ENEE 621 SPRING 2017 ESTIMATION AND DETECTION THEORY

ANSWER KEY TO TEST # 1:

1. _____1.a. Fix $\eta > 0^1$ and recall that

$$d_{\eta}(y)$$
 iff $f_1(y) < \eta f_0(y), y \in \mathbb{R}.$

Here, with the conventions implied by the definition of d_{η} , we have

$y \leq -1$:	$d_{\eta}(y) = 1$
$-1 < y \le 0$:	$d_\eta(y) = 0$
$0 < y \le 1:$	$d_{\eta}(y) = 0$ iff $1 < 3\eta(1-y)$
$1 < y \le 3:$	$d_\eta(y) = 1$
3 < y:	$d_{\eta}(y) = 1$

Collecting these facts we conclude that

$$C(d_{\eta}) \equiv \{ y \in \mathbb{R} : d_{\eta}(y) = 0 \}$$

= $(-1, 0) \cup \{ y \in [0, 1) : 1 < 3\eta(1-y) \}.$ (1.1)

1.b. For $\eta = 0$, we know that $P_{\rm F}(d_{\eta}) = 1$ and $P_{\rm D}(d_{\eta}) = 1$ as explained in the Lecture Notes. From now on, fix $\eta > 0$. We shall write

$$t(\eta) \equiv \left(1 - \frac{1}{3\eta}\right)^{+} = \begin{cases} 0 & \text{if } 0 < \eta \le \frac{1}{3} \\ 1 - \frac{1}{3\eta} & \text{if } \frac{1}{3} \le \eta. \end{cases}$$

¹For $\eta = 0$, the test d_0 always selects the alternative.

ENEE $621/\text{SPRING}\ 2017$

Obviously,

$$\begin{split} P_{\rm F}(d_{\eta}) &= \mathbb{P}\left[d_{\eta}(Y) = 1|H = 0\right] \\ &= 1 - \mathbb{P}\left[d_{\eta}(Y) = 0|H = 0\right] \\ &= 1 - \mathbb{P}\left[-1 < Y \le 0|H = 0\right] - \mathbb{P}\left[0 < Y \le 1, 1 < 3\eta(1 - Y)|H = 0\right] \\ &= 1 - \frac{1}{2} - \mathbb{P}\left[0 < Y \le 1, 0 < Y < 1 - \frac{1}{3\eta}\Big|H = 0\right] \\ &= \frac{1}{2} - \mathbb{P}\left[0 < Y \le 1, 0 < Y < 1 - \frac{1}{3\eta}\Big|H = 0\right] \\ &= \frac{1}{2} - \int_{0}^{\left(1 - \frac{1}{3\eta}\right)^{+}} f_{0}(y)dy \\ &= \frac{1}{2} - \int_{0}^{t(\eta)} (1 - y)dy \\ &= \frac{1}{2} - \left[y - \frac{y^{2}}{2}\right]_{0}^{t(\eta)} \\ &= \frac{1}{2} (1 - t(\eta))^{2} \\ &= \begin{cases} \frac{1}{2} & \text{if } 0 < \eta \le \frac{1}{3} \\ \frac{1}{18\eta^{2}} & \text{if } \frac{1}{3} \le \eta. \end{split} \end{split}$$

$$(1.2)$$

In a similar way, we get

$$P_{D}(d_{\eta}) = \mathbb{P}[d_{\eta}(Y) = 1|H = 1]$$

$$= 1 - \mathbb{P}[d_{\eta}(Y) = 0|H = 1]$$

$$= 1 - \mathbb{P}[-1 < Y \le 0|H = 1] - \mathbb{P}[0 < Y \le 1, 1 < 3\eta(1 - Y)|H = 1]$$

$$= 1 - \mathbb{P}[0 < Y \le 1, 1 < 3\eta(1 - Y)|H = 1]$$

$$= 1 - \mathbb{P}\left[0 < Y \le 1, 0 < Y < 1 - \frac{1}{3\eta}\Big|H = 1\right]$$

$$= 1 - \int_{0}^{\left(1 - \frac{1}{3\eta}\right)^{+}} f_{1}(y)dy$$

$$= 1 - \frac{1}{3}\int_{0}^{t(\eta)} dy$$

$$= 1 - \frac{1}{3}t(\eta)$$

$$= \begin{cases} 1 & \text{if } 0 < \eta \le \frac{1}{3} \\ \frac{2}{3} + \frac{1}{9\eta} & \text{if } \frac{1}{3} \le \eta. \end{cases}$$
(1.3)

In summary we conclude that

$$P_{\rm F}(d_{\eta}) = \frac{1}{2} \left(1 - t(\eta)\right)^2$$
 and $P_{\rm D}(d_{\eta}) = 1 - \frac{t(\eta)}{3}, \quad \eta > 0.$

