
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for any any sequence N0 → (0, 1) : n→ θn such that limn→∞ θn = θ. This establishes the
desired continuity.

4.
4.a. Fix d in D. For each p in PM , we note that

Jp(d) = Ep [C(H, d(Y ))]

=
M−1∑
m=0

pmEp [C(H, d(Y ))|H = m]

=
M−1∑
m=0

pmEp [C(m, d(Y ))|H = m] (1.24)

with the quantities

Ep [C(m, d(Y ))|H = m] , m = 0, 1, . . . ,M − 1

independent of p. For arbitrary p0 and p1 in PM it is now plain that

Jλp1+(1−λ)p0
(d) = λJp1

(d) + (1− λ)Jp0
(d), λ ∈ (0, 1).

Now recall that
V (p) ≡ inf

d∈D
Jp(d), p ∈ PM

so that

V (p) ≤ Jp(d),
d ∈ D

p ∈ PM .
Therefore, fix d in D. For arbitrary p0 and p1 in PM we get

Jλp1+(1−λ)p0
(d) = λJp1

(d) + (1− λ)Jp0
(d)

≥ λV (p1) + (1− λ)V (p0), λ ∈ (0, 1). (1.25)

and the conclusion

λV (p1) + (1− λ)V (p0) ≤ V (λp1 + (1− λ)p0), λ ∈ (0, 1)

follows.

4.b. We have

Jp?(d?) = Jp(d?)
[For all p in PM since
the mapping p→ Jp(d?) is constant]

= JMax(d
?)

≥ inf
d∈D

JMax(d)

= inf
d∈D

(
sup
p∈PM

Jp(d)

)
≥ inf

d∈D
Jp?(d)

= V (p?). (1.26)
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Because V (p?) = Jp?(d?) we conclude that

JMax(d
?) = inf

d∈D
JMax(d),

and d? is indeed a minimax strategy.

4.c. The assumption V (p?) = Jp?(d?) immediately yields

V (p?) ≥ inf
d∈D

(
sup
p∈PM

Jp(d)

)
(1.27)

by virtue of (1.26). It follows that

inf
d∈D

(
sup
p∈PM

Jp(d)

)
≤ V (p?) ≤ sup

p∈PM
V (p) = sup

p∈PM

(
inf
d∈D

Jp(d)

)
. (1.28)

On the other hand the inequality

sup
p∈PM

V (p) ≤ inf
d∈D

(
sup
p∈PM

Jp(d)

)
(1.29)

always holds as a result of the obvious inequalities

V (p) ≤ Jp(d) ≤ JMax(d),
p ∈ PM
d ∈ D.

The proof is as in the binary case.
Combining the inequalities (1.28) and (1.29) yields the Minimax Equality

sup
p∈PM

(
inf
d∈D

Jp(d)

)
= inf

d∈D

(
sup
p∈PM

Jp(d)

)
(1.30)

as well as the fact that
V (p?) = sup

p∈PM
V (p).

In short, p? is a maximum of the mapping PM → R : p→ V (p).


