ENEE 621
 SPRING 2016
 DETECTION AND ESTIMATION THEORY
 ANSWER KEY TO FINAL EXAM:

1. Consider a Borel mapping $\Psi: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\mathbb{E}_{\theta}[|\Psi(Y)|]<\infty, \quad \theta \in(0,1)
$$

This equivalent to the absolute summability conditions

$$
\theta|\Psi(-1)|+\sum_{y=0}^{\infty}(1-\theta)^{2} \theta^{y}|\Psi(y)|<\infty, \quad \theta \in(0,1)
$$

Assume now that

$$
\mathbb{E}_{\theta}[\Psi(Y)]=0, \quad \theta \in(0,1) .
$$

In other words, assume that

$$
\theta \Psi(-1)+\sum_{y=0}^{\infty}(1-\theta)^{2} \theta^{y} \Psi(y)=0, \quad \theta \in(0,1)
$$

Elementary calculations show that

$$
\begin{align*}
& \theta \Psi(-1)+\sum_{y=0}^{\infty}(1-\theta)^{2} \theta^{y} \Psi(y) \\
&= \theta \Psi(-1)+\sum_{y=0}^{\infty}\left(1-2 \theta+\theta^{2}\right) \theta^{y} \Psi(y) \tag{1.1}\\
&= \theta \Psi(-1)+\sum_{y=0}^{\infty} \theta^{y} \Psi(y)-2 \sum_{y=0}^{\infty} \theta^{y+1} \Psi(y)+\sum_{y=0}^{\infty} \theta^{y+2} \Psi(y) \\
&= \theta \Psi(-1)+\Psi(0)+\theta \Psi(1)-2 \theta \Psi(0) \\
& \quad+\sum_{y=2}^{\infty} \theta^{y} \Psi(y)-2 \sum_{y=1}^{\infty} \theta^{y+1} \Psi(y)+\sum_{y=0}^{\infty} \theta^{y+2} \Psi(y) \\
&= \Psi(0)+\theta(\Psi(-1)-2 \Psi(0)+\Psi(1)) \\
& \quad+\sum_{y=2}^{\infty} \theta^{y}(\Psi(y)-2 \Psi(y-1)+\Psi(y-2))
\end{align*}
$$

These manipulations are permitted because the absolute summability of the infinite series allows them to be handled as finite sums would.

As we impose the conditions

$$
\theta \Psi(-1)+\sum_{y=0}^{\infty}(1-\theta)^{2} \theta^{y} \Psi(y)=0, \quad \theta \in(0,1)
$$

we conclude that $\Psi(0)=0, \Psi(-1)-2 \Psi(0)+\Psi(1)=0$ and

$$
\Psi(y)-2 \Psi(y-1)+\Psi(y-2)=0, \quad y=2,3, \ldots
$$

by standard analyticity arguments for power series. It follows that $\Psi(-1)+\Psi(1)=0$, and setting $\Psi(1) \equiv F$, we conclude $\Psi(-1)=-F$. It is easy to see by induction that $\Psi(y)=y F$ for each $y=2,3, \ldots$, hence for all $y=-1,0,1, \ldots$. In particular, for each θ in $(0,1)$, we find that

$$
\mathbb{P}_{\theta}[\Psi(Y)=0]=\mathbb{P}_{\theta}[Y F=0]= \begin{cases}1 & \text { if } F=0 \\ \mathbb{P}_{\theta}[Y=0]=(1-\theta)^{2} & \text { if } F \neq 0\end{cases}
$$

and the family $\left\{F_{\theta}, 0<\theta<1\right\}$ is not a complete family.
2.
2.a. Here, $\theta=\sigma^{2}, \Theta=\mathbb{R}_{+}$and F_{θ} is a probability distribution on \mathbb{R}^{k} with probability density function given by

$$
f_{\theta}(\boldsymbol{y})=\left(\frac{1}{\sqrt{2 \pi \theta}}\right)^{k} e^{-\frac{1}{2 \theta} \sum_{i=1}^{k}\left(y_{i}-\mu a_{i}\right)^{2}}, \quad \boldsymbol{y}=\left(y_{1}, \ldots, y_{k}\right) \in \mathbb{R}^{k}
$$