From these expressions it is then plain that

$$\lim_{\eta \to 0} P_{\mathcal{F}}(d_{\eta}) = \frac{1}{2} \quad \text{and} \quad \lim_{\eta \to 0} P_{\mathcal{D}}(d_{\eta}) = 1$$

while

$$\lim_{\eta \to \infty} P_{\mathcal{F}}(d_{\eta}) = 0 \quad \text{and} \quad \lim_{\eta \to \infty} P_{\mathcal{D}}(d_{\eta}) = \frac{2}{3}.$$

Moreover, we get $\{P_{\rm F}(d_{\eta}), \eta > 0\} = (0, \frac{1}{2}]$ and $\{P_{\rm D}(d_{\eta}), \eta > 0\} = (\frac{2}{3}, 1]$. **1.c.** With the notation introduced in the Lecture Notes we have

$$V(p) = J_p(d^*(p)) = J_p(d_{\eta(p)}), \quad p \in (0, 1]$$

where

$$\eta(p) = \frac{\Gamma_0(1-p)}{\Gamma_1 p} = \frac{1-p}{p}$$

since here $\Gamma_0 = \Gamma_1 = 1$. It is now straightforward to see that

$$V(p) = p\mathbb{P}\left[d_{\eta(p)}(Y) = 0|H = 1\right] + (1-p)\mathbb{P}\left[d_{\eta(p)}(Y) = 1|H = 0\right]$$

= $p\left(1 - P_D(d_{\eta(p)})\right) + (1-p)P_F(d_{\eta(p)})$
= $p\left(\frac{1}{3}\left(1 - \frac{1}{3\eta(p)}\right)^+\right) + (1-p)\left(\frac{1}{2}\left(1 - \left(1 - \frac{1}{3\eta(p)}\right)^+\right)^2\right)$
= $\frac{p}{3} \cdot \tau(p) + \frac{1-p}{2} \cdot (1 - \tau(p))^2$

with

$$\begin{aligned} \tau(p) &\equiv t(\eta(p)) \\ &= \left(1 - \frac{1}{3\eta(p)}\right)^+ \\ &= \frac{(3 - 4p)^+}{3(1 - p)} = \begin{cases} 1 - \frac{p}{3(1 - p)} & \text{if } 0 (1.4)$$

It follows that

$$\begin{split} V(p) &= \begin{cases} \frac{p}{3} \left(1 - \frac{p}{3(1-p)} \right) + (1-p) \left(\frac{p^2}{18(1-p)^2} \right) & \text{if } 0$$

It is a simple matter to check that the mapping $p \to V(p)$ is concave on [0, 1], and differentiable on that interval except at $p = \frac{3}{r} = p_{\rm m}$. **1.d.** Fix $\eta > 0$. From Part **b** we see that

$$3\left(1 - P_{\rm D}(d_{\eta})\right) = t(\eta)$$

while

$$2P_{\rm F}(d_{\eta}) = (1 - t(\eta))^2 = (1 - 3(1 - P_{\rm D}(d_{\eta})))^2,$$

whence

$$2P_{\rm F}(d_{\eta}) = (3P_{\rm D}(d_{\eta}) - 2)^2$$
.

Therefore, since $\frac{2}{3} < P_{\rm D}(d_{\eta})$ for all $\eta > 0$, it follows that

$$\sqrt{2P_{\rm F}(d_\eta)} = 3P_{\rm D}(d_\eta) - 2,$$

and we conclude that

$$P_{\rm D}(d_{\eta}) = \frac{2 + \sqrt{2P_{\rm F}(d_{\eta})}}{3}$$

The ROC curve is now defined through the mapping $\Gamma: [0, \frac{1}{2}] \to [\frac{2}{3}, 1]$ given by

$$P_{\rm D} = \Gamma(P_{\rm F}) = \frac{2 + \sqrt{2P_{\rm F}}}{3}, \quad 0 \le P_{\rm F} \le \frac{1}{2}.$$

Here, contrary to what happens in the "usual" case (say the Gaussian case), the ROC curve does not go from point (0,0) to point (1,1), but instead from $(0,\frac{2}{3})$ to point $(\frac{1}{2},1)$ – There is no curve defined over the entire interval [0,1].

2. ____

For each $\theta > 0$ it is plain that H_{θ} : $Y \sim F_{\theta}$ means that under H_{θ} the observation Y is normally distributed with zero mean and variance θ .

With distinct θ_0 and θ_1 in $(0, \infty)$, consider the binary hypothesis testing problem

$$\begin{array}{rcl}
H_1 : & Y \sim F_{\theta_1} \\
H_0 : & Y \sim F_{\theta_0}.
\end{array}$$
(1.5)

For $\eta > 0$, consider the corresponding test $d_{\eta} : \mathbb{R} \to \{0, 1\}$. In a routine manner we find

$$d_{\eta}(y) = 0 \quad \text{iff} \quad f_{\theta_1}(y) < \eta f_{\theta_0}(y)$$

$$\text{iff} \quad \frac{1}{\sqrt{2\pi\theta_1}} e^{-\frac{y^2}{2\theta_1}} < \eta \cdot \frac{1}{\sqrt{2\pi\theta_0}} e^{-\frac{y^2}{2\theta_0}}, \quad y \in \mathbb{R}$$

$$\text{iff} \quad \left(\frac{1}{\theta_0} - \frac{1}{\theta_1}\right) y^2 < \log\left(\eta^2 \cdot \frac{\theta_1}{\theta_0}\right), \quad y \in \mathbb{R}.$$

