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DETECTION AND ESTIMATION THEORY

ANSWER KEY TO FINAL EXAM:

1. Consider a Borel mapping Ψ : R→ R such that

Eθ [|Ψ(Y )|] <∞, θ ∈ (0, 1).

This equivalent to the absolute summability conditions

θ|Ψ(−1)|+
∞∑
y=0

(1− θ)2θy|Ψ(y)| <∞, θ ∈ (0, 1).

Assume now that
Eθ [Ψ(Y )] = 0, θ ∈ (0, 1).

In other words, assume that

θΨ(−1) +
∞∑
y=0

(1− θ)2θyΨ(y) = 0, θ ∈ (0, 1).

Elementary calculations show that

θΨ(−1) +
∞∑
y=0

(1− θ)2θyΨ(y)

= θΨ(−1) +
∞∑
y=0

(1− 2θ + θ2)θyΨ(y) (1.1)

= θΨ(−1) +
∞∑
y=0

θyΨ(y)− 2
∞∑
y=0

θy+1Ψ(y) +
∞∑
y=0

θy+2Ψ(y)

= θΨ(−1) + Ψ(0) + θΨ(1)− 2θΨ(0)

+
∞∑
y=2

θyΨ(y)− 2
∞∑
y=1

θy+1Ψ(y) +
∞∑
y=0

θy+2Ψ(y)

= Ψ(0) + θ (Ψ(−1)− 2Ψ(0) + Ψ(1))

+
∞∑
y=2

θy (Ψ(y)− 2Ψ(y − 1) + Ψ(y − 2))
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These manipulations are permitted because the absolute summability of the infinite series
allows them to be handled as finite sums would.

As we impose the conditions

θΨ(−1) +
∞∑
y=0

(1− θ)2θyΨ(y) = 0, θ ∈ (0, 1)

we conclude that Ψ(0) = 0, Ψ(−1)− 2Ψ(0) + Ψ(1) = 0 and

Ψ(y)− 2Ψ(y − 1) + Ψ(y − 2) = 0, y = 2, 3, . . .

by standard analyticity arguments for power series. It follows that Ψ(−1) + Ψ(1) = 0,
and setting Ψ(1) ≡ F , we conclude Ψ(−1) = −F . It is easy to see by induction that
Ψ(y) = yF for each y = 2, 3, . . ., hence for all y = −1, 0, 1, . . .. In particular, for each θ
in (0, 1), we find that

Pθ [Ψ(Y ) = 0] = Pθ [Y F = 0] =


1 if F = 0

Pθ [Y = 0] = (1− θ)2 if F 6= 0

and the family {Fθ, 0 < θ < 1} is not a complete family.

2.
2.a. Here, θ = σ2, Θ = R+ and Fθ is a probability distribution on Rk with probability
density function given by

fθ(y) =

(
1√
2πθ

)k
e−

1
2θ

∑k
i=1(yi−µai)

2

, y = (y1, . . . , yk) ∈ Rk.

2.b. Writing

fθ(y) =

(
1√
2πθ

)k
e−

µ2

2θ

∑k
i=1 a

2
i · e

µ
θ

∑k
i=1 aiyi−

1
2θ

∑k
i=1 y

2
i , y ∈ Rk (1.2)

and the Factorization Theorem immediately implies that the family {Fθ, θ > 0} is an
exponential family.

2.c. We have

Eθ [g(Y )] =
1

k − 1
Eθ

[
Kσ2(Y )− Kµ(Y )2∑k

i=1 a
2
i

]
(1.3)

with

Eθ [Kσ2(Y )] = kσ2 + µ2

(
k∑
i=1

a2i

)
(1.4)
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and

Eθ
[
Kµ(Y )2

]
=

(
k∑
i=1

a2i

)(
σ2 + µ2

(
k∑
i=1

a2i

))
(1.5)

by the calculations carried out in the Lecture Notes. The conclusion Eθ [g(Y )] = θ is
now immediate and the estimator g : Rk → R is indeed an unbiased estimator of θ on
the basis of Y .

It is not an MVU estimator because the statistic K : Rk → R2 is a not a complete
sufficient statistic. This can be intuited from the fact that here the subset (of R2)

Q(Θ) =

{[
µ
θ

− 1
2θ

,

]
, θ > 0

}
is a half-line originating from the origin and therefore does not contain a two-dimensional
rectangle!

However the result used to build this intuition is only a sufficient condition! An ironclad
argument is as follows: Fix θ > 0 and observe from the calculations above that

Eθ

[
1

k

(
Kσ2(Y )− µ2

(
k∑
i=1

a2i

))]
= σ2 (1.6)

and

Eθ

[
Kµ(Y )2∑k

i=1 a
2
i

− µ2

(
k∑
i=1

a2i

)]
= σ2. (1.7)

Therefore, the statistic ψ : Rk → R given by

ψ(y) =
1

k

(
Kσ2(y)− µ2

(
k∑
i=1

a2i

))
−

(
Kµ(y)2∑k

i=1 a
2
i

− µ2

(
k∑
i=1

a2i

))
, y ∈ Rk

has the property
Eθ [ψ(Y )] = 0, θ > 0

and yet
Pθ [ψ(Y ) = 0] 6= 0, θ > 0.

