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Wavelets and Filter Banks: Theory and Design 
Martin Vetterli, Senior Member, IEEE, and Cormac Herley 

Abstract-Wavelets, filter banks, and multiresolntion signal 
analysis, which have been used independently in 1 he fields of 
applied mathematics, signal processing, and computer vision, 
respectively, have recently converged to form a single theory. 
In this paper, we first compare the wavelet transform with the 
more classical short-time Fourier transform approaich to signal 
analysis. Then we explore the relations between wavelets, filter 
banks, and multiresolution signal processing. We briefly re- 
view perfect reconstruction filter banks, which can be used both 
for computing the discrete wavelet transform, and for deriving 
continuous wavelet bases, provided that the filters meet a con- 
straint known as regularity. Given a low-pass filter, we derive 
necessary and sufficient conditions for the existence of a com- 
plementary high-pass filter that will permit perfect reconstruc- 
tion. Posing the perfect reconstruction condition as a Bezout 
identity, we then show how it is possible to find all higher de- 
gree complementary filters based on an analogy with the theory 
of diophantine equations. An alternative approach based on the 
theory of continued fractions is also given. We use lhese results 
to design highly regular filter banks, which generate biorthog- 
onal continuous wavelet bases with symmetries. 

I. INTRODUCTION 
All this time the guard was looking at her, first Ihrough a 
telescope, then through a microscope, and then through an 
opera glass. 

Lewis Carroll, Through the Looking Glass 

HE analysis of nonstationary signals often involves a T compromise between how well transitions or discon- 
tinuities can be located, and how finely long-trmi behav- 
ior can be identified. A typical example is the choice of 
window length in the short-time Fourier transform. In 
wavelet analysis one looks at the signal at different 
“scales” or “resolutions” : a rough approximation of the 
signal might look stationary, while at a detailzd level 
(when using a small window) discontinuities become ap- 
parent. This multiresolution, or multiscale view of signal 
analysis is the essence of the wavelet transfc’rm, which 
has recently become quite popular [l]. The goal is “to 
see the wood and the trees.” 

The wavelet analysis is performed using a single pro- 
totype function called a wavelet, which can be thought of 
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as a bandpass filter. Fine temporal analysis is done with 
contracted (high-frequency) versions of the wavelet, while 
fine frequency analysis uses dilated (low-frequency) ver- 
sions. The bandpass filters have thus constant relative 
bandwidth or “constant-Q. ” The importance of constant 
relative bandwidth when perceptual processes like the au- 
ditory system are involved has long been recognized; for 
example, the musical scale introduced by Bach is expo- 
nentially spaced, and subband coding of speech typically 
uses an octave-band splitting of signals. The multireso- 
lution view of signals has been used in computer vision 
for tasks like segmentation and object recognition. 

From the above discussion, it is clear that several fields 
have developed similar ideas independently, and it is only 
recently that the connections have been fully recognized. 
The activity in wavelets was initiated by Morlet’s work 
in geophysical signal processing [2]. A strong mathemat- 
ical framework was built around the basic wavelet idea by 
the “French school” [3], [4] and is documented in the 
recent book by Meyer [ 5 ] ,  which also shows the connec- 
tions to earlier results in operator theory. Tutorials on 
wavelets are available in [6], [l],  [7]. 

Multiresolution approaches have been popular for com- 
puter vision problems from range detection to motion es- 
timation [8]. An important application to image coding 
called a pyramid [9] is closely related both to subband 
coding and to wavelets. Mallat used this concept of mul- 
tiresolution analysis to define wavelets [lo], [ l l], [6], and 
Daubechies constructed compactly supported orthonor- 
mal wavelets based on iterations of discrete filters [12]. 
The relation of these filters to classical maximally flat de- 
signs [ 131 was recently noted by Shensa [ 141. In the signal 
processing literature, work on filter banks goes back to 
subband coding of speech [15], [16]. Orthogonal filter 
banks were first derived by Smith and Barnwell [I71 and 
Mintzer [18], and were systematically studied by Vai- 
dyanathan [ 191, [20]. The biorthogonal case, especially 
the linear phase case, was also studied [21]-[23]. 

In what follows we start by presenting a synthetic view 
of these diverse techniques, both as an introduction to the 
various tools, and as a motivation for further develop- 
ments. Section I1 introduces the wavelet transform and 
compares it with the short-time Fourier transform in the 
continuous time case. The discrete time case and its con- 
nection to the continuous case is then explored. Section 
111 gives a brief overview of filter bank results in the or- 
thogonal and biorthogonal cases; and constructs biorthog- 
onal wavelets as the limit of iterated regular filter banks 
(regularity means that the iterated filter converges to a 
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continuous function). In Section IV, results on the alge- 
braic structure of the FIR perfect reconstruction problem 
are presented, and these will be used to construct new 
wavelets. Section V presents design results of compactly 
supported biorthogonal symmetric wavelets based on it- 
erated filter banks. 

A certain amount of review material has been included. 
First, since much of the wavelet material may be unfa- 
miliar to readers of this TRANSACTIONS we felt the review 
might be of interest in its own right; second, this wavelet 
background greatly assists the presentation of the original 
material that follows. The material of Sections 11-D, I11 
(from 111-C onward), and IV and V is novel. SO n e  of the 
main results of this paper were presented in cmdensed 
form in [24], [25]. 

The focus on wavelets with symmetries is motivated 
both by the fact that the problem was open, and for the 
reason that in applications like image processing linear 
phase is often desired [26]. Previous linear phase designs 
were not concerned with regularity [23], [22]; the empha- 
sis was on equal length filters with a lattice factorization. 
This work specifically addresses the regularity question, 
and proposes new techniques to produce regular designs. 
The importance of regularity for signal processing appli- 
cations is still an open question. While it is an elegant 
mathematical result on the relation between continuous 
and discrete systems, most filters used in signal process- 
ing applications are “almost regular,” when a fiiite num- 
ber of iterations is involved. Settling this question will of 
course require substantial experimental evidence, and is 
beyond the scope of this paper. 

To give an idea of the effect of phase, we show In Fig. 
1 the continuous wavelet transform plots of a burst of a 
sinewave analyzed with a) a symmetric wavelet designed 
in Section V-A, and b) an asymmetric wavelet designed 
in [12]. The horizontal axis represents time, .while the 
vertical represents the log of scale (scale being the inverse 
of frequency). Scale increases from top to bottom; and the 
range is eight octaves for each of the plots. In other words, 
the scale of the analyzing wavelet is smallest at he top of 
the plot; and the largest scale is 28 times the smallest. 
Note that unlike the Morlet wavelet used in [27 1 ,  both of 
these wavelets are real, so magnitude and phase infor- 
mation do not have to be separately computed. For signal 
analysis, unlike coding, it is not necessary to use perfect 
reconstruction systems, since the representation is gen- 
erally highly oversampled, and thus the continucus wave- 
let transform example shown is for illustration purposes 
only. 

During the completion of this work, we becaine aware 
of results developed independently by other researchers. 
Cohen et al.’s work on biorthogonal bases of wavelets 
[28], while of a more mathematical nature, leac s to very 
similar designs. A recent manuscript by Rioul [29]. while 
mainly focused on the orthogonal case, contains also some 
results on biorthogonal systems, as well as the connection 
with filter banks. 

Notation: The set of real numbers will be rexesented 

(b) 
Fig. 1 .  Continuous wavelet transform plots. The signal is shown on top; 
the axes are time horizontally, and log scale vertically. (a) Sineburst ana- 
lyzed using symmetric wavelet. (b) Sineburst analyzed using asymmetric 
wavelet. 

by R (R  + being the set of positive reals), the set of inte- 
gers is Z .  The inner product over the space of square- 
summable sequences 12(2) is 

m 

(a(n) ,  b(n)) = c a*(n)b(n) 
n =  -m 

where a(n) ,  b(n) E 12(Z) ,  and the asterisk * denotes com- 
plex conjugation. We define Ila(n)II; = (a(n) ,  a (n ) ) ,  and 
Ila(n)II = max, a(n) .  Similarly, over the space of square- 
integrable functions L2(R) we have the inner product: 

( f ( x > ,  g(x) )  = jm f * (x)g(x)  dr 
- m  

wheref(x), g(x) E L2(R). The norm is given by Ilf(x)ll; 
= ( f (x), f (x) > . The z transform of a sequence is defined 
by H(z) = Er= - m  k ( n ) z  Ln. The time reversed version of 
a sequence which is nonzero for n = 0, 1 ,  * , L - 1 
is fi(n) = h(L - 1 - n). We shall use the notation {h(n)} 
= [k(O),  h( l ) ,  * . , h(L - l ) ]  when we want to indicate 
the coefficients of an FIR filter. Note that we will consider 
only filters with real coefficients, unless otherwise speci- 
fied. 

Matrix and vector quantities will be denoted by bold- 
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face symbols; the asterisk * will denote Hermitian trans- 
position, which, since we will consider only matrices with 
real coefficients, is equivalent to ordinary transposition. 

11. WAVELETS, MULTIRESOLUTION SIGNAL PROCESSING, 
AND FILTER BANKS 

A.  The Wavelet Transform 
Analysis of signals using appropriate basi j. functions 

goes back at least as far as Fourier who used complex 
sinusoids. The Fourier transform of a continuous time 
signal x( t )  is X,(w) = ( e j w f ,  x ( t ) > .  A difficulty that has 
often been cited with this approach is that, because of the 
infinite extent of the basis functions, any time-local in- 
formation (e.g., an abrupt change in the signal) is spread 
out over the whole frequency axis. Gabor addressed this 
problem by introducing windowed complex sinusoids as 
basis functions [30]. This leads to the doubly indexed 
windowed Fourier transform: 

xWF(w,  7) = e-JW'w(t - 7)x(t)  tit (1) 
-m 

where w ( * )  is an appropriate window like a Gaussian. 
That is, XWF(w,  7) is the Fourier transform of x( t )  win- 
dowed with w ( . )  shifted by 7. Equivalently, the basis 
functions are modulated versions of the window function 
(see Fig. 2(a)) [31]. The major advantage of the win- 
dowed or short-time Fourier transform (STFT I is that if a 
signal has most of its energy in a given time ini.erval [ - T, 
TI and frequency interval [-Cl, a] ,  then its STFT will be 
localized in the region [-T, TI X [ -a ,  a ] ,  and will be 
close to zero in time and frequency intervals nhere the 
signal has little energy. A limitation of the S'I'FT is that, 
because a single window is used for all frequencies, the 
resolution of the analysis is the same at all locations in 
the time-frequency plane (see Fig. 2(b)). 