For future use, write

$$T(\eta; \theta_0, \theta_1) \equiv \left(\frac{1}{\theta_0} - \frac{1}{\theta_1}\right)^{-1} \cdot \log\left(\eta^2 \cdot \frac{\theta_1}{\theta_0}\right).$$

2.a. Assume $0 < \theta_0 < \theta_1$ – The test d_η now reads

$$d_{\eta}(y) = 0$$
 iff $y^2 < T(\eta; \theta_0, \theta_1), y \in \mathbb{R}.$

If $\eta^2 \leq \frac{\theta_0}{\theta_1}$, then $\log\left(\eta^2 \cdot \frac{\theta_1}{\theta_0}\right) \leq 0$ and $T(\eta; \theta_0, \theta_1) \leq 0$. Thus, d_η always selects the alternative H_{θ_1} , whence $\mathbb{P}_{\theta_0}\left[d_\eta(Y) = 1\right] = 1$ and $\mathbb{P}_{\theta_1}\left[d_\eta(Y) = 1\right] = 1$. If $\frac{\theta_0}{\theta_1} < \eta^2$, then $T(\eta; \theta_0, \theta_1) > 0$ and

$$d_{\eta}(y) = 0$$
 iff $|y| < \sqrt{T(\eta; \theta_0, \theta_1)}, \quad y \in \mathbb{R}.$

It follows that

$$\mathbb{P}_{\theta_{0}}\left[d_{\eta}(Y)=1\right] = 1 - \mathbb{P}_{\theta_{0}}\left[-\sqrt{T(\eta;\theta_{0},\theta_{1})} < Y < \sqrt{T(\eta;\theta_{0},\theta_{1})}\right] \\
= 1 - \mathbb{P}_{\theta_{0}}\left[-\sqrt{\frac{T(\eta;\theta_{0},\theta_{1})}{\theta_{0}}} < \frac{Y}{\sqrt{\theta_{0}}} < \sqrt{\frac{T(\eta;\theta_{0},\theta_{1})}{\theta_{0}}}\right] \\
= 1 - \left(\Phi\left(\sqrt{\frac{T(\eta;\theta_{0},\theta_{1})}{\theta_{0}}}\right) - \Phi\left(-\sqrt{\frac{T(\eta;\theta_{0},\theta_{1})}{\theta_{0}}}\right)\right) \\
= 2\left(1 - \Phi\left(\sqrt{\frac{T(\eta;\theta_{0},\theta_{1})}{\theta_{0}}}\right)\right).$$
(1.6)

Similar calculations show that

$$\mathbb{P}_{\theta_1}\left[d_{\eta}(Y)=1\right] = 2\left(1 - \Phi\left(\sqrt{\frac{T(\eta;\theta_0,\theta_1)}{\theta_1}}\right)\right).$$
(1.7)

Combining the two cases we get

$$\mathbb{P}_{\theta_h}\left[d_\eta(Y)=1\right] = 2\left(1 - \Phi\left(\sqrt{\frac{T(\eta;\theta_0,\theta_1)^+}{\theta_h}}\right)\right), \quad h = 0, 1.$$
(1.8)

To obtain the Neyman-Pearson tests we proceed as follows: Fix α in (0,1). We seek $\eta > 0$ such that $\mathbb{P}_{\theta_0}[d_{\eta}(Y) = 1] = \alpha$. This leads to the equation

$$2\left(1 - \Phi\left(\sqrt{\frac{T(\eta;\theta_0,\theta_1)^+}{\theta_0}}\right)\right) = \alpha,$$

or equivalently

$$\Phi\left(\sqrt{\frac{T(\eta;\theta_0,\theta_1)^+}{\theta_0}}\right) = 1 - \frac{\alpha}{2}.$$

Note that $1 - \frac{\alpha}{2} > \frac{1}{2}$. Any solution is characterized by

$$\frac{T(\eta;\theta_0,\theta_1)^+}{\theta_0} = \left(\Phi^{-1}\left(1-\frac{\alpha}{2}\right)\right)^2,$$

which requires $T(\eta; \theta_0, \theta_1) > 0$, namely $\frac{\theta_0}{\theta_1} < \eta^2$. Therefore, the desired η satisfies

$$\frac{T(\eta; \theta_0, \theta_1)}{\theta_0} = \left(\Phi^{-1}\left(1 - \frac{\alpha}{2}\right)\right)^2 \quad \text{and} \quad \frac{\theta_0}{\theta_1} < \eta^2.$$

It is easy to check that any solution to the first equation automatically satisfies the required inequality.