Therefore, the statistic K : Rk → R2 is a not a complete sufficient statistic.

2.d. Note that the statistic Kother : Rk → R given by

Kother(y) ≡
k∑
i=1

(yi − µai)2 , y ∈ R

is clearly sufficient for the family {Fθ, θ ∈ Θ}. Indeed, we have

fθ(y) =

(
1√
2πθ

)k
e−

2
θ
KOther(y)
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so the family {Fθ, θ ∈ Θ} is an exponential family. Noting that

Q(Θ) =

{
−2

θ
, θ > 0

}
= (−∞, 0)

we conclude that the statistic Kother : Rk → R is a complete statistic for he family
{Fθ, θ ∈ Θ}.

Furthermore,

Eθ [Kother(Y )] =
k∑
i=1

Eθ
[
(Yi − µai)2

]
= kθ

Thus the statistic g? : R→ R given by

g?(y) ≡ 1

k

k∑
i=1

(yi − µai)2 , y ∈ R

is an unbiased estimator of θ on the basis of the observation Y . Being obtained as a
function of a complete sufficient statistic, it is necessarily a MVU estimator by virtue of
the Rao-Blackwell Theorem and the uniqueness lemma.

3.
3.a. Here, θ = (p(1), . . . , p(A)) so that

Θ ≡

{
p = (p(1), . . . , p(A)) ∈ (0, 1)A :

A∑
a=1

p(a) = 1

}
.

Furthermore, for each θ in Θ, under Pθ, the rv Y is a discrete rv taking values in S with

fθ(sa) = Pθ [Y = sa] = p(a), a = 1, . . . , A.

3.b. Fix θ in Θ. Obviously, the probability distribution Fθ being discrete with support
S, we find

Pθ [Y = y] =
A∏
a=1

p(a)1[y=sa] = e
∑A
a=1 1[y=sa] log p(a), y ∈ S

so that the family {Fθ, θ ∈ Θ} is indeed an exponential family with

q(y) =
A∑
a=1

1 [y = sa] and K(y) = (1 [y = s1] , . . . ,1 [y = sA])′, y ∈ R

while
C(θ) = 1 and Q(θ) = (log p(1), . . . , log p(A)), θ ∈ Θ.

3.c. A non-trivial sufficient statistic is given by

K(y) = (1 [y = s1] , . . . ,1 [y = sA])′, y ∈ R.
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3.d. It suffices to consider y1, . . . , yk in S. On that range, consider the problem

Maximize
∏k

i=1 fθ(yi) subject to θ in Θ .

This is equivalent to

Maximize
∑k

i=1 log fθ(yi) subject to θ in Θ

with

k∑
i=1

log fθ(yi) =
k∑
i=1

(
A∑
a=1

1 [yi = sa] log p(a)

)

=
A∑
a=1

(
k∑
i=1

1 [yi = sa]

)
log p(a)

=
A∑
a=1

log p(a) ·Nk(a; y1, . . . , yk) (1.8)

where we have set

Nk(a; y1, . . . , yk) =
k∑
i=1

1 [yi = sa] ,
a = 1, . . . , A
y1, . . . , yk ∈ R.

This quantity counts the number of times the value sa appears amongst the observations
y1, . . . , yk.

A standard Lagrangian argument leads to considering the problem

Maximize

∑A
a=1 log p(a) ·Nk(a; y1, . . . , yk)

−λ
(∑A

a=1 p(a)− 1
) subject to θ ∈ RA

+ and λ > 0.

Its solution is easily seen to be given by

gk,ML(y1, . . . , yk) =

(
N1(a; y1, . . . , yk)

k
, . . . ,

NK(a; y1, . . . , yk)

k

)′
Note that this solution in an element of the closure Θ̄, an acceptable fact despite the
constraint that 0 < p(a) < 1 for each a = 1, . . . , A imposed on the problem.

3.e. The ML estimator gk,ML : Rk → RA is unbiased. It is consistent by virtue of the
Strong law of Large Numbers and displays asymptotic normality by virtue of the Central
Limit Theorem.

4.
With θ > 0, note that

fθ(y) =


0 if y ≤ 0

θaθ (a+ y)−θ−1 if y > 0.
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Also, recall that if Y ∼ Fθ, then

log

(
a+ Y

a

)
∼ Exp(θ).

4.a. Fix 0 < p ≤ 1. Recall that

V (p) = Jp(dη(p)) with η =
Γ0(1− p)

Γ1p

where for each η > 0, the test dη : R→ {0, 1} is given by

dη(y) = 0 iff fθ1(y) < ηfθ0(y), y > 0.

Simple calculations show that

dη(y) = 0 iff

(
a+ y

a

)θ0−θ1
< η

θ0
θ1

iff log

(
a+ y

a

)
> T (η; θ0, θ1), y > 0 (1.9)

where

T (η; θ0, θ1),≡ −
1

θ1 − θ0
log

(
η · θ0

θ1

)
=

1

θ1 − θ0
log

(
η−1 · θ1

θ0

)
.