Of course, the uncertainty principle excludes the pos- 
sibility of having arbitrarily high resolution in both time 
and frequency, since it lower bounds the time-bandwidth 
product of possible basis functions by A T * Afl L (1 /47r), 
where (AT)* and (Ais2)2 are the variances of the absolute 
values of the function and its Fourier transfom, respec- 
tively 1321. However, by varying the window used, one 
can trade resolution in time for resolution in frequency. 
In order to isolate discontinuities in signals one' would like 
to have some basis functions which are very :hart, while 
some long ones are required to obtain fine frequency anal- 
ysis. An intuitively appealing way to achieve this is to 
have short high frequency basis functions, arid long low 
frequency ones. This is exactly what is achieLed with the 
wavelet transform, where the basis functions s re obtained 
from a single prototype wavelet by translaticn m d  dila- 
tion/contraction [ 121, [ 1 11, 131, [4] : 

where a E R +, b E R .  For large a ,  the basis function be- 
comes a stretched version of the prototype wavzlet, that 

frequency 

l-"- 

I time 

(b) 
Fig. 2. Basis functions and time frequency resolution of the short-time 
Fourier transform (STFT). (a) Basis functions. (b) Coverage of time-fre- 
quency plane. 

is a low frequency function, while for small a ,  the basis 
function becomes a contracted wavelet, that is a short high 
frequency function (see Fig. 3(a)). 

The wavelet transform (WT) is defined as 

1 t - b  
X,(a,  b) = y= C m  h* (-) dt. (3) 

.\la J - m  \ a / 

The time-frequency resolution of the WT involves a dif- 
ferent tradeoff to the one used by the STFT: at high fre- 
quencies the WT is sharper in time, while at low frequen- 
cies, the WT is sharper in frequency (see Fig. 3(b)). The 
middle functions depicted in Figs. 2(a) and 3(a) are iden- 
tical, and hence the time-frequency resolutions of the two 
methods are the same at that frequency. 

Obviously, both the STFT in (1) and the WT in (3) are 
highly redundant when the parameters (U, 7) and ( a ,  b )  
are continuous. Therefore the transforms are usually eval- 
uated on a discrete grid on the time-frequency and time- 
scale plane, respectively, corresponding to a discrete set 
of continuous basis functions. The question arises as to 
whether there is a grid such that the set of basis functions 
constitutes an orthonormal basis; which of course implies 
that there is no redundancy. Unfortunately, for the STFT, 
this can happen only if w ( . )  is badly localized in either 
time or frequency 1331, which is the reason that the STFT 
is usually "oversampled" (a redundant set of points is 
used), so that better behaved window functions can be 
used. In the wavelet transform case, however, it is pos- 
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frequency 
4 

+ 
time 

Fig. 3 .  Basis functions and time-frequency resolution of the viavelet trans- 
form (WT). (a) Basis functions. (b) Coverage of time-frequmcy plane. 

sible to design “nice” functions h ( . )  such that the set of 
translated and scaled versions of h( e )  forms an orthonor- 
mal basis. By “nice” we mean that the function should 
be at least continuous, perhaps with continuous deriva- 
tives also. Let us discretize the translation and dilation/ 
contraction parameters of the wavelet in (2): 

h,,(t) = a i m / 2  h(aomt - nbo), 

m, n € 2 ,  a0 > 1, bo # 0 

which corresponds to a = a t  and b = natbO. Note that 
the translation step depends on the dilation, since long 
wavelets are advanced by large steps, and shoit ones by 
small steps. On this discrete grid, the wavelet transform 
is thus 

Of particular interest is the discretization on a dyadic grid, 
which occurs for a. = 2, bo = 1. It is possible to construct 
functions h( e )  so that the set 

m, n E Z ,  a0 = 2, bo = 1 ( 5 )  

A classic example is the Haar basis (which is not contin- 

uous, but is of interest because of its simplicity), where: 

1 O I t <  1/2  

h(t) = -1 1/2 5 t < 1 

[o otherwise. 

The orthonormality is easily verified since at a given 
scale, translates are nonoverlapping, and because of the 
scale change by 2, the basis functions are orthogonal 
across scale. The Haar basis is shown in Fig. 4(a). How- 
ever, the Haar function is discontinuous, and is not gen- 
erally appropriate for signal processing. A continuous set 
of basis functions is given in Fig. 4(b). These functions 
are obtained from a compactly supported wavelet con- 
structed by Daubechies [12], using a length 4 FIR filter. 
Longer filters lead to smoother functions. It is interesting 
to note that the translates and dilates of the functions in 
both Figs. 4(a) and (b) form orthonormal bases for L2(R) 
functions. The purpose of the present paper is to design 
other continuous wavelets, having additional properties 
like linear phase. 

B. Multiresolution Signal Processing 
From a signal processing point of view, a wavelet is a 

bandpass filter. In the dyadic case given in ( 5 ) ,  it is ac- 
tually an octave band filter. Therefore the wavelet trans- 
form can be interpreted as a constant-Q filtering with a set 
of octave-band filters, followed by sampling at the re- 
spective Nyquist frequencies (corresponding to the band- 
width of the particular octave band). It is thus clear that 
by adding higher octave bands, one adds details, or res- 
olution, to the signal. Mallat [lo], [ I l l  and Meyer [5] 
introduced the concept of multiresolution analysis and 
used it to construct orthonormal bases of wavelets. This 
multiresolution view can be interpreted as a successive 
approximation procedure. 

We will give a simple but intuitive explanation of mul- 
tiresolution and successive approximation. Call V0 the 
space of all band-limited functions with frequencies in the 
interval (-a, a). Then the set of functions 

sin (n(x - k ) )  
#(x - k )  = sinc (x - k )  = k E Z  

T(X  - k )  

(6) 
forms an orthonormal basis for VO. Similarly, call VPI  the 
space of band-limited functions with frequencies in the 
interval ( -2a ,  2a).  Clearly, the set & . sinc (2x - k ) ,  
k E Z is an orthonormal basis for K 1 .  Also, 

V0 c V-1. (7) 
In particular, if x ( t )  E VO, then x(2t) E V -  I .  Now, call WO 
the space of bandpass functions with frequencies in the 
interval (-2n, -n) U (a, 2n).  Then 

v-, = V, 0 w, (8) 
that is, WO is the orthogonal complement in V - ,  of VO. In 
other words, V -  I is equivalent to V0 plus some added de- 
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Fig. 4. Orthogonal system of scaled and translatrd wavelets (two scales only are shown). (a) Haar wavelet. (b) Daubechies's 

wabelet based on a length-4 regular filter. 

221 I 

tail corresponding to WO. For completeness C I X  (nx)  has 
to be included in V,, and sin (nx) in WO. From the above 
it is clear, by scaling, that if Vi is the space of band-lim- 
ited functions with frequencies in the interval (-2-'n, 
2-'n), then we get relations similar to (7) and (8): 

v ; c  K-1 i E Z  (9) 

Vj-1 = v; 0 W; i E z (10) 

cies in the interval ( -2 - '+ 'n ,  -2-'n) U ( 2 - ' ~ ,  Ti+'  a). 
where Wi is the space of bandpass functions w th frequen- 

Moreover, we have: 

* v, c v1 c v, c v-1 c v-2 * * * 

and, by iterating (10) 

v; = W.+l 0 W + 2  0 K+3 0 * - ( 1  1 )  

and, finally, the direct sum of all Wj's, j = i + 1, * 9 . , 
03, is equivalent to the space of square integrable func- 
tions band limited to (-2-'+'a, 0) U (0, - 2 - ' + ' n ) .  

Let us now construct the wavelet that will span WO. 
First the set {4(x - k ) ,  k E Z}  given by (6) constitutes a 
basis for V,. Thus {h 4(2x - k ) ,  k E Z} constitutes a 
basis for V P I .  Now, in the sampled version of K1, 4 ( x )  
is given by the perfect halfband low-pass filtlx with im- 
pulse response: 

sin (nn/2) 
an /2 

J z c ,  = = discrete halfband filter. (12) 

That is, +(x) can be written as 

since it is the interpolation, by 4 ( 2 x ) ,  of the perfect half- 
band low-pass filter. Note that 4 ( x )  and c, are both sym- 
metric. +(x) is called a scalingfunction because it derives 
an approximation in Vo of signals in I/- I .  In V-  the or- 
thogonal complement WO to V,  is given by the halfband 
high-pass signals. In the sampled domain, this is given by 
the halfband low-pass (12) modulated by ( - l ) , ,  and 
shifted by one (to include sin (nx)) .  Thus, $(x) is the in- 
terpolation thereof, that is, 

$(x) = C ( -  l ) , ~ - , +  14(2x - n). (13) 

Note that since the c,'s are symmetric we can reverse the 
sign as above, which we do for later convenience. Now 

n =  - m  

4(x - k )  1 $@ - k )  

<$(x - 4 ,  $(x - 0) = &, 

(14) 

since they cover disjoint regions of the spectrum. Also 

because the translates of 4(2x - n) in (13) are even, and 
thus the sign change is cancelled. Then the inner product 
reduces to (+(x - k ) ,  4(x - 1 ) )  = It can be shown 
that the $(x)'s span WO, and therefore, $(x) and its integer 
translates form an orthonormal basis for WO. Thus, the 
wavelet for this bandpass example is given by $(x). 

I 



2212 

11 
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 40, NO. 9, SEPTEMBER 1992 

Pictorially the situation is as shown in Fig. 5 .  Fig. 5(a) 
shows the imbrication of VI C Vo C V - , ,  and [b) shows 
the added bandpass spaces W,. While the above example 
may seem artificial, and leads to a wavelet $(XI which is 
of infinite extent and has slow decay, the situatiam is con- 
ceptually the same for all orthonormal wavelet bases [ 12 ]. 
Fig. 6 shows the corresponding division of the spectrum 
for a wavelet that has compact support. In particular, 
given an orthonormal basis for Vo made up of @x) and its 
integer translates, then, we can find coefficients c, such 
that 

m 

because Vo C V - , .  Then 
W 

$(x) = c (-l)"C-,+,cb(2X - n) (16) 
f l =  -m  

and its integer translates form an orthonormal basis for 
w,. SO { ~ ~ , ( x )  = 2'/2+(2'x - j >, i , j  E Z }  con.; 'titutes an 
orthonormal basis for L2(R), following (1 1). The impli- 
cation of (15) is given graphically in Fig. 7 where it is 
shown how a scaling function can be obtained from a lin- 
ear combination of its scaled versions. The first example 
is for illustration purposes only, while tht: second is an 
actual scaling function from a wavelet basis. 

C. The Discrete Time Case 
Assume now that we deal with discrete time sequences 

x ( n ) ,  n E Z which are square summable; that is, the space 
12(Z).  Now, let us derive a coarse half-resolution approx- 
imation to the original sequence. This can be done by fil- 
tering with a halfband low-pass filter, followed by sub- 
sampling by 2 (discarding every odd-indexed sample). In 
matrix notation, and assuming for the sake of simplicity 
that the filter is FIR, the convolution with a filler having 
impulse response [ho(0), ho(l), - . , ho(L - 1) I followed 
by subsampling by 2 ,  corresponds to matrix multiplica- 
tion of the infinite signal vector X[ * x( - l ) ,  ,c(O), x( l ) ,  
- * - ] b y  

r 

7d4 7d2 x 2rr 
(a) 

7tl4 rdz rr 2rr 
(b) 

Fig. 5 .  Ideal division of spectrum using sinc filters. (a) Division into V, 
spaces. Note that V, C V, ~ , . (b) Division into W, spaces. 

space spanned by the rows of Ho is given by 

H;H, - X. 