Therefore, the Neyman-Pearson test $d_{\rm NP}(\alpha; \theta_0, \theta_1)$ for testing H_{θ_0} against H_{θ_1} takes the form

$$d_{\rm NP}(\alpha; \theta_0, \theta_1)(y) = 0 \quad \text{iff} \quad |y| < \sqrt{\theta_0} \cdot \Phi^{-1}\left(1 - \frac{\alpha}{2}\right), \quad y \in \mathbb{R}$$

Note that the region

$$C(d_{\rm NP}(\alpha;\theta_0,\theta_1)) = \left\{ y \in \mathbb{R} : |y| < \sqrt{\theta_0} \cdot \Phi^{-1} \left(1 - \frac{\alpha}{2}\right) \right\}$$
$$= \left(-\sqrt{\theta_0} \cdot \Phi^{-1} \left(1 - \frac{\alpha}{2}\right), \sqrt{\theta_0} \cdot \Phi^{-1} \left(1 - \frac{\alpha}{2}\right) \right)$$
(1.9)

does *not* depend on the actual value of θ_1 .

2.b. Assume $0 < \theta_1 < \theta_0$ – The test d_η now reads

$$d_{\eta}(y) = 0$$
 iff $y^2 > T(\eta; \theta_0, \theta_1), \quad y \in \mathbb{R}.$

If $\frac{\theta_0}{\theta_1} < \eta^2$, then $\log\left(\eta^2 \cdot \frac{\theta_1}{\theta_0}\right) > 0$ but $T(\eta; \theta_0, \theta_1) < 0$. Thus, d_η always selects the null hypothesis H_{θ_0} , whence $\mathbb{P}_{\theta_0}[d_\eta(Y) = 1] = 0$ and $\mathbb{P}_{\theta_1}[d_\eta(Y) = 1] = 0$.

If $\eta^2 \leq \frac{\theta_0}{\theta_1}$, then $\log\left(\eta^2 \cdot \frac{\theta_1}{\theta_0}\right) \leq 0$ and $T(\eta; \theta_0, \theta_1) \geq 0$, whence

$$d_{\eta}(y) = 0$$
 iff $|y| > \sqrt{T(\eta; \theta_0, \theta_1)}, \quad y \in \mathbb{R}.$

It follows that

$$\mathbb{P}_{\theta_{0}}\left[d_{\eta}(Y)=1\right] = \mathbb{P}_{\theta_{0}}\left[-\sqrt{T(\eta;\theta_{0},\theta_{1})} \leq Y \leq \sqrt{T(\eta;\theta_{0},\theta_{1})}\right] \\
= \mathbb{P}_{\theta_{0}}\left[-\sqrt{\frac{T(\eta;\theta_{0},\theta_{1})}{\theta_{0}}} \leq \frac{Y}{\sqrt{\theta_{0}}} \leq \sqrt{\frac{T(\eta;\theta_{0},\theta_{1})}{\theta_{0}}}\right] \\
= \Phi\left(\sqrt{\frac{T(\eta;\theta_{0},\theta_{1})}{\theta_{0}}}\right) - \Phi\left(-\sqrt{\frac{T(\eta;\theta_{0},\theta_{1})}{\theta_{0}}}\right) \\
= 2\Phi\left(\sqrt{\frac{T(\eta;\theta_{0},\theta_{1})}{\theta_{0}}}\right) - 1.$$
(1.10)

Similar calculations show that

$$\mathbb{P}_{\theta_1}\left[d_\eta(Y) = 1\right] = 2\Phi\left(\sqrt{\frac{T(\eta;\theta_0,\theta_1)}{\theta_1}}\right) - 1.$$
(1.11)

Combining the two cases we get

$$\mathbb{P}_{\theta_h} \left[d_\eta(Y) = 1 \right] = 2\Phi \left(\sqrt{\frac{T(\eta; \theta_0, \theta_1)^+}{\theta_h}} \right) - 1, \quad h = 0, 1.$$
 (1.12)

To obtain the Neyman-Pearson tests we proceed as follows: Fix α in (0,1). We seek $\eta > 0$ such that $\mathbb{P}_{\theta_0}[d_{\eta}(Y) = 1] = \alpha$. This leads to the equation

$$2\Phi\left(\sqrt{\frac{T(\eta;\theta_0,\theta_1)^+}{\theta_0}}\right) - 1 = \alpha,$$

or equivalently

$$\Phi\left(\sqrt{\frac{T(\eta;\theta_0,\theta_1)^+}{\theta_0}}\right) = \frac{1+\alpha}{2}$$

Here we have $\frac{1+\alpha}{2} > \frac{1}{2}$. Any solution is characterized by

$$\frac{T(\eta;\theta_0,\theta_1)^+}{\theta_0} = \left(\Phi^{-1}\left(\frac{1+\alpha}{2}\right)\right)^2,$$

thereby requiring $T(\eta; \theta_0, \theta_1) > 0$, namely $< \eta^2 < \frac{\theta_0}{\theta_1}$. Therefore, the desired η satisfies

$$\frac{T(\eta;\theta_0,\theta_1)}{\theta_0} = \left(\Phi^{-1}\left(\frac{1+\alpha}{2}\right)\right)^2 \quad \text{and} \quad \eta^2 < \frac{\theta_0}{\theta_1}.$$

It is easy to check that any solution to the first equation automatically satisfies the required inequality.