2.b. Writing

$$
\begin{equation*}
f_{\theta}(\boldsymbol{y})=\left(\frac{1}{\sqrt{2 \pi \theta}}\right)^{k} e^{-\frac{\mu^{2}}{2 \theta} \sum_{i=1}^{k} a_{i}^{2}} \cdot e^{\frac{\mu}{\theta} \sum_{i=1}^{k} a_{i} y_{i}-\frac{1}{2 \theta} \sum_{i=1}^{k} y_{i}^{2}}, \quad \boldsymbol{y} \in \mathbb{R}^{k} \tag{1.2}
\end{equation*}
$$

and the Factorization Theorem immediately implies that the family $\left\{F_{\theta}, \theta>0\right\}$ is an exponential family.
2.c. We have

$$
\begin{equation*}
\mathbb{E}_{\theta}[g(\boldsymbol{Y})]=\frac{1}{k-1} \mathbb{E}_{\theta}\left[K_{\sigma^{2}}(\boldsymbol{Y})-\frac{K_{\mu}(\boldsymbol{Y})^{2}}{\sum_{i=1}^{k} a_{i}^{2}}\right] \tag{1.3}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathbb{E}_{\theta}\left[K_{\sigma^{2}}(\boldsymbol{Y})\right]=k \sigma^{2}+\mu^{2}\left(\sum_{i=1}^{k} a_{i}^{2}\right) \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{E}_{\theta}\left[K_{\mu}(\boldsymbol{Y})^{2}\right]=\left(\sum_{i=1}^{k} a_{i}^{2}\right)\left(\sigma^{2}+\mu^{2}\left(\sum_{i=1}^{k} a_{i}^{2}\right)\right) \tag{1.5}
\end{equation*}
$$

by the calculations carried out in the Lecture Notes. The conclusion $\mathbb{E}_{\theta}[g(\boldsymbol{Y})]=\theta$ is now immediate and the estimator $g: \mathbb{R}^{k} \rightarrow \mathbb{R}$ is indeed an unbiased estimator of θ on the basis of \boldsymbol{Y}.
It is not an MVU estimator because the statistic $K: \mathbb{R} k \rightarrow \mathbb{R}^{2}$ is a not a complete sufficient statistic. This can be intuited from the fact that here the subset (of \mathbb{R}^{2})

$$
Q(\Theta)=\left\{\left[\begin{array}{c}
\frac{\mu}{\theta} \\
-\frac{1}{2 \theta}
\end{array}\right], \theta>0\right\}
$$

is a half-line originating from the origin and therefore does not contain a two-dimensional rectangle!

However the result used to build this intuition is only a sufficient condition! An ironclad argument is as follows: Fix $\theta>0$ and observe from the calculations above that

$$
\begin{equation*}
\mathbb{E}_{\theta}\left[\frac{1}{k}\left(K_{\sigma^{2}}(\boldsymbol{Y})-\mu^{2}\left(\sum_{i=1}^{k} a_{i}^{2}\right)\right)\right]=\sigma^{2} \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{E}_{\theta}\left[\frac{K_{\mu}(\boldsymbol{Y})^{2}}{\sum_{i=1}^{k} a_{i}^{2}}-\mu^{2}\left(\sum_{i=1}^{k} a_{i}^{2}\right)\right]=\sigma^{2} \tag{1.7}
\end{equation*}
$$

Therefore, the statistic $\psi: \mathbb{R}^{k} \rightarrow \mathbb{R}$ given by

$$
\psi(\boldsymbol{y})=\frac{1}{k}\left(K_{\sigma^{2}}(\boldsymbol{y})-\mu^{2}\left(\sum_{i=1}^{k} a_{i}^{2}\right)\right)-\left(\frac{K_{\mu}(\boldsymbol{y})^{2}}{\sum_{i=1}^{k} a_{i}^{2}}-\mu^{2}\left(\sum_{i=1}^{k} a_{i}^{2}\right)\right), \quad \boldsymbol{y} \in \mathbb{R}^{k}
$$

has the property

$$
\mathbb{E}_{\theta}[\psi(\boldsymbol{Y})]=0, \quad \theta>0
$$

and yet

$$
\mathbb{P}_{\theta}[\psi(\boldsymbol{Y})=0] \neq 0, \quad \theta>0 .
$$

Therefore, the statistic $K: \mathbb{R} k \rightarrow \mathbb{R}^{2}$ is a not a complete sufficient statistic.
2.d. Note that the statistic $K_{\text {other }}: \mathbb{R}^{k} \rightarrow \mathbb{R}$ given by