Thus,

PF(dη) = Pθ0 [dη(Y ) = 1]

= Pθ0
[
log

(
a+ Y

a

)
≤ T (η; θ0, θ1)

]
= 1− e−θ0T (η;θ0,θ1)+ (1.10)

and

PD(dη) = Pθ1 [dη(Y ) = 1]

= Pθ1
[
log

(
a+ Y

a

)
≤ T (η; θ0, θ1)

]
= 1− e−θ1T (η;θ0,θ1)+ . (1.11)

Therefore, as discussed in the Lecture Notes, for each p in (0, 1] we have

Jp(dη) = pC(1, 1) + (1− p)C(0, 0) + Ĵp(dη)

with

Ĵp(dη) = Γ0(1− p) · PF(dη) + Γ1p · (1− PD(dη))

= Γ0(1− p) ·
(

1− e−θ0T (η;θ0,θ1)+
)

+ Γ1p · e−θ1T (η;θ0,θ1)
+

. (1.12)
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4.b. By direct inspection it is easy to check that

{T (η; θ0, θ1), η > 0} = [0,∞)

whencce {PF(dη), η > 0} = [0, 1) and {PD(dη), η > 0} = [0, 1) with limη↓0 PF(dη) =
PF(d0) = 1 and limη↓0 PD(dη) = PD(d0) = 1. Obviously the ROC curve is defined on the
interval pF interval [0, 1].

5.
5.a. Under the foregoing assumptions, we note that

dη(y) = 0 iff
fb(y)

fa(y)
< η.

But, by continuity and strict monotonicity we readily conclude{
y ∈ R :

fb(y)

fa(y)
< η

}
= (−∞, t(η))

where

t(η) = sup

{
y ∈ R :

fb(y)

fa(y)
< η

}
=

(
fb(·)
fa(·)

)−1
(η).

Obviously, the mapping y → fb(y)
fa(y)

is a bijection from R to R+ under the assumptions

made here – There is a one-to-one correspondence between η and t(η) with

fb(t(η))

fa(t(η))
= η.

5.b. We seek η > 0 such that Pa [dη(Y ) = 1] = α. In view of Part a, we get

α = Pa [Y ≥ t(η)] = 1− Fa(t(η)), (1.13)

i.e., Fa(t(η)) = 1− α, and the requisite η = ηa,b(α) is therefore given through

ηa,b(α) = F−1a (1− α).

It follows that

dNP(α; a, b) = 0 iff y ∈ (−∞, t(ηa,b(α))) = (−∞, F−1a (1− α))

Note that these acceptance regions do not depend on b as soon as a < b.

5.c. From the discussion in Part b, it is immediate that there exists a UMP test
dUMP(α; a,Θ+

b ) of size α (in (0, 1)) to test the null simple hypothesis H0 ≡ Ha against
the non-null composite hypothesis H1 ≡ (Hc, c ∈ Θ+

b ). It is given by

dNP(α; a,Θ+
b )(y) = 0 iff y ∈ (−∞, F−1a (1− α)).
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6.
We begin by noting that

fϑ|Y (θ|y) =
fY |ϑ(y|θ)fϑ(θ)

fY (y)

= 1 [y ≥ θ]
e−(y−θ)fϑ(θ)

fY (y)
, θ, y ∈ R (1.14)

with

gMAP(y) = arg max
(
1 [y ≥ θ] e−(y−θ)fϑ(θ) : θ ∈ R

)
= arg max

(
e−(y−θ)fϑ(θ) : θ ≤ y

)
= arg max

(
eθfϑ(θ) : θ ≤ y

)
, y ∈ R. (1.15)

6.a. Here we have

fϑ(θ) =
1

π(1 + θ2)
, θ ∈ R.

Thus, with y in R given, we need to solve the optimization problem

Maximize eθ

1+θ2
subject to θ ≤ y.

Taking derivatives we get

d

dθ

(
eθ

1 + θ2

)
= eθ

(
1

1 + θ2
− 2θ

(1 + θ2)2

)
= eθ

(1− θ)2

(1 + θ2)2
≥ 0, θ ∈ R.

In other words, the function θ → eθ

1+θ2
is non-decreasing on R, whence its maximum on

(−∞, y] is achieved at θ = y, i.e.,

gMAP(y) = y, y ∈ R. (1.16)

6.b. More generally, we consider an arbitrary probability density function fϑ : R→ R+

such that fϑ(θ) > 0 for all θ in R. For any y in R given, we need to solve the optimization
problem

Maximize eθfϑ(θ) subject to θ ≤ y.

Taking derivatives we get

d

dθ

(
eθfϑ(θ)

)
= eθ

(
fϑ(θ) +

d

dθ
fϑ(θ)

)
> 0, θ ∈ R.

In other words, the function θ → eθ

1+θ2
is non-decreasing on R, whence its maximum on

(−∞, y] is achieved at θ = y, i.e.,

gMAP(y) = y, y ∈ R. (1.17)