Therefore, the Neyman-Pearson test $d_{\rm NP}(\alpha; \theta_0, \theta_1)$ for testing H_{θ_0} against H_{θ_1} takes the form

$$d_{\rm NP}(\alpha; \theta_0, \theta_1)(y) = 0 \quad \text{iff} \quad |y| > \sqrt{\theta_0} \cdot \Phi^{-1}\left(\frac{1+\alpha}{2}\right), \quad y \in \mathbb{R}.$$

Again we note that the set

$$C(d_{\rm NP}(\alpha;\theta_0,\theta_1)) = \left\{ y \in \mathbb{R} : |y| > \Phi^{-1}\left(\frac{1+\alpha}{2}\right) \cdot \sqrt{\theta_0} \right\}$$
$$= \left[-\sqrt{\theta_0} \cdot \Phi^{-1}\left(\frac{1+\alpha}{2}\right), \sqrt{\theta_0} \cdot \Phi^{-1}\left(\frac{1+\alpha}{2}\right) \right]^c \qquad (1.13)$$

does *not* depend on θ_1 .

3. ____

Fix θ_0 and θ_1 so that $0 < \theta_0 < \theta_1$. By Problem **2.a** we know that for each α in (0, 1) there exists a Neyman-Pearson test $d_{\text{NP}}(\alpha; \theta_0, \theta_1)$ of size α for testing H_{θ_0} against H_{θ_1} ; its region is given by

$$C(d_{\rm NP}(\theta_0, \theta_1; \alpha)) = \left(-\sqrt{\theta_0} \cdot \Phi^{-1}\left(1 - \frac{\alpha}{2}\right), \sqrt{\theta_0} \cdot \Phi^{-1}\left(1 - \frac{\alpha}{2}\right)\right).$$
(1.14)

Note that $C(d_{\rm NP}(\theta_0, \theta_1; \alpha))$ does not depend on θ_1 as long as $\theta_0 < \theta_1$.

3.a. With $\Theta_0 = \{1\}$ and $\Theta_1 = (1, \infty)$, it is plain from the remark above that a UMP test $d_{\text{UMP}}(\alpha)$ of size α exists for testing $H_0 = H_{\theta_0=1}$ against the composite hypothesis $H_1 \equiv H_{\theta}, \ \theta \in (1, \infty)$, its region being given by

$$C(d_{\rm NP}(\theta_1, 1; \alpha)) = \left(-\Phi^{-1}\left(1 - \frac{\alpha}{2}\right), \Phi^{-1}\left(1 - \frac{\alpha}{2}\right)\right)$$

Just use $\theta_0 = 1$ in (1.14).

3.c. (We solve Part **3.b.** later). Assume $\Theta_0 = (0, 1]$ and $\theta_1 = (1, \infty)$. Pick σ in (0, 1]. By the arguments given earlier, the UMP test $d_{\text{UMP}}(\alpha; \sigma)$ of size α for testing the simple null hypothesis $H_0 \equiv H_{\sigma}$ against the composite alternative $H_1 \equiv H_{\theta}, \ \theta \in (1, \infty)$ is given by

$$d_{\text{UMP}}(\alpha;\sigma)(y) = 0 \quad \text{iff} \quad |y| < \sqrt{\sigma} \cdot \Phi^{-1}\left(1 - \frac{\alpha}{2}\right), \quad y \in \mathbb{R}$$

with region

$$C(d_{\rm UMP}(\alpha;\sigma)) = \left(-\sqrt{\sigma} \cdot \Phi^{-1}\left(1-\frac{\alpha}{2}\right), \sqrt{\sigma} \cdot \Phi^{-1}\left(1-\frac{\alpha}{2}\right)\right)$$

The test $d_{\text{UMP}}(\alpha; \sigma)$ is characterized by

$$\mathbb{P}_{\theta}\left[d(Y)=1\right] \leq \mathbb{P}_{\theta}\left[d_{\mathrm{UMP}}(\alpha;\sigma)(Y)=1\right], \qquad \begin{array}{c} \theta > 1\\ d \in \mathcal{D}_{\sigma,\alpha}. \end{array}$$
(1.15)

This suggests that by proper selection of the parameter σ in (0, 1], the test $d_{\text{UMP}}(\alpha; \sigma)$ might also be used to implement the UMP test $d_{\text{UMP}}(\alpha)$ of size α for testing the composite null hypothesis $H_0 \equiv H_{\theta}, \ \theta \in (0, 1]$ against the composite alternative $H_1 \equiv H_{\theta}, \ \theta \in (1, \infty)$. Such a test $d_{\text{UMP}}(\alpha)$ is characterized by

$$\mathbb{P}_{\theta}\left[d(Y)=1\right] \leq \mathbb{P}_{\theta}\left[d_{\mathrm{UMP}}(\alpha)(Y)=1\right], \qquad \begin{array}{c} \theta > 1\\ d \in \mathcal{D}_{(0,1],\alpha}. \end{array}$$
(1.16)

Since $\mathcal{D}_{(0,1],\alpha} \subseteq \mathcal{D}_{\sigma,\alpha}$, it is plain from (1.15) and (1.16) that we can take $d_{\text{UMP}}(\alpha) = d_{\text{UMP}}(\alpha; \sigma)$ provided the test $d_{\text{UMP}}(\alpha; \sigma)$ itself is also in $\mathcal{D}_{(0,1],\alpha}$.