$$
K_{\text {other }}(\boldsymbol{y}) \equiv \sum_{i=1}^{k}\left(y_{i}-\mu a_{i}\right)^{2}, \quad \boldsymbol{y} \in \mathbb{R}
$$

is clearly sufficient for the family $\left\{F_{\theta}, \theta \in \Theta\right\}$. Indeed, we have

$$
f_{\theta}(\boldsymbol{y})=\left(\frac{1}{\sqrt{2 \pi \theta}}\right)^{k} e^{-\frac{2}{\theta} K_{\text {Other }}(\boldsymbol{y})}
$$

so the family $\left\{F_{\theta}, \theta \in \Theta\right\}$ is an exponential family. Noting that

$$
Q(\Theta)=\left\{-\frac{2}{\theta}, \quad \theta>0\right\}=(-\infty, 0)
$$

we conclude that the statistic $K_{\text {other }}: \mathbb{R}^{k} \rightarrow \mathbb{R}$ is a complete statistic for he family $\left\{F_{\theta}, \theta \in \Theta\right\}$.

Furthermore,

$$
\mathbb{E}_{\theta}\left[K_{\text {other }}(\boldsymbol{Y})\right]=\sum_{i=1}^{k} \mathbb{E}_{\theta}\left[\left(Y_{i}-\mu a_{i}\right)^{2}\right]=k \theta
$$

Thus the statistic $g^{\star}: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
g^{\star}(\boldsymbol{y}) \equiv \frac{1}{k} \sum_{i=1}^{k}\left(y_{i}-\mu a_{i}\right)^{2}, \quad \boldsymbol{y} \in \mathbb{R}
$$

is an unbiased estimator of θ on the basis of the observation \boldsymbol{Y}. Being obtained as a function of a complete sufficient statistic, it is necessarily a MVU estimator by virtue of the Rao-Blackwell Theorem and the uniqueness lemma.
3.
3.a. Here, $\theta=(p(1), \ldots, p(A))$ so that

$$
\Theta \equiv\left\{\boldsymbol{p}=(p(1), \ldots, p(A)) \in(0,1)^{A}: \sum_{a=1}^{A} p(a)=1\right\}
$$

Furthermore, for each θ in Θ, under \mathbb{P}_{θ}, the rv Y is a discrete rv taking values in S with

$$
f_{\theta}\left(s_{a}\right)=\mathbb{P}_{\theta}\left[Y=s_{a}\right]=p(a), \quad a=1, \ldots, A
$$

3.b. Fix θ in Θ. Obviously, the probability distribution F_{θ} being discrete with support S, we find

$$
\mathbb{P}_{\theta}[Y=y]=\prod_{a=1}^{A} p(a)^{\mathbf{1}\left[y=s_{a}\right]}=e^{\sum_{a=1}^{A} \mathbf{1}\left[y=s_{a}\right] \log p(a)}, \quad y \in S
$$

so that the family $\left\{F_{\theta}, \theta \in \Theta\right\}$ is indeed an exponential family with

$$
q(y)=\sum_{a=1}^{A} \mathbf{1}\left[y=s_{a}\right] \quad \text { and } \quad K(y)=\left(\mathbf{1}\left[y=s_{1}\right], \ldots, \mathbf{1}\left[y=s_{A}\right]\right)^{\prime}, \quad y \in \mathbb{R}
$$

while

$$
C(\theta)=1 \quad \text { and } \quad Q(\theta)=(\log p(1), \ldots, \log p(A)), \quad \theta \in \Theta .
$$

3.c. A non-trivial sufficient statistic is given by

$$
K(y)=\left(\mathbf{1}\left[y=s_{1}\right], \ldots, \mathbf{1}\left[y=s_{A}\right]\right)^{\prime}, \quad y \in \mathbb{R}
$$

3.d. It suffices to consider y_{1}, \ldots, y_{k} in S. On that range, consider the problem

$$
\text { Maximize } \prod_{i=1}^{k} f_{\theta}\left(y_{i}\right) \text { subject to } \theta \text { in } \Theta .
$$