Note that multiplication by H; corresponds to upsampling 
by 2 followed by convolution with a filter having impulse 
response &(n) = [ h o ( ~  - I), h o ( ~  - 2 ) ,  * * , ho(l) ,  
hO(0)], (that is the time reversed impulse response of 
ho(n)). Note also that in order for the set {ho(n - 2k) ,  k 
E Z }  to form an orthonormal basis L has to be even. For 
if L were odd, then (ho(n),  ho(n - L + 1)) = ho(0)ho(L 
- 1) # 0 unless either ho(0) or ho(L - 1) is zero. 

Call VP1 the space 12(Z) and call Vo the subspace of 
V-I spanned by the rows of Ho. Then call WO the orthog- 
onal complement of Vo in V -  I : 

V - ,  = V, 0 WO. 

Now the filter with impulse response h,(n)  = (- 1)" 
ho(L - 1 - n)  and its even shifted versions form an or- 
thonormal basis for WO. First note that orthogonality of 
ho(n) and hl (n )  with respect to even shifts is easily veri- 

Assume further that the impulse response and its shifted 
versions by even shifts (i.e., the rows of the above ma- 
trix) form an orthonormal set, that is, 

fied, because of the sign change in hl(n):  

(h,(n - 21) ,  ho(n - 2 k ) )  = 0 k, l E Z .  (19) 

(h& - 21) ,  ho(n - 2k))  = Akl 
In matrix notation the equivalent of (1 8) is 

k ,  1 E' 2. (18) In matrix notation calling H I  a matrix based on hl(n)  in 
the same way that Ho in (17) was based on ho(n) we have 

HoH,* = I .  H ~ H :  = 0 

The projection of the original sequence x ( n )  onto the sub- thus V, I WO. Then from the orthonormality of 

I 
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Fig. 6. Division of spectrum with a real watelei. (a) Dyadic stretches of the scaling function. (b) Fourier transform of the 
stretched scaling functions, indicating the nesting of the V, spaces. (c) Dyadic stretches of the wavelet. (d) Fourier transform of 
the stretched wavelets, indicating the arrangement of the W, spaces. 
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Fig 7 Scaling function d(x) as a linear combination of scaled and shifted versions 4(2x - n )  (a) Hat function example (this 
is not an orthonormal example) (b) Example based on a regular orthogonal 4-tap filter from 1121 
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ho(n - 21) it follows 

(hl(n - 21), hI(n - 2 k ) )  = ~ 5 k l  k ,  1 E Z 

since the sign change in hl (n)  is cancelled. In other words, 
based on an orthonormal basis for Vo, we were able to 
construct One for 
in matrix notation 

Just as in the continuous Again Fig. 8. Decomposition of V - ,  into Vo and WO using multirate filters, and 
recombination to achieve perfect reconstruction. H,*Ho . x i s  the projection 
of the signal x onto Vo, and HTH,  . x is the projection onto WO. 

H , H :  = z (20) 

and the projection of the original sequence onto WO is 
given by 

compose Vo into VI and W ,  and so on. Hence we find 

7 c 7-1 
5-1 = 7 0 Wj 

j = 0 , 1 ,  * * -  

j = 0,1, ’ * *  
HTH, * x. 

Note that since we have projections onto orthorrormal and 
complete subspaces: 

from which we have 

. * * v, c v, c v, c v-1 

V - , = W o o w l o W , s . * * .  

H;H,  + H : H ~  = I .  

a block Toeplitz orthonormal matrix T: 

and 
It is also clear that by interleaving Ho and H I ,  we obtain 

T =  
. hl(L - 

0 

0 

- 
which satisfies 

TT* = T*T = I 

that is, the two filter impulse responses ho(n) and hl (n) ,  
together with their even translates, form an orthonormal 
basis for Z2(2). Because this is such a fundarr,ental con- 
cept we will illustrate it with an example. Insiead of the 
rather trivial case where ho(n) = 1 / & * [ 1, I I and h l  (n)  
= 1 /& * [ 1 ,  - 11 (which corresponds to the Walsh-Had- 
amard transform on successive blocks of 2 samples), we 
will choose ho(n) = [aoal ,  aobl ,  bobl,  -boa,] where a, 
= cos CY, and b, = sin a,. Because a; + b’ = 1 it is clear 
that Ilho(n)l12 = 1 .  Also (ho(n + 2), ho(n) )  = 0 and thus 
ho(n) and its even translates form an orthonormz 1 set. Now 
choosing h l (n )  = [boal ,  bobl,  -aobl,  a o a l ]  makes h l (n  
+ 2 1) orthogonal to ho(n) while keeping it of n o m  1, and 
orthogonal to its even translates. Thus the set (ho(n + 
21), hl(n + 2 k ) ;  I, k E Z }  is an orthonormal basis for 

In Fig. 8, we recapitulate the above relations in the 
usual digital signal processing notation, using filters and 
sampling rate changes to denote the operators used so far. 
First the inner products Ho * x and HI x are calculated. 
Then the projections onto Vo and WO are found. Finally, 
the original signal is reconstructed by adding rhe projec- 
tions from the two orthogonal subspaces. 

What worked once will work again; that is we can de- 

12(Z). 

That is, the direct sum of all the W,’s is the space of square 
summable functions 12(2). Note that in contrast to the 
continuous case there is a “maximum” resolution in the 
discrete case given by V -  which is determined by the 
original sampling rate. 

The decomposition of V -  I into WO, W1, W2, etc, is es- 
sentially a wavelet transform on discrete sequences, since 
it splits the original space in two, and then splits one of 
the resulting half spaces in two, etc. This is shown in Fig. 
9 using filters and subsamplers. Actually, if the filter 
ho(n) is the ideal halfband low-pass filter given by (12), 
then hl(n) is the ideal halfband high-pass filter. Thus if 
I/- I is the space of functions band limited to ( -2a ,  2a) 
as considered in the discussion of multiresolution analysis 
in Section 11-B, then Vo and WO are the spaces of functions 
band limited to (-a, a) and ( -2a ,  - T )  U (a, 2n), re- 
spectively. That is, by iteration, the discrete system in 
Fig. 9 computes exactly the discrete wavelet transform 
into octave bands (although with noncausal infinite im- 
pulse response filters). 

Note that the two concepts of scale and resolution in- 
troduced above, while related, are not the same. The no- 
tion of resolution of a signal is related to its bandwidth. 
This holds also in the sampled domain, but it is best 
thought of as the bandwidth of the equivalent continuous 
time signal. This definition indicates that an oversampled 
version will not have more resolution than a critically 
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2 -  

sampled version of the same signal. The notion of scale 
is related to the size of a signal. We will adhere to the 
convention used in the wavelet literature, that large scale 
denotes contraction of the signal, while small scale stands 
for a dilated signal. Fig. 10 shows various multirate sig- 
nal processing operations, and their effect upon resolution 
and scale (for simplicity only changes by factors of two 
are considered). 

D. Orthogonal Pyramids and Critical Sampling 
In computer vision and image coding [8], [9], a suc- 

cessive approximation or multiresolution technique called 
an image pyramid is sometimes used. It consists of deriv- 
ing a low resolution version of the original, then predict- 
ing the original based on the coarse version, and finally 
taking the difference between the original and the predic- 
tion (see Fig. 1 l(a)). At the reconstruction, the prediction 
is added back to the difference, guaranteeing perfect re- 
construction. A shortcoming of this scheme is the over- 
sampling, since we end up with a low resolution version 
and a full resolution difference (at the initial rate). We 
briefly show below that, if the system is linear and the 
low-pass filter is orthogonal to its even translates, then 
one can actually subsample the difference signal after fil- 
tering it. In that case, the pyramid reduces exactly to a 
critically subsampled orthogonal subband coding scheme 
like the one discussed in the previous subsection 

First, the prediction of the original based on the coarse 
version is simply the projection onto the space spanned 
by {ho(-n - 21) ,  I E Z}. That is, calling the prediction 
- 
X: 

x = H ; H , .  X. 

The difference signal is thus 

d = ( I  - H,*Ho) * X. 

But, because it is a perfect reconstruction system 

I - H;Ho = HFHI 

that is, d is the projection onto the space spanned by 
{h i ( -n  - 21) ,  I E Z}. Therefore, we can filter and sub- 
sample d by 2, since, following (20) 

H I H ; H l  = H I .  

In that case, the redundancy of d is removed (d is now 
critically sampled), and the pyramid is equivalent to an 
orthogonal subband coding system (see Fig. 1 l(b)). 

ho(n) -@- _._.._. 

x q E l - y ( n )  resolution: halved 
scale: unchanged 

(a) 

X q e I 4 )  resolution: halved 

scale: doubled 

resolution: unchanged 

scale: halved 

(C)  

Fig. 10. Resolution and scale changes in discrete time (by factors of 2). 
Note that the scale of signals is defined as in geographical maps. (a) Half- 
band low-pass filtering reduces the resolution by 2 (scale is unchanged). 
(b) Halfband low-pass filtering followed by subsampling by 2 doubles the 
scale (and halves the resolution as in (a)). (c) Upsampling by 2 followed 
by halfband low-pass filtering halves the scale (resolution is unchanged). 

low pass 

I 
qriginal difference 
signal signal 

low pass 

7 verS1on 

o,nginal 
signal 

(b) 
Fig. 11. Pyramid scheme involving a coarse low-pass approximation, and 
a difference between the coarse approximation and the original. (a) Over- 
sampled case. (b) Critically sampled case, which is equivalent to a subband 
coding scheme. 

(a) 

4 H(z) H(z) w.. . . . {Fm 
(b) 

H(z) H(z2) .... H(z2'-') 

(c) 
Fig. 12. Derivation of the equivalent iterated filter. (a) Subsampling by 2 
before a filter H(z)  can be written as filtering by H ( z z )  followed by subsam- 
pling. (b) Cascade of i filters each followed by subsampling by 2. (c) 
Equivalent filter, followed by subsampling by 2'. 

The signal d can be reconstructed by upsampling by 2 
and filtering with fil(n). Then we have 

HF(HIHTHl)  x = HTH, x = d 

and this, added to X = H; Ho - x is indeed equal to x. In 
the notation of the multiresolution scheme described in 
Section 11-C the prediction X is the projection onto the 
space Vo, and d is the projection onto WO. We have thus 

I 
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shown that pyramidal schemes can be critically sampled 
as well. A similar analysis is given in [29]. It s interest- 
ing to note that although pyramid coding schcmes have 
been in use for a decade or so, it had not been xeviously 
noted that they could be subsampled under the conditions 
above. The discussion of the more general, biorthogonal 
case (see also Section 111-C) is given in Appendix .4.1 and 
~ 4 1 .  

E. FIR Filter Banks and Compactly Supported Wavelets 
We now briefly show the connection betweei wavelets 

of finite length and filter banks, as originally irvestigated 
by Daubechies [12]. Note that it is common to use the 
term compact support instead of finite length. First, as- 
sume we have an orthonormal basis of such functions 4(x) 
and $(x) which obey two-scale difference equations as in 
(15) and (16): 

(21) 

(22) 

(23)  

We will show these relations lead to a perfect Ieconstruc- 
tion FIR filter bank. The finite support of 4(x) means that 
it can be written as a finite linear combination of the terms 
4(2x  - n);  that is, finitely many of the c, are different 
from zero. From (21) we get 

(24) 

(4(x + 11, 4(x + 4 )  = 4 1  

($(x + 0, $@ + k)) = h, 
(4(x + 0,  $(x + 4)  = 0. 