Thus, we need to answer the following question: Does there exist σ in (0,1] such that

$$\mathbb{P}_{\sigma'}[d_{\text{UMP}}(\alpha;\sigma)(Y) = 1] \le \alpha, \quad 0 < \sigma' \le 1.$$
(1.17)

Given σ in (0, 1], fix σ' in (0, 1]. We note that

$$\begin{aligned}
\mathbb{P}_{\sigma'} \left[d_{\text{UMP}}(\alpha; \sigma)(Y) = 1 \right] \\
&= \mathbb{P}_{\sigma'} \left[|Y| \ge \sqrt{\sigma} \cdot \Phi^{-1} \left(1 - \frac{\alpha}{2} \right) \right] \\
&= \mathbb{P}_{\sigma'} \left[\left| \frac{Y}{\sqrt{\sigma'}} \right| \ge \sqrt{\frac{\sigma}{\sigma'}} \cdot \Phi^{-1} \left(1 - \frac{\alpha}{2} \right) \right] \\
&= 1 - \mathbb{P}_{\sigma'} \left[\left| \frac{Y}{\sqrt{\sigma'}} \right| < \sqrt{\frac{\sigma}{\sigma'}} \cdot \Phi^{-1} \left(1 - \frac{\alpha}{2} \right) \right] \\
&= 1 - \left(\Phi \left(\sqrt{\frac{\sigma}{\sigma'}} \cdot \Phi^{-1} \left(1 - \frac{\alpha}{2} \right) \right) - \Phi \left(-\sqrt{\frac{\sigma}{\sigma'}} \cdot \Phi^{-1} \left(1 - \frac{\alpha}{2} \right) \right) \right) \\
&= F(\sigma; \sigma') \end{aligned} \tag{1.18}$$

where we have defined

$$F(\sigma; \sigma') \equiv 2\left(1 - \Phi\left(\sqrt{\frac{\sigma}{\sigma'}} \cdot \Phi^{-1}\left(1 - \frac{\alpha}{2}\right)\right)\right), \quad \sigma > 0, \sigma' > 0.$$

Given $\sigma > 0$, the mapping $\sigma' \to F(\sigma; \sigma')$ is strictly increasing on $(0, \infty)$ with

$$F(\sigma;\sigma) = 2\left(1 - \Phi\left(\Phi^{-1}\left(1 - \frac{\alpha}{2}\right)\right)\right) = \alpha.$$

Therefore, the requirement (1.17) that the test $d_{\text{UMP}}(\alpha; \sigma)$ be an element of $\mathcal{D}_{(0,1],\alpha}$ amounts to

$$\sup_{\sigma' \in (0,1]} \left(\mathbb{P}_{\sigma'} \left[d_{\text{UMP}}(\alpha; \sigma)(Y) = 1 \right] \right) \le \alpha, \tag{1.19}$$

or equivalently

$$\sup_{\sigma' \in (0,1]} \left(2 \left(1 - \Phi \left(\sqrt{\frac{\sigma}{\sigma'}} \cdot \Phi^{-1} \left(1 - \frac{\alpha}{2} \right) \right) \right) \right) \le \alpha.$$

But strict monotonicity and continuity imply that

$$\sup_{\sigma' \in (0,1]} \left(2\left(1 - \Phi\left(\sqrt{\frac{\sigma}{\sigma'}} \cdot \Phi^{-1}\left(1 - \frac{\alpha}{2}\right)\right)\right) \right) = 2\left(1 - \Phi\left(\sqrt{\sigma} \cdot \Phi^{-1}\left(1 - \frac{\alpha}{2}\right)\right)\right)$$

(with the supremum achieved at $\sigma' = 1$) and the question reduces to finding σ in (0, 1] such that

$$2\left(1 - \Phi\left(\sqrt{\sigma} \cdot \Phi^{-1}\left(1 - \frac{\alpha}{2}\right)\right)\right) \le \alpha.$$
(1.20)

This constraint is equivalent to

$$1 - \frac{\alpha}{2} \le \Phi\left(\sqrt{\sigma} \cdot \Phi^{-1}\left(1 - \frac{\alpha}{2}\right)\right),$$

hence $\sigma \geq 1$ by mononotonicity! This shows that $d_{\text{UMP}}(\alpha; \sigma)$ with $\sigma = 1$ satisfies the requirement (1.17) and $d_{\text{UMP}}(\alpha) = d_{\text{UMP}}(\alpha; 1)$ as desired!