This is equivalent to

$$
\text { Maximize } \sum_{i=1}^{k} \log f_{\theta}\left(y_{i}\right) \text { subject to } \theta \text { in } \Theta
$$

with

$$
\begin{align*}
\sum_{i=1}^{k} \log f_{\theta}\left(y_{i}\right) & =\sum_{i=1}^{k}\left(\sum_{a=1}^{A} \mathbf{1}\left[y_{i}=s_{a}\right] \log p(a)\right) \\
& =\sum_{a=1}^{A}\left(\sum_{i=1}^{k} \mathbf{1}\left[y_{i}=s_{a}\right]\right) \log p(a) \\
& =\sum_{a=1}^{A} \log p(a) \cdot N_{k}\left(a ; y_{1}, \ldots, y_{k}\right) \tag{1.8}
\end{align*}
$$

where we have set

$$
N_{k}\left(a ; y_{1}, \ldots, y_{k}\right)=\sum_{i=1}^{k} \mathbf{1}\left[y_{i}=s_{a}\right], \quad \begin{gathered}
a=1, \ldots, A \\
y_{1}, \ldots, y_{k} \in \mathbb{R}
\end{gathered}
$$

This quantity counts the number of times the value s_{a} appears amongst the observations y_{1}, \ldots, y_{k}.

A standard Lagrangian argument leads to considering the problem

$$
\text { Maximize } \begin{gathered}
\sum_{a=1}^{A} \log p(a) \cdot N_{k}\left(a ; y_{1}, \ldots, y_{k}\right) \\
-\lambda\left(\sum_{a=1}^{A} p(a)-1\right)
\end{gathered} \text { subject to } \theta \in \mathbb{R}_{+}^{A} \text { and } \lambda>0
$$

Its solution is easily seen to be given by

$$
g_{k, \mathrm{ML}}\left(y_{1}, \ldots, y_{k}\right)=\left(\frac{N_{1}\left(a ; y_{1}, \ldots, y_{k}\right)}{k}, \ldots, \frac{N_{K}\left(a ; y_{1}, \ldots, y_{k}\right)}{k}\right)^{\prime}
$$

Note that this solution in an element of the closure $\bar{\Theta}$, an acceptable fact despite the constraint that $0<p(a)<1$ for each $a=1, \ldots, A$ imposed on the problem.
3.e. The ML estimator $g_{k, \mathrm{ML}}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{A}$ is unbiased. It is consistent by virtue of the Strong law of Large Numbers and displays asymptotic normality by virtue of the Central Limit Theorem.
4.

With $\theta>0$, note that

$$
f_{\theta}(y)= \begin{cases}0 & \text { if } y \leq 0 \\ \theta a^{\theta}(a+y)^{-\theta-1} & \text { if } y>0\end{cases}
$$

Also, recall that if $Y \sim F_{\theta}$, then

$$
\log \left(\frac{a+Y}{a}\right) \sim \operatorname{Exp}(\theta)
$$

4.a. Fix $0<p \leq 1$. Recall that

$$
V(p)=J_{p}\left(d_{\eta(p)}\right) \quad \text { with } \quad \eta=\frac{\Gamma_{0}(1-p)}{\Gamma_{1} p}
$$

where for each $\eta>0$, the test $d_{\eta}: \mathbb{R} \rightarrow\{0,1\}$ is given by

$$
d_{\eta}(y)=0 \quad \text { iff } \quad f_{\theta_{1}}(y)<\eta f_{\theta_{0}}(y), \quad y>0
$$

Simple calculations show that

$$
\begin{align*}
d_{\eta}(y)=0 \quad & \text { iff } \quad\left(\frac{a+y}{a}\right)^{\theta_{0}-\theta_{1}}<\eta \frac{\theta_{0}}{\theta_{1}} \\
& \text { iff } \quad \log \left(\frac{a+y}{a}\right)>T\left(\eta ; \theta_{0}, \theta_{1}\right), \quad y>0 \tag{1.9}
\end{align*}
$$

where

$$
T\left(\eta ; \theta_{0}, \theta_{1}\right), \equiv-\frac{1}{\theta_{1}-\theta_{0}} \log \left(\eta \cdot \frac{\theta_{0}}{\theta_{1}}\right)=\frac{1}{\theta_{1}-\theta_{0}} \log \left(\eta^{-1} \cdot \frac{\theta_{1}}{\theta_{0}}\right) .
$$