( 4 ( 2 x  - I), 4(2x - k ) )  = ; 6Ll. 

Now, using (15) and (24) ,  (21) can be written as (with n'  
= n - 21, and rn '  = m - 2k): 

(4(x + 0, 4(x + k ) )  

m 
= (T c,4(2x + 21 - n) ,  c c,,,4(2x + 2k - m) 

cn'+21cn'+2k = a k /  

from which it follows that IIc,II = h. 
In other words the discrete filter, with impulr,e response 

ho(n) = c , / h  is orthogonal to its even translates, and 
with hi(n) = (-  l)"ho(L - n - 1) we obtain an orthogonal 
perfect reconstruction FIR filter bank with orthogonal im- 
pulse responses. Thus, compactly supported wavelet bases 
lead to perfect reconstruction FIR filter banks. While the 
converse does not always hold, and is not as immediate 
to analyze, we discuss it here because it is the basis for 
the construction of compactly supported wal elets [ 121. 
Considering the discrete time wavelet transform in Fig. 
9 ,  one notices that the lower branch is an infinite cascade 
of filters ho(n) followed by subsampling by 2 .  Note that 
subsampling the signal with z-transform X ( z )  by 2 results 
in a new signal with z-transform Y(z):  

Y(z) = 1 / 2  - [x(z'/2) + x(--2i/2)J (26) 
It is easily verified that subsampling by 2 followed by fil- 

tering with H(z )  is equivalent to filtering with H ( z 2 )  fol- 
lowed by subsampling by 2 (see Fig. 12(a)). 

Therefore the cascade of i blocks of filtering operations 
followed by subsampling by 2 is equivalent to a filter 
H'"(z) with z transform: 

I -  I 

~ ' " ( z )  = II ~ ( z ~ ' )  i = 1 ,  2 * * (27) 
/ = 0  

followed by subsampling by 2'. We define H'''(z) = 1. 
Assuming that the filter H(z )  has an impulse response of 
length L, the length of the filter H'"(z) is L"' = (2' - 
1) ( L  - 1) -t 1 as can be checked from (27). Of course as 
i -+ 03 we get L'" -+ 03. Now instead of considering the 
discrete time filter, we are going to consider the function 
f " ) ( x )  which is piecewise constant on intervals of length 
1/2 ' ,  and equal to 

f"'(x) = 2 f /2  h'"(n) n/2'  I x < (n + 1>/2'. 

(28) 
Clearly, f '"(x)  is supported on the interval [0, L - 11. 
Note that the normalization by 2'12 ensures that if 
C (h"'(n))2 = 1 then j ( f " ' ( ~ ) ) ~  dx = 1 as well. Also, it 
can be checked that Ilh(')l12 = 1 when \lh(*-')l12 = 1. A 
fundamental question is to find out whether and to what 
the functionf(')(x) converges as i + cx,. Fig. 13 shows 
two examples of such iterations. In Fig. 13(a) the first six 
iterates of the filter with impulse response [1, 3, 3,  11 
show that it converges rapidly to a continuous function; 
while in Fig. 13(b) the iterates of the filter [ - 1 ,  3, 3, - 1 J 
tend to a discontinuous function. In other words, different 
filters exhibit very different behavior. Of course when 
constructing wavelets of compact support one would like 
them to be continuous functions, perhaps possessing con- 
tinuous derivatives also. This can be achieved if the filter 
meets certain regularity constraints; so that the limit func- 
tion f'"'(x) is continuous. In [ 121 Daubechies gives such 
a condition, which we now review. 

First, assume that the filter H(z )  has a zero at the half 
sampling frequency, or H(eJ") = 0. This is not unreason- 
able since H(z) is to be a halfband low-pass filter; in fact 
iff'"(x), i + 03 is to converge to a continuous function 
at least one such zero is necessary [34], [35] .  This to- 
gether with the fact that the filter impulse response is or- 
thogonal to its even translates is equivalent to Ch(n) = 
H(1) = A. Define mo(z) = 1 / h  * H(z ) ,  that is mo(l)  
= 1. Now factor mo(z) into its roots at 7r (there is at least 
one by assumption) and a remainder polynomial R(z),  in 
the following way: 

mdz) = [(1 + z-')/21NR(z). 
Note that R(1) = 1 from the definitions. Now call B the 
supremum of 1R(z)l on the unit circle: 

B = sup IR(e'")l. 
W € [ O . 2 " ]  

Then the following result from [12] holds. 
Proposition 2.1 1121: I f B  < 2N - I, then the piecewise 

constant function f '"(x) dejined in (28) converges point- 
wise to a continuous function f ( " ) ( x ) .  

I 
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1 ,  [ 1 2 ] .  This property is potentially useful for the 
compression of smooth functions by wavelet transforms. 

A 
2 L 

(a) (b) 

Fig. 13. Iteration (28) for two simple filters. (a) [ l ,  3, 3,  I ]  which con- 
verges to a continuous function. (b) [-1, 3 ,  3 ,  - 11 which conberges to a 
discontinuous function. 

This is a sufficient condition to ensure pointw ise con- 
vergence to a continuous function, and can be used as a 
simple test. Note that more accurate methods are avail- 
able for testing regularity [ 3 6 ] ,  [ 121, [ 3 5 ] .  The reason for 
our interest in this bound is that we can make it a design 
criterion to place a maximum number of zeros at T .  This 
approach is explored in Section V-A. 

Various methods for estimating the regularity index 0 
such that $ ( x ) ,  4 ( x )  E C p  are available [ 1 2 ] ,  [as] .  We 
shall use the methods of [35]  to check the limit functions 
that we design. These are especially useful if a filter fails 
the test of proposition 2 . 1 .  

Note that if mo(z) has a zero of order N at z = - 1 then 
the wavelet generated will have N consecutive vanishing 
moments. That is xk$(x) dx = 0, k = 0 ,  1 ,  . , N - 

F. Bases of Orthonormal Wavelets Constructed from 
Filter Banks 

Finally, we show that if the filter used in (27)  exhibits 
the orthogonality with respect to even shifts described in 
Section 11-C, and is regular (for example, if it meets the 
conditions of proposition 2 . 1 )  then the infinitely iterated 
filter bank generates orthogonal sets of wavelets. That is, 
if filters ho(n) and hl(n)  and their even translates form an 
orthonormal set in 1*(Z), then we generate functions r#~(x), 
$(x) ,  which together with their integer translates, form an 
orthonormal set in L2(R).  These relations are derived in 
[ 1 2 ] ;  we rederive them since we shall use similar reason- 
ing later in the biorthogonal case (Section 111-D). 

First, using (27)  and (28)  
L -  I 

f " ' ( x )  = 2'/2 . c ho(m) h!-"(n - 2l-l m) 
m = O  

n/2'  I x < (n  + 1 ) / 2 ' .  (29)  

To write h$ - I)(n - 2' - ' m )  in terms off (' - "(x)  observe 

f ( ' - I ) ( 2 x  - m )  = '2('-1)/2 . h$-I)(n) 

n / 2 ' - '  I 2x - m < (n  + 1 ) / 2 ' - '  (30)  

that is, we have an expression for f (' - "(2x - m )  when x 
is in the interval [(n + 2 ' - l m ) / 2 ' ,  (n  + 2 ' - l m  + 1 ) / 2 ' ) .  
Making the change of variable: n ' = n + 2' - Im this gives 

(31)  

Recall that when the filter is regular, f '"(x)  tends to a 
continuous limit function 4 ( x )  as i -+ 00. By taking the 
limit in (31) ,  +(x)  itself satisfies a two-scale difference 
equation : 

L -  1 

f ' " ( X )  = 21/* . c ho(m) - f''"'(2x - m ) .  
m = O  

L -  I 

$(x) = 2'12 * ho(n) . 4 ( 2 x  - n) .  (32)  
n = O  

We can define also the bandpass function: 
L -  1 

$(x) = 2'12 . c hl(n)  4 ( 2 x  - n). (33)  

Assume now that we have filters such that the impulse 
responses are orthogonal with respect to even shifts: 

k ,  I E Z .  (34)  

We show now that $(x) is orthogonal to integer translates 
of itself Vi. From the definition (28)  f " ' (x)  is just the in- 
dicator function on the interval [0, 1 ) ;  so we immediately 
get orthogonality at the 0th level, that is, ( f " ' ( x  - I ) ,  
f '"(x - k ) )  = Now we assume orthogonality at the 
ith level: 

(35)  

n = O  

(h , (n  - 21) ,  h,(n - 2k))  = 6, 

(f"'(x - I ) ,  f " ' ( x  - k ) )  = 6 k ,  

I 
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and prove that this implies orthogonality at thc: ( i  -t 1)st 
level : 

= 2 c ho(n)ho(m) (f';'(2x - 21 -- n ) ,  
n m  

f ' ; ' (2~  - 2k - m ) )  

= c ho(n)ho(n + 21 - 2k) 
n 

= 8k,.  

Hence, by induction (35) holds for all i. So i.1 the limit 
i + 00: 

The other orthogonality relations between $(A) and 4(x) 
now follow easily from (34): 

To end the section we show that $(x )  is orthogonal across 
scale. First, across one scale: 

($4 - 0, $(2x - k ) )  
= ( F  hl(n) * 4(2x - 21 + n) ,  $(2x - k)  

= c h l ( n ) ( 4 ( 2 x  - 21 + n) ,  $(2x - k)) 

= 0. 

n 

Similar reasoning shows that across several s:ales $42'~ 
- 1 )  is orthogonal to $(2'x - k)  f o r j  # i and k # 1. We 
have shown the correspondence between the orthogonal- 
ity relations of the filter impulse responses, and those of 
their infinite iterates. Besides orthogonality, complete- 
ness is required in order that {2-J/2$(2Jx - 1 I, j ,  I E Z >  
be an orthonormal basis for L2(R),  and this it8 proved in 
[12]. Thus any functionf(x) E L2(R) can be written as 

f(x) = c c (2-"2$(25x - 1),f(x))2-J/2$(2'x - I). 
J I  

111. GENERAL FIR PERFECT RECONSTRUCTION FILTER 
BANKS AND BIORTHOGONAL WAVELETS 

Since we will be using perfect reconstruction filter 
banks (PRFB's) to construct wavelets, we brizfly review 
the salient points here. For greater detail, a e  refer for 
example to [19]-[22]. Assume that we have a filter bank 
as in Fig. 8, with analysis filters Ho(z) and H,iz) but with 
general synthesis filters Go(z) and G,(z) inste2d of H0(z) 
and H,(z). Note that upsampling by 2 (inserting a zero 
between every two samples) corresponds to simply re- 
placing z by z 2  in the z transform. Using (26) it is easily 
seen that the output of the analysis/synthesi:; system is 

Call the above 2 X 2 matrix Hm(z), where the subscript 
m indicates that it contains modulated versions of the fil- 
ters Ho(z) and H,( z ) .  Note that from the above equation 
in order to eliminate the contribution to the reconstructed 
signal from X( -2) (which represents an aliased version of 
the signal) it is necessary and sufficient that the synthesis 
filters are related to the analysis filters as follows: 

[GO(Z), GI(z)l = C(z)[Hi(-z), - Ho(-~>l .  (39) 
Note that 

det [Hm(z)l = Ho(z)HI(-z) - HO(-Z)HI(Z) (40) 

(41) = P(z) - P( -z) 
where P(z)  = Ho(z)Hl( - z ) .  We introduce the following 
polyphase notation for the filters: 

Hi(Z) = Hi0(Z2) + Z-";1(z2) 

that is, Hio(z) contains the even-indexed coefficients of the 
filter Hi(z ) ,  while Hil(z) contains the odd ones. Thus 

or 

Hp(z2) = 2-' * H,(z) [' '1 [' O] 
1 - 1  o z  

where Hp(z)  is called the polyphase matrix. In particular, 

det [Hm(z)] = -22 -' det [Hp(z2)1 (42)  

and 

= 1/2 * z'/2[P(z'/2) - P(-z"2)].  (43) 

A .  FIR Filter Banks 
For convenience we repeat the following well-known 

fact [37], [38], [21]. 
Fact 3. I :  For perfect reconstruction with FIR synthesis 

jilters after an FIR analysis, it is necessary and suficient 
that 

det [Hm(z)] = c z - ~ ' - '  where 1 E Z .  