3.b. We now turn to the case $\Theta_0 = (0, 1)$ and $\theta_1 = (1, \infty)$. Recall from Part **3.c** that the test $d_{\text{UMP}}(\alpha; 1)$ is characterized by

$$\mathbb{P}_{\theta}\left[d(Y)=1\right] \leq \mathbb{P}_{\theta}\left[d_{\mathrm{UMP}}(\alpha;1)(Y)=1\right], \qquad \begin{array}{c} \theta > 1\\ d \in \mathcal{D}_{(0,1],\alpha}. \end{array}$$
(1.21)

On the other hand, the desired UMP test $d_{\text{UMP}}(\alpha)$ of size α that tests the composite null hypothesis $H_0 \equiv H_{\theta}, \ \theta \in (0, 1)$ against the composite alternative $H_1 \equiv H_{\theta}, \ \theta \in (1, \infty)$ is characterized by the inequalities

$$\mathbb{P}_{\theta}\left[d(Y)=1\right] \leq \mathbb{P}_{\theta}\left[d_{\mathrm{UMP}}(\alpha)(Y)=1\right], \qquad \begin{array}{l} \theta > 1\\ d \in \mathcal{D}_{(0,1),\alpha}. \end{array}$$
(1.22)

It is of course tempting to conjecture that $d_{\text{UMP}}(\alpha) = d_{\text{UMP}}(\alpha; 1)$ here as well – However, beware of the inclusion $\mathcal{D}_{(0,1],\alpha} \subseteq \mathcal{D}_{(0,1),\alpha}!$ Nevertheless we see that this conjecture will hold if we show that (i) the equality $\mathcal{D}_{(0,1],\alpha} = \mathcal{D}_{(0,1),\alpha}$ holds (although we have the inclusion $\mathcal{D}_{(0,1],\alpha} \subseteq \mathcal{D}_{(0,1),\alpha}$) and that (ii) the inequalities (1.22) are implied by the inequalities (1.21)! A moment of reflection should convince you that only (i) needs to be established, and that this equality is an easy immediate consequence of the following fact.

For each d in \mathcal{D} , the mapping $(0, \infty) \to [0, 1] : \theta \to \mathbb{P}_{\theta}[d(Y) = 1]$ is continuous.

This can be shown as follows. Pick d in \mathcal{D} and $\theta > 0$. For every $\theta' > 0$ note that

$$\mathbb{P}_{\theta'}\left[d(Y)=1\right] = \int_{C(d)^c} f_{\theta'}(y) dy.$$

With $\varepsilon > 0$ in $(0, \theta)$ and θ' in $(\theta - \varepsilon, \theta + \varepsilon)$ we have the following obvious inequalities:

$$f_{\theta'}(y) = \frac{1}{\sqrt{2\pi\theta'}} e^{-\frac{y^2}{2\theta'}}$$

$$\leq \frac{1}{\sqrt{2\pi\theta'}} e^{-\frac{y^2}{2(\theta+\varepsilon)}}$$

$$\leq \frac{1}{\sqrt{2\pi(\theta-\varepsilon)}} e^{-\frac{y^2}{2(\theta+\varepsilon)}}$$

$$= \sqrt{\frac{\theta+\varepsilon}{\theta-\varepsilon}} \cdot f_{\theta+\varepsilon}(y), \quad y \in \mathbb{R}$$
(1.23)

with

$$\int_{\mathbb{R}} f_{\theta+\varepsilon}(y) dy = 1$$

It follows from the Dominated Convergence Theorem that

$$\lim_{n \to \infty} \int_{C(d)^c} f_{\theta_n}(y) dy = \int_{C(d)^c} \lim_{n \to \infty} f_{\theta_n}(y) dy = \int_{C(d)^c} f_{\theta}(y) dy$$

for any any sequence $\mathbb{N}_0 \to (0,1) : n \to \theta_n$ such that $\lim_{n\to\infty} \theta_n = \theta$. This establishes the desired continuity.

4. _

4.a. Fix d in \mathcal{D} . For each p in \mathcal{P}_M , we note that

$$J\boldsymbol{p}(d) = \mathbb{E}\boldsymbol{p}\left[C(H, d(\boldsymbol{Y}))\right]$$

=
$$\sum_{m=0}^{M-1} p_m \mathbb{E}\boldsymbol{p}\left[C(H, d(\boldsymbol{Y}))|H = m\right]$$

=
$$\sum_{m=0}^{M-1} p_m \mathbb{E}\boldsymbol{p}\left[C(m, d(\boldsymbol{Y}))|H = m\right]$$
(1.24)

with the quantities

$$\mathbb{E}\boldsymbol{p}\left[C(m,d(\boldsymbol{Y}))|H=m\right], \quad m=0,1,\ldots,M-1$$

independent of p. For arbitrary p_0 and p_1 in \mathcal{P}_M it is now plain that

$$J_{\lambda}\boldsymbol{p}_{1}+(1-\lambda)\boldsymbol{p}_{0}(d) = \lambda J\boldsymbol{p}_{1}(d) + (1-\lambda)J\boldsymbol{p}_{0}(d), \quad \lambda \in (0,1).$$