Thus,

$$
\begin{align*}
P_{\mathrm{F}}\left(d_{\eta}\right) & =\mathbb{P}_{\theta_{0}}\left[d_{\eta}(Y)=1\right] \\
& =\mathbb{P}_{\theta_{0}}\left[\log \left(\frac{a+Y}{a}\right) \leq T\left(\eta ; \theta_{0}, \theta_{1}\right)\right] \\
& =1-e^{-\theta_{0} T\left(\eta ; \theta_{0}, \theta_{1}\right)^{+}} \tag{1.10}
\end{align*}
$$

and

$$
\begin{align*}
P_{\mathrm{D}}\left(d_{\eta}\right) & =\mathbb{P}_{\theta_{1}}\left[d_{\eta}(Y)=1\right] \\
& =\mathbb{P}_{\theta_{1}}\left[\log \left(\frac{a+Y}{a}\right) \leq T\left(\eta ; \theta_{0}, \theta_{1}\right)\right] \\
& =1-e^{-\theta_{1} T\left(\eta ; \theta_{0}, \theta_{1}\right)^{+}} . \tag{1.11}
\end{align*}
$$

Therefore, as discussed in the Lecture Notes, for each p in $(0,1]$ we have

$$
J_{p}\left(d_{\eta}\right)=p C(1,1)+(1-p) C(0,0)+\widehat{J}_{p}\left(d_{\eta}\right)
$$

with

$$
\begin{align*}
\widehat{J}_{p}\left(d_{\eta}\right) & =\Gamma_{0}(1-p) \cdot P_{\mathrm{F}}\left(d_{\eta}\right)+\Gamma_{1} p \cdot\left(1-P_{\mathrm{D}}\left(d_{\eta}\right)\right) \\
& =\Gamma_{0}(1-p) \cdot\left(1-e^{-\theta_{0} T\left(\eta ; \theta_{0}, \theta_{1}\right)^{+}}\right)+\Gamma_{1} p \cdot e^{-\theta_{1} T\left(\eta ; \theta_{0}, \theta_{1}\right)^{+}} \tag{1.12}
\end{align*}
$$

4.b. By direct inspection it is easy to check that

$$
\left\{T\left(\eta ; \theta_{0}, \theta_{1}\right), \quad \eta>0\right\}=[0, \infty)
$$

whencce $\left\{P_{\mathrm{F}}\left(d_{\eta}\right), \eta>0\right\}=[0,1)$ and $\left\{P_{\mathrm{D}}\left(d_{\eta}\right), \eta>0\right\}=[0,1)$ with $\lim _{\eta \downarrow 0} P_{\mathrm{F}}\left(d_{\eta}\right)=$ $P_{\mathrm{F}}\left(d_{0}\right)=1$ and $\lim _{\eta \downarrow 0} P_{\mathrm{D}}\left(d_{\eta}\right)=P_{\mathrm{D}}\left(d_{0}\right)=1$. Obviously the ROC curve is defined on the interval p_{F} interval $[0,1]$.
5.
5.a. Under the foregoing assumptions, we note that

$$
d_{\eta}(y)=0 \quad \text { iff } \quad \frac{f_{b}(y)}{f_{a}(y)}<\eta
$$

But, by continuity and strict monotonicity we readily conclude

$$
\left\{y \in \mathbb{R}: \frac{f_{b}(y)}{f_{a}(y)}<\eta\right\}=(-\infty, t(\eta))
$$

where

$$
t(\eta)=\sup \left\{y \in \mathbb{R}: \frac{f_{b}(y)}{f_{a}(y)}<\eta\right\}=\left(\frac{f_{b}(\cdot)}{f_{a}(\cdot)}\right)^{-1}(\eta)
$$

Obviously, the mapping $y \rightarrow \frac{f_{b}(y)}{f_{a}(y)}$ is a bijection from \mathbb{R} to \mathbb{R}_{+}under the assumptions made here - There is a one-to-one correspondence between η and $t(\eta)$ with

$$
\frac{f_{b}(t(\eta))}{f_{a}(t(\eta))}=\eta
$$

5.b. We seek $\eta>0$ such that $\mathbb{P}_{a}\left[d_{\eta}(Y)=1\right]=\alpha$. In view of Part a, we get

$$
\begin{equation*}
\alpha=\mathbb{P}_{a}[Y \geq t(\eta)]=1-F_{a}(t(\eta)), \tag{1.13}
\end{equation*}
$$

i.e., $F_{a}(t(\eta))=1-\alpha$, and the requisite $\eta=\eta_{a, b}(\alpha)$ is therefore given through

$$
\eta_{a, b}(\alpha)=F_{a}^{-1}(1-\alpha)
$$

It follows that

$$
d_{\mathrm{NP}}(\alpha ; a, b)=0 \quad \text { iff } \quad y \in\left(-\infty, t\left(\eta_{a, b}(\alpha)\right)\right)=\left(-\infty, F_{a}^{-1}(1-\alpha)\right)
$$