Note that det [HJz)] is thus a pure delay as well. In order 
to make the results that follow less arbitrary, we shall fix 
c = 2. This involves no loss of generality, since filters 
that differ only by a multiplicative constant can be re- 
garded as equivalent. 

From this, and (40) it follows that P(z) can have only 
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a single nonzero odd-indexed coefficient: 

P(z) - P ( - z )  = 2p2/+1z-21-! (44) 
and we would normalize p 2 / +  I = I .  A polynomial P(z) 
satisfying this constraint is termed a valid polynomial. It 
is then clear that any factorization of a valid P(z) = 

H,(z)H,( - z )  gives a possible FIR PRFB. Note that H,(z) 
and H I (  -2) are interchangeable. Given an FIR filter H&) 
we use the term complementary filter to denote any H l ( z )  
such that P(z) = H,(z)Hl( - z )  is a valid polynomial; that 
is H&) and H l ( z )  form a PR filter pair. 

The qbove discussion indicates two possible design 
methods for PRFB's [ 2  1 1 .  First the factorization method 
consists of finding a valid P(z) satisfying design criteria, 
and then factoring it into H,(z) and H I (  - z ) .  Second, the 
complementary filter method starts with a filter Ho(z) and 
then solves a system of linear equations to find a comple- 
mentary filter leading to a valid P(z). (Note that this P(z) 
can then be refactored as desired.) Of course once we have 
designed P(z) and factored it in terms of the analysis fil- 
ters H,(z) and H I (  - z )  the synthesis filters follow directly 
from (39), with C(z) = c z - ' .  

B. Orthogonal or Paraunitary Filter Banks 
In Section 111-C we have seen how to construct unitary 

operators based on filters which were orthogonal to their 
even translates. In filtering notation this means that the 
even terms of the autocorrelation function are all zero, 
with the exception of the central one (which equals unity 
for normalized filters). The autocorrelation of a filter H,(z) 
is Hi ( z )  Hi ( z  - I ) ;  thus the condition (1  8) becomes 

H ; ( z ) H ~ ( z - ' )  + H , ( - z ) H ; ( - z ~ I )  = 2 i E (0, I} .  

(45) 
Further, the two filters H&) and H l ( z )  were orthogonal 
to each other at even translates (19), so the even terms of 
the cross correlation are all zero: 

Ho(z)HI(z-')  + & ( - ~ ) H l ( - z - ' )  = 0. (46) 
If the two filters satisfy (45) and (46), their impulse re- 
sponses and even translates form an orthogonal basis for 
12(2). We are now ready to prove a fact on the form of 
orthogonal FIR solutions: 

Fact 3.2: Consider an FIR perfect reconstruction jilter 
bank such that H,(z) satisfies (45). Then the length of ho(n) 
has to be even. In order that ho(n - 2k) and h l (n  - 21) 
form an orthogonal basis (that is H I  (z) should satish (45) 
and (46j), it is necessary and suflcient that 

(47) 
Proofi That L must be even was already shown in 

Section 11-C. That a complementary filter given by (47) 
satisfies (45) and (46) and leads to perfect reconstruction 
is easily verified by substitution. 

Necessity is shown as follows: from (46) it is known 
that H o ( z ) H l ( z - ' )  is a polynomial with only odd coeffi- 

H , ( z )  = z - 2 k -  'HO( -z  - I ) .  

cients, that is 

H&) H I  ( z  - I )  = z - 2 n  - Q(z 2 ) .  

So the zeros appear. in pairs at (a, -a). Proposition 4.3 
below states that H&) cannot have such a pair of zeros if 
PR is to be possible; thus for every zero at z = a in H o ( z ) ,  
there must be a corresponding zero at z = -a in H l ( z  - I ) .  

This means that H l ( z )  has a zero at z = - 1 /a; so H l ( z )  
0 has the form given in (47). 

This necessary form of H l ( z )  means that 

H 1 ( z )  = -z  -2kHo1(z - 2 )  + z - 2 k -  H& - 2 ) .  

Choosing k = 0 leads to: 

Because it is a perfect reconstruction system 

det [Hp(z)l = H O & ) H ~ ( Z - ' )  + H O ~ ( Z ) H O I ( Z - ' )  = 1 

(49) 

since det [H,(z)] has to be a delay, and is symmetric. This 
is the polyphase equivalent of (45), because the even coef- 
ficients of the autocorrelation H,(z) H,(z - I )  are given by 
(49). On the unit circle z = elw, this means that 

IHoo(e'u)(2 + IHol(e'u)12 = 1 (50) 

that is they form a power complementary pair [38]. 

into (40) 
The necessary form (47) also means that, substituting 

z -2k  - '[H,(z)H,(z - I )  + H,( -z)H,( - z  -91 = 22 - 2 k -  I .  

IHo(eJW)l2 + (HO(ej(w+7))(2 = 2 .  

Note that the matrix Hp ( z )  in (48) has the following prop- 
erty : 

Or, on the unit circle 

because of (49). In other words, it is unitary on the unit 
circle; such a matrix is called a paraunitary matrix [38]; 
if it is also stable it is called lossless [39], [40]. This is 
the extension of the allpass filter concept [41] to matrices 
with polynomial entries. 

The above discussion indicates two possible design ap- 
proaches. The first is to find an autocorrelation function 
that has only a single even-indexed coefficient different 
from zero. This must be the central one, since an auto- 
correlation function is symmetric. Such a function can be 
factored into its "square roots" H&) and Ho(z - ' ) .  In 
particular, zeros on the unit circle have to be double, since 
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the function must not change sign. This method was first 
used by Smith and Barnwell [37] and Mintzer :18] to syn- 
thesize orthogonal filter banks. The second niethod uses 
lattice structures to synthesize paraunitary matrices, for 
which complete factorizations have been given by Vai- 
dyanathan and Hoang [20]. 

Note that designs in the filter bank literatlre did not 
address the question of regularity (see proposition 2.1). 
Daubechies [ 121 specifically designed filters satisfying the 
above orthogonality relations and having a maximum 
number of zeros at K. 

C. Biorthogonal or General Perfect Reconstruction 
Filter Banks 

From fact 3.1, we know that perfect reconstruction re- 
quires det [ H ,  ( z ) ]  to be an odd delay, and tl-e synthesis 
filters are given by (39) with C(z) = c 

Choose l = 1 for the purposes of this discussion. First 
note that Go(z) H I  ( z )  and Gl(z)  Ho(z) have on1 q odd coef- 
ficients, that is, 

(51) 

(52) 
(note the time reversal in the inner product). In matrix 
notation 

z -'. 

( go(n - 2k),  hl (n  - 21)) = 0 

(g l (n  - 2k) ,  ho(n - 21))  = 0 

HOG1 = 0 = HIGo (53) 
where H, and GI have been defined in a fashion similar to 
(17). Now Go(z)Ho(z) = z- 'Ho(z)Hl(-z)  has a single 
nonzero odd coefficient (because it is a PR sy:,tem). Sim- 
ilarly Gl(z)Hl(z )  has also only a single even-injexed coef- 
ficient different from zero. That is, 

(54) 

(55) 

(56) 
Of course the last equation above indicates that no non- 
zero vector can lie in the column nullspaces of both Ho 
and H I .  Note that (55) implies that COHO and Cl H I  are 
each projections (since G,H,G,H, = G,H,) .  They project 
onto subspaces which are not in general orthogonal. Note 
that (51) and (52) indicate, however, that tl-ere are or- 
thogonality relations between the filter impulse responses. 
Because of (51), (52), and (54) the analysis synthesis sys- 
tem is termed biorthogonal. In the special case where we 
have a paraunitary solution one finds: Go = H;: and G I  
= H r ,  and (53) gives that we have projections onto sub- 
spaces which are mutually orthogonal. Further consider- 
ations on biorthogonal systems can be found ir [28], [29]. 

One reason to use biorthogonal rather than orthogonal 
bases is that the additional freedom allows us to have ar- 
bitrary length linear phase filters. It is well known [12], 
[23], [22] that the only orthogonal (or paraunitary) real 

( gI (n  - 2 0 ,  h,(n))  = 61. 

HOG0 = Z = HiGI. 

COHO + GIHI = I .  

In operator notation 

Since we have a perfect reconstruction systerr we get 

FIR m e r  bank rlavmg I I I I ~ ~ I  pilase iias umy L W W  1ioiiLeru 

taps, and is given by Ho(z) = z + z -' - 2n ~ I and H l ( z )  
= ( z - /  - Z - / - 2 n - 1  ) z  -2n.  (Note that paraunitary filters 
can be factorized so as to approximate linear phase [17], 

To obtain longer real FIR filters, and still have exact 
linear phase, one has to give up orthogonality. The classes 
of linear phase solutions are indicated below. 

Proposition 3.3: Linear phase perfect reconstruction 
real FIRjlter banks usingjlters Ho(z) and H I  (z) have one 
of the following forms: 

a) Both filters are symmetric and of odd lengths, dif- 
fering by an odd multiple of 2. 

b) One jilter is symmetric and the other is antisym- 
metric; both lengths are even, and are equal or differ by 
an even multiple of 2. 

c) Onejlter is of odd length, the other is even; both 
have all zeros on the unit circle. Either both Jilters are 
symmetric, or one is symmetric and the other is ant- 
isymmetric. 

~421 ~ 9 1 . 1  

Proof: See Appendix A.2.  
In class c) we find that P(z) = Ho(z) H I (  - z )  has zeros 

only at the 2n - 1 roots of 5 I ;  so the filters are of very 
little practical interest. We will not consider this trivial 
solution further. 