Now recall that

$$V(\boldsymbol{p}) \equiv \inf_{d \in \mathcal{D}} J_{\boldsymbol{p}}(d), \quad \boldsymbol{p} \in \mathcal{P}_M$$

so that

$$V(\boldsymbol{p}) \leq J_{\boldsymbol{p}}(d), \quad \begin{array}{c} d \in \mathcal{D} \\ \boldsymbol{p} \in \mathcal{P}_M. \end{array}$$

Therefore, fix d in \mathcal{D} . For arbitrary \boldsymbol{p}_0 and \boldsymbol{p}_1 in \mathcal{P}_M we get

$$J_{\lambda}\boldsymbol{p}_{1}+(1-\lambda)\boldsymbol{p}_{0}(d) = \lambda J\boldsymbol{p}_{1}(d) + (1-\lambda)J\boldsymbol{p}_{0}(d)$$

$$\geq \lambda V(\boldsymbol{p}_{1}) + (1-\lambda)V(\boldsymbol{p}_{0}), \quad \lambda \in (0,1). \quad (1.25)$$

and the conclusion

$$\lambda V(\boldsymbol{p}_1) + (1-\lambda)V(\boldsymbol{p}_0) \le V(\lambda \boldsymbol{p}_1 + (1-\lambda)\boldsymbol{p}_0), \quad \lambda \in (0,1)$$

follows.

4.b. We have

$$J_{\boldsymbol{p}^{\star}}(d^{\star}) = J_{\boldsymbol{p}}(d^{\star}) \quad [\text{For all } \boldsymbol{p} \text{ in } \mathcal{P}_{M} \text{ since} \\ \text{the mapping } \boldsymbol{p} \to J_{\boldsymbol{p}}(d^{\star}) \text{ is constant}] \\ = J_{\text{Max}}(d^{\star}) \\ \geq \inf_{d \in \mathcal{D}} J_{\text{Max}}(d) \\ = \inf_{d \in \mathcal{D}} \left(\sup_{\boldsymbol{p} \in \mathcal{P}_{M}} J_{\boldsymbol{p}}(d) \right) \\ \geq \inf_{d \in \mathcal{D}} J_{\boldsymbol{p}^{\star}}(d) \\ = V(\boldsymbol{p}^{\star}).$$
(1.26)

Because $V(\pmb{p}^{\star}) = J_{\pmb{p}^{\star}}(d^{\star})$ we conclude that

$$J_{\mathrm{Max}}(d^{\star}) = \inf_{d \in \mathcal{D}} J_{\mathrm{Max}}(d),$$

and d^{\star} is indeed a minimax strategy.

4.c. The assumption $V(p^{\star}) = J_{p^{\star}}(d^{\star})$ immediately yields

$$V(\boldsymbol{p}^{\star}) \geq \inf_{d \in \mathcal{D}} \left(\sup_{\boldsymbol{p} \in \mathcal{P}_M} J_{\boldsymbol{p}}(d) \right)$$
(1.27)

by virtue of (1.26). It follows that

$$\inf_{d\in\mathcal{D}}\left(\sup_{\boldsymbol{p}\in\mathcal{P}_{M}}J_{\boldsymbol{p}}(d)\right)\leq V(\boldsymbol{p}^{\star})\leq \sup_{\boldsymbol{p}\in\mathcal{P}_{M}}V(\boldsymbol{p})=\sup_{\boldsymbol{p}\in\mathcal{P}_{M}}\left(\inf_{d\in\mathcal{D}}J_{\boldsymbol{p}}(d)\right).$$
(1.28)

On the other hand the inequality

$$\sup_{\boldsymbol{p}\in\mathcal{P}_{M}}V(\boldsymbol{p})\leq\inf_{d\in\mathcal{D}}\left(\sup_{\boldsymbol{p}\in\mathcal{P}_{M}}J_{\boldsymbol{p}}(d)\right)$$
(1.29)

always holds as a result of the obvious inequalities

$$V(\boldsymbol{p}) \leq J\boldsymbol{p}(d) \leq J_{\text{Max}}(d), \quad \begin{array}{l} \boldsymbol{p} \in \mathcal{P}_M \\ d \in \mathcal{D}. \end{array}$$

The proof is as in the binary case.

Combining the inequalities (1.28) and (1.29) yields the Minimax Equality

$$\sup_{\boldsymbol{p}\in\mathcal{P}_{M}}\left(\inf_{d\in\mathcal{D}}J\boldsymbol{p}(d)\right) = \inf_{d\in\mathcal{D}}\left(\sup_{\boldsymbol{p}\in\mathcal{P}_{M}}J\boldsymbol{p}(d)\right)$$
(1.30)

as well as the fact that

$$V(\boldsymbol{p}^{\star}) = \sup_{\boldsymbol{p} \in \mathcal{P}_M} V(\boldsymbol{p}).$$

In short, \boldsymbol{p}^{\star} is a maximum of the mapping $\mathcal{P}_M \to \mathbb{R} : \boldsymbol{p} \to V(\boldsymbol{p})$.