Note that these acceptance regions do not depend on b as soon as $a<b$.
5.c. From the discussion in Part b, it is immediate that there exists a UMP test $d_{\mathrm{UMP}}\left(\alpha ; a, \Theta_{b}^{+}\right)$of size α (in $\left.(0,1)\right)$ to test the null simple hypothesis $H_{0} \equiv H_{a}$ against the non-null composite hypothesis $H_{1} \equiv\left(H_{c}, c \in \Theta_{b}^{+}\right)$. It is given by

$$
d_{\mathrm{NP}}\left(\alpha ; a, \Theta_{b}^{+}\right)(y)=0 \quad \text { iff } \quad y \in\left(-\infty, F_{a}^{-1}(1-\alpha)\right) .
$$

6.

We begin by noting that

$$
\begin{align*}
f_{\vartheta \mid Y}(\theta \mid y) & =\frac{f_{Y \mid \vartheta}(y \mid \theta) f_{\vartheta}(\theta)}{f_{Y}(y)} \\
& =\mathbf{1}[y \geq \theta] \frac{e^{-(y-\theta)} f_{\vartheta}(\theta)}{f_{Y}(y)}, \quad \theta, y \in \mathbb{R} \tag{1.14}
\end{align*}
$$

with

$$
\begin{align*}
g_{\mathrm{MAP}}(y) & =\arg \max \left(\mathbf{1}[y \geq \theta] e^{-(y-\theta)} f_{\vartheta}(\theta): \theta \in \mathbb{R}\right) \\
& =\arg \max \left(e^{-(y-\theta)} f_{\vartheta}(\theta): \theta \leq y\right) \\
& =\arg \max \left(e^{\theta} f_{\vartheta}(\theta): \theta \leq y\right), \quad y \in \mathbb{R} . \tag{1.15}
\end{align*}
$$

6.a. Here we have

$$
f_{\vartheta}(\theta)=\frac{1}{\pi\left(1+\theta^{2}\right)}, \quad \theta \in \mathbb{R}
$$

Thus, with y in \mathbb{R} given, we need to solve the optimization problem

$$
\text { Maximize } \frac{e^{\theta}}{1+\theta^{2}} \text { subject to } \theta \leq y
$$

Taking derivatives we get

$$
\frac{d}{d \theta}\left(\frac{e^{\theta}}{1+\theta^{2}}\right)=e^{\theta}\left(\frac{1}{1+\theta^{2}}-\frac{2 \theta}{\left(1+\theta^{2}\right)^{2}}\right)=e^{\theta} \frac{(1-\theta)^{2}}{\left(1+\theta^{2}\right)^{2}} \geq 0, \quad \theta \in \mathbb{R}
$$

In other words, the function $\theta \rightarrow \frac{e^{\theta}}{1+\theta^{2}}$ is non-decreasing on \mathbb{R}, whence its maximum on $(-\infty, y]$ is achieved at $\theta=y$, i.e.,

$$
\begin{equation*}
g_{\mathrm{MAP}}(y)=y, \quad y \in \mathbb{R} \tag{1.16}
\end{equation*}
$$

6.b. More generally, we consider an arbitrary probability density function $f_{\vartheta}: \mathbb{R} \rightarrow \mathbb{R}_{+}$ such that $f_{\vartheta}(\theta)>0$ for all θ in \mathbb{R}. For any y in \mathbb{R} given, we need to solve the optimization problem

$$
\text { Maximize } e^{\theta} f_{\vartheta}(\theta) \text { subject to } \theta \leq y
$$

Taking derivatives we get

$$
\frac{d}{d \theta}\left(e^{\theta} f_{\vartheta}(\theta)\right)=e^{\theta}\left(f_{\vartheta}(\theta)+\frac{d}{d \theta} f_{\vartheta}(\theta)\right)>0, \quad \theta \in \mathbb{R}
$$

In other words, the function $\theta \rightarrow \frac{e^{\theta}}{1+\theta^{2}}$ is non-decreasing on \mathbb{R}, whence its maximum on $(-\infty, y]$ is achieved at $\theta=y$, i.e.,

$$
\begin{equation*}
g_{\mathrm{MAP}}(y)=y, \quad y \in \mathbb{R} \tag{1.17}
\end{equation*}
$$