It is also possible to get lattice structures that generate 
linear phase FIR filter banks [23], [22]. Appendix A.3 
indicates the lattice that will generate the low-pass Ho(z) 
= (1 + z - I ) ~ ~  (that is the "most regular" low pass, fol- 
lowing proposition 2.1) and its complementary filter 
H,(z).  A general discussion of complementary filters in 
the biorthogonal case is given in Appendix A.3.  The dis- 
cussion of the biorthogonal pyramid is presented in Ap- 
pendix A. 1. 

Note that while in the FIR case it is necessary to give 
up orthogonality to get nontrivial linear phase solutions, 
in the IIR case it is possible to have both; the filters are 
noncausal, but good designs are possible [25]. 

D. Biorthogonal Wavelets Based on Filter Banks 
To tie together the results of this section we now show 

that the infinitely iterated biorthogonal perfect reconstruc- 
tion filter banks generate biorthogonal sets of functions. 

We denote by H$'(z) and G$'(z) the filters which are 
equivalent to the cascade of i blocks of filtering/subsam- 
pling in the analysis and synthesis sections, respectively. 
We assume that both of the filters involved are regular. 
From these define functions which are piecewise constant 
on intervals of length 1 /2': 

f " ) ( x )  = 2'12 * h$'(n)  n/2' I x < (n  + 1)/2' 

(57) 

Note that we assume regularity, that is in the limit as i -+ 

I 
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00 both f " ' ( x )  and f " ' ( x )  converge to continuous func- 
tions. Using the analysis in Section 11-F we.easily show 
that f(" (x )  andf(')(x) lead to limit functions which satisfy 
the two-scale difference equations: 

L - l  

+(x) = 2Il2 c ho(n) * 4(2x - n)  (59) 
n=O 

L -  I 

$(x) = 2'12 C go(n) * $(2~ - n). (60) 
n = O  

Define also the associated bandpass functions: 
L - l  

$(x) = 2Il2 * c hl(n) - 4(2x - n)  (61) 
n = O  

L -  1 

$(x) = 2'12 C gl(n) $(2x - n). (62) 
n=O 

That &x) and 4 ( x )  are orthogonal with respect to integer 
shifts is again shown inductively. We immediately get or- 
thogonality at the 0th level since f(O)(x) and f " ) ( x )  are 
each equal to the indicator function on the interval [0, 1): 
( f ' ' ) (x  - l ) ,  f"' (x - k ) )  = hkl. Again assume orthogo- 
nality at the ith level: ( f ( ' ) ( x  - l ) ,  f " ' ( x  - k ) )  = hkl. 
And then get 

( f ( ' + y X  - l ) , f ( i + l ) ( x  - k ) )  

= 2 (C go(n) . f" ' (2x  - 2k - n) ,  
n 

m ) C ho(rn)f(')(2x - 21 - rn) 

= c go(n) ho(n + 21 - 2k) 
n 

= 6 k l .  

In the limit this gives 

< i ( x  - 0,  4(x  - k ) )  = 6 k l .  

<$(x - 0 ,  $(x - 4 )  = 6 k l  

Once this is established 

follows immediately from ( 5 4 ) ;  and the relations 

t$(x - I), rl/(x - k ) )  = 0 

<$(x - 0, 4 ( x  - k ) )  = 0 

come from (51 )  and ( 5 2 ) ,  respectively. 
We have shown that the conditiork for perfect recon- 

struction on the filter coefficients lead to functions that 
have the biorthogonality properties as shown above. Or- 
thogonality across scale is also verified, following the 
analysis of Section 11-F: 

(2-J12$(2Jx - 1 ) ,  2-'12$(2'x - k ) )  = 6, 6k,. 

Thus the set { $ ( 2 ] x  - I ) ,  $(2'x - k ) ,  i, j ,  k ,  1 E Z }  is 
biorthogonal. That it is complete can be verified as in the 

222 1 

orthogonal case [ 2 8 ] .  Hence any function from L2(R) can 
be written 

f ( x )  = C C (2-j12$(2jx - l ) , f ( x ) )  2-j'2$(2jx - 1 ) .  
j 1  

Note that $(x) and $(x) play interchangeable roles. 
So, regular biorthogonal FIR filter banks lead to bior- 

thogonal bases of functions of finite length; it is easily 
shown that the converse is also true. Assume that we have 
functions $(x ) ,  4 ( x ) ,  $(x),  $(x) satisfying (59)-(62)  and 
(63)-(66) .  Then it is easy to verify that they can be used 
to derive biorthogonal filter banks. For example, using 
(63)  

< i ( x  - 0,  4(x  - k ) )  

= ( go(n) * $(2x - 21 - n) ,  

m ) h o ( m ) 4 ( 2 ~  - 2k - WZ) 

= c c go@) * ho(rn) ( $(2x - 21 - n) ,  
n m  

4 ( 2 ~  - 2k - m ) )  

= C &(n) ho(n + 21 - 2k) = 6kl .  
n 

The other filter biorthogonality relations follow from (64)- 
(66 ) .  

E. Filter Design 
Propositions 2.1 gives a sufficient condition to ensure 

pointwise convergence to a continuous function, which 
hinges on the number of zeros at a. It is clear that a filter 
with a maximum number of zeros at a will not necessarily 
be maximally regular. Ideally, to get a maximally regular 
filter (which is written H(z)  = [(l  + z - ' ) / 2 I N F ( z )  as in 
Section 11-E) we would maximize N while simultaneously 
minimizing S U ~ ~ ~ [ ~ , ~ ~ ~  IF(ej")(.  There is a tradeoff in- 
volved. However only N ,  the number of zeros at a, can 
be easily controlled. 

The question of regularity is more involved for the 
biorthogonal case than it is in the orthogonal case, since 
now we have to check the regularity of both the analysis 
(Ho(z))  and synthesis ( H I (  - z ) )  low-pass filters (see Sec- 
tion V-A). Fig. 14 illustrates the difficulty of making both 
Ho(z) and H I ( - z )  regular for the length 4 linear phase 
case. Recall that the impulse responses of Ho(z) and 
H , ( - z )  are given by [ l ,  a ,  a ,  11 and [ l ,  -a, -a, 1 1 ,  
respectively [ 2 2 ] .  The figure shows the scaling function 
generated by [ l ,  a, a ,  11 for a E [ - 3 ,  31. At a = 3 we 
have that Ho(z) is very regular, while H I ( - z )  is very ir- 
regular (as shown also in Fig. 13).  The difference be- 
tween the regularity of the two filters clearly decreases as 
a gets smaller, without ever leading to two regular linear 
phase perfect reconstruction filters of length 4 .  Actually 
at a = 0 there is neither pointwise nor L2 convergence 
[12] (the figure which shows the sixth iteration gives 
therefore an erroneous impression at a = 0). 
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Fig. 14. Scaling function generated by using Iteration (28) for [ l ,  a ,  a ,  11 and a E [-3, 31, (sixth iteration is shown) 

I v .  ALGEBRAIC STRUCTURE OF FIR SOL JTIONS 

A. Bezout 's Identity 
From Section I11 it can be seen using (42), (40), and 

(43) that the condition to achieve perfect reconstruction 
with FIR synthesis filters after an FIR analysis section can 
be expressed in two equivalent forms: 

~ o o ( z ) H , , ( z )  - H0,(z)H,o(z) = z - I  (67) 

(68) H&)HI(-z) - H ~ ( - z ) H I ( z )  = 2 ~ - ~ ' - ' .  

Each of these equations implies the other, and we use (67) 
or (68) depending on which is more convenient for our 
purpose. These requirements of course considerably con- 
strain the possible solutions; both (67) and (C18) are spe- 
cial forms of what is known as a Bezout identity [43], 
[44]. This identity arises in the Euclidean algorithm which 
calculates the greatest common divisor of two polyno- 
mials ao(x) and al (x) :  

a&> = a gcd (a&>, a&)> 

where a,(x) is the last divisor of the algorithm and a is a 
constant. It is well known that we can always write 

If ao(x) and a, (x )  are coprime then a,(x) has z m s  at 0 or 
03 only; and the identification between (69), the Bezout 
identity, and (67) or (68) becomes clear. By examining 
the implications of this, new results emerge; also, from 
this angle certain results that previously ha1 more in- 
volved proofs (e.g., [45]) now become simpler. A review 
of the necessary properties of the Euclidean algorithm can 
be found, for example, in [46]. The importilnce of the 
algorithm in the context of biorthogonal systens has also 
been noted in [28] and [47]. The following easily proved 
fact will play an important role in the rest of this section 
1461. 

Fact 4.1: Given a (x) and b (x) 

a(x)p(x) + b(x)q(x) = 4x1 

has a solution [ p(x) ,  q(x)] gcd (a(x), b(x)) divides c(x). 
We now make use of these observations to examine the 

constraints on the filter banks. 
Proposition 4.2:  Assume that the jilters Ho(z) and H I  (z)  

are FIR and causal. Then given one of the pairs [HOo(z), 
H o I ~ z ) ~ ,  [Hlofz), Hllfz)19 [ H d z ) ,  HlOfz)l or [&l(z), 

H I  (z)] in order to calculate the other pair necessary to 
achieve perfect reconstruction it is necessary and SUB- 
cient that the given pair be coprime (except for possible 
zeros at z = 03). 

Proof: From fact 4.1 the gcd of each of these pairs 
must divide the right-hand side of (67). Hence the only 
factors that they can have in common are zeros at z = 

The above proposition is also proved using a different 
argument in [45]. 

Proposition 4.3: A Jilter HO(z) has a complementary $1- 
ter if and only if it has no zeros in pairs at z = a and z 

Proof: Ho(z) has a zero pair at (a ,  -a)  if and only 
if H&) has a factor A(z2) .  This happens if and only if 
both Hoo(z) and Hol(z) have a common factor A @ ) ,  that 
is, they are not coprime. Thus the absence of zero pairs 
of the form ( a ,  -a)  and coprimeness are equivalent and 

0 
Proposition 4.4:  There is always a complementary jil- 

M. U 

- - -a. 

the proof is completed by using proposition 4.2. 

ter to the binominal jilter: 

H&) = ( 1  + z - ' ) ~  = Hm(z2) + z-IH01(z2). (70) 

Proof: If HO,(z) and Ho,(z)  had a common factor it 
would appear as a pair of zeros of Ho(z) at (a, -a); since 
Ho(z) has zeros only at z = - 1  it cannot have such a 

It should also be clear that for Ho(z) and H l ( z )  to form 
a perfect reconstruction pair it is necessary that they be 
coprime. From fact 4.1 gcd [HO(z) ,  Hl(z)] must divide the 

factor. 0 

. .. 
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right-hand side of (68 ) .  This has a very clear signal pro- 
cessing interpretation: a zero common to Ho(z) and H l ( z )  
would imply a transmission null in both channels of the 
filter bank at some frequency, making reconstruction im- 
possible. 

B. An Analogy with Diophantine Equations 
The conditions under which a complementary filter to 

some chosen Ho(z) exist were detailed in Section IV-A. It 
has already been pointed out that such a filter could be 
found using Euclid's algorithm; another method 'of find- 
ing a complementary filter based on solving a set of linear 
equations is given in [21]  and Section V-A. The comple- 
ment is not unique. If given a filter Ho(z) ,  we can calculate 
one of its complements H,(z ) ,  it is natural to wonder how 
we may find others. The results of this section will show 
that given any complementary filter, a simple mechanism 
exists for finding all others. 

The basic idea again stems from our interpretation of 
the condition for FIR perfect reconstruction as a Bezout 
identity. In number theory equations with integer coeffi- 
cients for which integer solutions are sought are known 
as diophantine equations [ 4 3 ] .  For example, 

a x + b y = c  (71)  

where all quantities are integers and we seek the solution 
(x ,  y )  is the most basic diophantine equation. Clearly, if 
solutions of the equation 

ax' + by' = 0 (72) 
are available then we can add them to (x ,  y) and generate 
new solutions to (71 ) .  If we replace integers by polyno- 
mials then (71 )  is analogous to the equation for perfect 
reconstruction that we must solve. We exploit this fact in 
the rest of this section by noting that polynomial solutions 
to an equation analogous to (72 )  are indeed easy to find; 
this allows us to generate all possible complenientary fil- 
ters if we are first given one. In fact, if we work with the 
modulation version of the PR condition ( 6 8 ) ,  arid iden- 
tify: a = -Ho(z) and b = Ho(-z)  it is easy to see that 
[ x ,  y ]  = [E(z)  Ho( - z ) ,  E(z)  HO(z) ]  sets the right-hand side 
to zero if E(z) = E( - z ) .  

For the following proposition we make use of propo- 
sition A.3, which gives that the length N - 2 linear phase 

Proposition 4.5: Given a linear phase Ho(z) of odd 
length N ,  and its length N - 2 linear phase complement 
H I  ( z ) ,  all higher degree odd length linear phase jilters 
complementary to Ho(z) are of the form 

H [  (z)  = z -2mHI(~)  + E(z)Ho(z) 
where 

m 

>. -2(r - I )  + - ( 4 m - 2 i )  E(z) = ,E ai(z 
r = I  

Proof: Note that E(z)  = E( - z ) ,  and that E(z) Ho(z) 
is symmetric about the point (N + 4m - 3 ) / 2  just as 
z - ~ " H , ( z )  is. Hence, z -2mH1(z)  + E(z)Ho(z) is easily seen 
to be a linear phase solution of length N + 4m - 2 by 
direct substitution. 

We now show that all length N + 4m - 2 solutions are 
of this form. If H ; ( z )  is of length N + 4m - 2 then 
Ho(z)H;(-z)  and Ho(z)E(z)Ho(-z)  are both valid and of 
length 2N + 4m - 3 .  So also is P " ( z )  = Ho(z) [Hi ( z )  - 
E(z)Ho( - z ) ] .  We can choose the coefficients of E(z) to 
set some of the end terms of P " ( z )  to zero. That is, for 
some choice of al  the coefficients of z o  and z - ( 2 N + 4 m - 4 )  
become zero, so that P " ( z )  is reduced in length by 4 (the 
coefficients of z and z -(2N + 4m - 5 ,  are already zero). 
Similarly, for each of the ai we can reduce the length of 
P " ( z )  by 4 .  When a l ,  * * , am have been appropriately 
fixed P " ( z )  has length 2N - 3 ,  has powers of z - '  in the 

and is still valid. Since it con- 
tains Ho(z) as a factor it must have the form 

since the length N - 2 solution is unique by proposition 

From proposition 3.3 it follows that in the two nontriv- 
ial cases of linear phase solutions, the length of P(z)  = 
Ho(z )Hl ( - z )  is 4n - 1 .  In Appendix A.4 it is shown that 
the solutions indicated in proposition 3.3 b) are special 
cases of those in a); that is, they can always be refactored 
into the form a). It follows that all higher degree comple- 
mentary filters to a fixed Ho(z) are given by proposition 
4 . 5 ,  unless they are trivial, in the sense of belonging to 
class c) of proposition 3 . 3 .  

Example: Consider Ho(z) = [ 1 , 4 , 6 , 4 ,  11 and its unique 
length 3 complementary filter H,( z )  = [ 1, 4 ,  1 1  / 16. Let 
m = 2 .  So we get 

range -2m to - 2 m  + 2 N  - 4 

P''(2) = z-2mHo(z)HI(-z) 

A.3. 0 

complementary filter to an odd length N linear phase filter 
is unique if it exists. 

which is linear phase, and complementary to Ho(z).  
A further result allows us to use the diophantine equa- 

I 
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tions to reach more general solutions. 
result (from proposition A.2) that a 

For this we use the 
length N filter has 

N - 2 length N - 2 complementary filters. 
Proposition 4.6: All filters of length N + 2m - 2 which 

are complementary to a length Nfilter Ho(z) have the form 

Hi ( z )  = z -2kHl(z) + E(z)H&) 

where E( . )  = E(-z) is apolynomial of degree 2(m - I ) ,  
k E {O, I ,  * , m )  and H I  (z) is a length N - 2 comple- 
mentary filter. 

Proof: That this is a solution is easily verified by 
substitution. If 

m - 1  

E(z) = c pIz-2’ 
r = O  

then P“(z)  = Ho(z) [HI (-2) - E(z)Ho( - z ) ]  is reduced in 
length by 2 for some choice of Po or 0, - Again the 
argument is repeated; the length of P ” ( z )  can be reduced 
by 2 at each stage by fixing one of the 0,. In t i s  way we 
reduce the degree of P”(z)  by 2m when all of the &’s are 
appropriately chosen. Since Ho(z) is still a factor, the re- 
maining factor must be one of the length N - 2 solutions 

lI3 
So far we have addressed only the problem of gener- 

ating higher degree solutions from lower ones; the next 
proposition shows that we can also go in the opposite di- 
rection. We examine the linear phase case only, the ex- 
tension to the general case is obvious. For the linear phase 
case this says that given any complementary filter we can 
generate all others using the results of proposition 4.5. 

Proposition 4.7: If Hi2) (z) and H‘,” (z) are length N + 
4m2 - 2,  and length N + 4ml - 2 linearphLse comple- 
mentary jilters to the linear phase odd lenjlth N filter 
Ho(z), with m2 > m ,  then we can generate th? lower de- 
gree solution from the higher as follows: 

H ( I ) ( ~ )  = Z 2 ( m z - m ~ ) [ ~ ( 2 )  

of which there are only N - 2. 

(l ,(Z) + E3(z)Ho’z)1 

where E3 (z) = z - ~ ( ~ ~  -m‘ )  E I (2) - E2(z). 
Proof: Direct substitution. 0 

The subclass of all valid P(z)’s which can be factored 
as P(z) = Ho(z) Ho(z - I )  corresponds to paraur itary FB’s, 
and generates orthonormal bases of wavelet:. Since all 
such P(z)’s are symmetric and positive they lorrn a sub- 
class of those generated by the construction of proposition 
4.5 above. The case for which Ho(z) is chosen to be an 
even power of the binomial is treated in detail by Dau- 
bechies. In Appendix A.5 we establish the close relation 
between her results and proposition 4.5 above. The fact 
that higher degree solutions contain lower degree ones is 
also given in [47]. 

C.  Continued Fraction Expansions 
In Section IV-B it was shown that any so1u:ion to (67) 

or (68) could be written as the sum of lower degree so- 
lutions and trivial higher degree solutions (trivial in the 
sense that the right hand side of (44) becomes zero). In 
Section IV-B we dealt exclusively with the modulation 

domain; but the results there, like those of this section 
could be expressed in either modulation or polyphase no- 
tation. For the sake of definiteness consider the polyphase 
version of the perfect reconstruction condition (67), and 
assume that Hoo(z) and Hol(z)  are given. It can be seen 
from proposition 4.6 that this lowest degree solution is in 
some sense fixed, and embedded at the core of any higher 
degree solution. The strong connections between Euclid’s 
algorithm, the Bezout identity and continued fraction ex- 
pansions (CFE’s) is well known [43], [48]. In fact, we 
now show that the canonic CFE of H l o / H I I  is the same 
as that of Hoo/Hol except for the last term; and further 
that higher degree solutions are formed by adding terms 
to the CFE, the first terms remaining unchanged. 

= H,, Do = H o l ,  A - ,  = Hlo,  and A. 
= H I I .  For the sake of simplicity we remove the phase 
factor in (67). In this notation (67) becomes 

We define 

D-,(z)Ao(z) - A-,(z)D,(z) = 1. (73) 

Now use Euclid’s algorithm starting with the pair D-,(z) ,  
Do(z). The first step gives 

D - I ( z )  = b~(z)D,(z) + Dl(z) deg DO > deg D1. 

Also do one division of the pair A - , ( z ) ,  Ao(z), denoting 
the remainder A I ( z )  : 

A-l (z )  = ao(z)Ao(z) + A, ( z )  deg A. > deg A l .  

Together these equations give 

1 = D-l(z)Ao(z) - A-,(z)D,(z) 

= (bok) - ao(z)>Ao(z)Do(z) + Dl(z)Ao(z) - AI(z)Do(z). 
However, since deg AoDo > deg D I A o  and deg AoDo > 
deg DoAl must have a. = bo, and hence 

DO(Z)Al(Z) - A,(z)D,(z) = - 1. 

Since this is of the same form, but of lower degree, than 
the equation that we started with (73), we can compare 
the second step of Euclid’s algorithm with a division of 
Ao(z), Al(z) and this gives al (z )  = b,(z). The result is that 
we get a succession of Bezout identities: 

(74) 

which are of decreasing degree. We find in turn that ao(z) 
= bo(z), a l ( z )  = bl(z) ,  * , aj (z )  = bj(z),  * , aN(z)  
= bN ( z ) .  Note that these outputs of Euclid’s algorithm are 
the partial denominators of the canonical CFE of 
D- I ( z )  /Do(z)  [48l 1431 : 

Dj- I(Z)Aj(Z) - Dj(Z)A,- l(Z) = (- 1)’ 

I 
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bN] to denote a terminating CFE [49]. It follows that the 
CFE’s of D-  l(z) /Do(z)  and A -  l(z) /Ao(z) are identical for 
the first N + 1 terms. The terminal equation f o r j  = N 
gives 

Remark that the Dj(z)’s are known, and DN is ;I scalar 
(since it is the last divisor and D-,(z) ,  Do(z) are assumed 
to be coprime); hence we can choose A N ( z )  to be any 
polynomial and we are assured that Aj (z)’s are polynomial 
for j = N - 1, - * , 0, - 1. Therefore we get a valid 
complementary filter [Ao(z), A -  l(z)] for any appropriate 
A N ( z ) .  This can be expressed by writing uN+ l(z) = 
(-  l )NAN ( z )  DN. In summary, 

- ( - 1>”4N(z> DNI . (77) 

It can be shown that choosing A N ( z )  = 0 gives the same 
solution as that produced by Euclid’s algorithm. ‘That is, 

= [bok); ~ I ( z ) ,  * * bN-1(41 

If we divide (74) by DJ ( z )  DJ - 1 ( ~ )  we get 

(78) 
( z )  AJ - 1 ( z )  - (-1)’- 
( z )  OJ - 1 ( z )  OJ ( z )  OJ - 1 ( z )  

which is the expression relating successive convergents to 
a CFE [50]. This is precisely the continued fraction in 
(76), (77). Note that since the successive convergents sat- 
isfy the decreasing degree Bezout identities (74), truncat- 
ing (76) and (77) gives a lower degree FIR PRFB. 

There is more structure yet. Dividing (74) by 
DJ - ( z )  AJ - ( z )  gives 

(- 1)’ - 
A,(z) DJ(z)  

AJ - 1(z) - 1 ( z )  - 1 ( z )  OJ - l(z) . 

Like (78) this relates successive convergents of a contin- 
ued fraction; but the CFE here is that of a different group- 
ing of the polyphase pairs. It turns out that we get 

-- - [-(-l)NAN(z)DN; bN(z), bN-,(z), * * e bl(z)l. 
HOl(Z) 

Of course, these continued fraction relations give an- 
other method for generating higher degree solutions to the 
perfect reconstruction condition. By varying A,(z)  in (77) 
for example we generate different complementary filters. 

Clearly, this structure is complete; all possible comple- 
mentary filters can be generated by appropriate choice of 
AN (2). 

It warrants reiteration that the above analysis using the 
polyphase notation, can be used to give equivalent results 
in the modulation notation. 

V .  DESIGN RESULTS 

A .  Linear Phase Filters with a Maximum Number of 
Zeros at 

We now design a linear phase P(z) = Ho(z) H I (  -2) sat- 
isfying (68) and having the maximum possible number of 
zeros at z = - 1. Note that if P(z) has even a single zero 
at z = -1 it cannot have any at z = 1 and vice versa. 
This should be clear since we wish to have P(z) - P( - z )  
equal to 22 -21  - (see Section 111-A). We consider only 
the case where P(z)  is of odd length (see proposition 3.3); 
hence it has an even number of zeros; since P(z) is linear 
phase its zeros must occur in quads, and pairs on the unit 
circle or real axis. It follows that P(z) must have an even 
number of zeros at z = - 1 or none at all. 

Note that by proposition 4.4 we are assured that there 
exists a complementary filter to the binomial of any de- 
gree. We wish now to calculate R 2 k ( - z )  which is the 
complementary filter to (1 + z In other words, we 
wish to find the polynomial such that P(z) = (1 + 
z - 1 ) 2 k R 2 k ( ~ )  is valid, as defined by (44). That R 2 k ( z )  is 
linear phase is an immediate consequence of the fact that 
P(z) and (1  + are. Because of this symmetry, on 
equating the appropriate terms to zero it turns out that 
only k of the equations are independent; so we get a set 
of k by k equations to be solved for the coefficients (ro, 
r l ,  . , rk-1) [ W .  

Example: If we choose Fo(z) = (1 + z we solve 
the 3 by 3 system found by imposing the constraints on 
the coefficients of the odd powers of z - I  of 

~ ( z )  = (ro + r l z - l  + r2zp2 + r l ~ - 3  + r , ~ - ~ )  

(1 + 62-I + 1 5 ~ - ~  + ~ O Z - ~  f 

+ 62-5 + P). 
So we solve 

giving r6 = (3/2, -9, 19)/128. 
In general therefore we solve the system 

F2k * r2k = e2k (79) 

where F2k is the k X k matrix, r2k = (ro, * - , r(k- and 

Having found the coefficients of RZk ( z )  we factor it into 
e2k is the length k vector (0, 0, , 1). 

I 
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(b) 
Fig .  15. Biorthogonal wavelets generated by he length 18 filters given in Tables I and 11. The filters have a maximum number 
of zeros at z = - 1. (a) Time function and spc,ctnim of analysis wavelet.  (b) Time function and spectrum o f  synthesis wavelet.  

TABLE I 
IMPULSE RESPONSE COEFFJCJENTS O F  
BIORTHOGONAL Ho(Z); THE INFINITE 
ITERATION OF THESE FILTERS GIVE 
THE WAVELETS SHOWN I N  FIG.  15 

TABLE I1 
IMPULSE RESPONSE COEFFICIENTS OF 
BIORTHOGONAL Hl(Z); THE INFINITE 
ITERATION OF THESE FILTERS GIVE 
THE WAVELETS SHOWN I N  F I G .  15 

0.00122430 
- 0.00069860 
-0.01183749 

0.01 168591 
0.07 130977 

-0.03099791 
-0.22632564 

0.06927336 
0.73184426 

linear phase components; and then regroup these factors 
of RZk(z), and the 2k zeros at z = - 1 to form two filters: 
Ho(z) and H I (  - z ) ,  both of which are to be regular. 

It turns out that for small k ,  ensuring that both Ho(z) 
and HI( - z )  meet the bound of proposition 2 . 1  can force 
one to choose filters of quite unequal length. E;or larger k ,  
however, this problem eases, and it becomes possible to 
get filters of the same, or approximately the same, length 
that generate regular symmetric wavelets. For Iexample, 

0.00 122430 
0.00069979 

-0.01134887 
-0.01 141245 

0.02347331 
0.00174835 

0.20436993 
0,64790805 

- 0.0444 1 890 

Fig. 15 shows the analysis and synthesis wavelets and 
their spectra for one particular factorization of the k = 9 
case, and Tables I and I1 list the coefficients of the filters 
Ho(z) and H l ( - z ) .  Each of these filters has a factor (1 + 
z - I ) ~ .  We get Ho(z) = [(l + Z - ~ ) / ~ ] ~ F ~ ( Z )  where 
S U ~ ~ ~ [ ~ , ~ ~ ~  (Fo(ej")l = 115.06 < 28; so Ho(z) satisfies the 
bound of proposition 2 . 1 .  Hence the scaling function @(x) 
and wavelet $(x) generated by the infinite iterations, fol- 
lowing (59) and ( 6 1 ) ,  converge to continuous functions. 

I 
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l 

Fig. 16. Orthonormal wavelet generated by length 18 filter (from [12]). The filter has a maximum number of zeros at z = - 1. 
(a) Time function. (b) Spectrum. 

5 
I 

IO 15 20 

0 

(b) 
Fig. 17. Biorthogonal wavelets generated by filters of length 20 and 24 given in Tables 111 and IV. The filters were designed 
using the diophantine approach, and have better siopband performance than those in Fig. 15. (a) Time function and spectrum 
of analysis wavelet. (b) Time function and spectrum of synthesis wavelet. 

HI( -2) can be similarly factored, and sup,,[o, 2nl 

IFl(eJw+")(  = 211.3 < 28; hence $(x) and $(x)  converge 
to continuous functions also. 

The method outlined in [35] yields the following esti- 
mates for the regularity index 0: for $(x) we find 2.46 < 
0, and for $(x)  we get 3.55 < 0. 

For comparison purposes we show in Fig. 16 the cor- 
responding plots for the orthonormal wavelet generated 
by a filter of the same length, as presented in [ 121. 

B. More General Solutions: Diophantine Approach 

While the design procedure of the previous section is 
very simple, the spectra of the scaling function * ( U )  and 
the wavelet +(U) are not as one might wish from low-pass 
and bandpass filters. 

Proposition 4.5 showed how to generate any valid lin- 
ear phase P(z)  containing a given factor. For example, to 
design a P(z)  with 2k zeros at T, we can calculate RZk ( - z ) ,  

I 
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TABLE 111 
IMPULSE RESPONSE COEFFICIENTS OF IMPROVED 
BIORTHOCONAL Ho(Z); THE INFINITE ITERATION 

OF THESE FILTERS GIVE THE WAVELETS 
SHOWN IN FIG. 17 

TABLE IV 
IMPULSE RESPONSE COEFFICIENTS OF IMPROVED 

OF THESE FILTERS GIVE THE WAVELETS 
SHOWN I N  F I G .  17 

BIORTHOCONAL H1(Z); THE INFINITE ITERATION 

0.00 133565 
-0.0020 1229 
-0.00577577 

0.00863853 
0.01279957 

- 0.0236 1445 
- 0.0 1900852 

0.04320273 
-0.0093 1630 
-0,12180846 

0.05322 182 
0.4 I5897 I4 

as in the previous section. This solution, which has de- 
gree 2k - 2, can then be used to generate all possible 
solutions of degree 2k - 2 + 2m. 

A second approach is to note that we need not place all 
of the zeros at z = - 1 to start with. We could f x  example 
calculate the complementary filter to a factor (1 + 
Z - ~ ) ~ ' [ U ~ ( Z ) U ~ ( ~ )  - u r ( z ) 1 2  where U, ( z )  represents a zero 
pair on the unit circle. We are then assured csf having a 
factor (1 + Z - ~ ) ~ [ U ~ ( Z ) U ~ ( Z )  u l ( z ) ]  to p ace in the 
stopband of each of the filters. 

In Fig. 17 we show the two symmetric wavelets $( t )  
and $(t) and their spectra. These were generated by linear 
phase filters of lengths 24 and 20, the coefficients of which 
are listed in Tables I11 and IV. The filters weie designed 
using a combination of the two approaches described 
above. Each of the filters has only a single zero at z = 
- 1, and neither of them meets the bound given in prop- 
osition 2.1. However again using the estkmation methods 
of [35] we find 0.79 < and 0.96 < 0. Note that the 
stopband performance is much better than in Figs. 15 and 
16. 

Fig. 18 shows the wavelet and its spectrum for a better 
orthogonal set of filters. The associated filter bank is 
paraunitary; so H l ( z )  = H 0 ( z - I ) .  The coeflicients are 
listed in Table V.  The regularity estimate here is 0.97 < 

* 

P .  

C. Root Loci of Higher Degree Solutions 
While we have shown that higher degree solutions can 

give better results, it is still clear from Sections IV-B and 
IV-C that these solutions are nonetheless very con- 
strained. To give a concrete example we briefly examine 
the case where H o ( z )  = (1 + Z - ' ) ~  and the unique linear 
phase degree 4 complementary filter has impulse response 
coefficients h l ( n )  = [3, 18, 38, 18, 3]/256. V7e examine 
the m = 1 solution (from proposition 4.5) 

0.00465997 
0.00702071 

-0.01559987 
-0.0232792 1 

0.05635238 
0.10021543 

-0.06596 I5 1 
-0.13387993 

0.38067810 
1.103981 18 

0 

(b) 

Fig. 18. Orthonormal wavelet generated by length 22 filter given in Table 
V .  The filter was designed using the diophantine approach, and has better 
stopband performance than that in Fig. 16. (a) Time function. (b) Spec- 
trum. 

and plot the trajectory in the plane of the roots as (Y is 
varied. 

Fig. 19 shows the root locus for the region: (Y E [-2, 
21. While the increased degree solution has more free- 
dom, it is clear that the roots move along very constrained 
paths. In other words, it would be necessary to look at 
solutions of considerably higher degree to get substantial 
design freedom. 

I 
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TABLE V 

PARAUNITARY FACTORIZATION: 
THE INFINITE ITERATION GIVES 

THE WAVELET SHOWN I N  
FIG. 18 

IMPULSE RESPONSE OF IMPROVED 

Ho(z) 

ho(O) 0.055739 
0.288322 h d  1 ) 

hd2) 0.614682 
0.608634 

h0(4) 0.113646 
hd5) - 0.290892 

-0.13 1805 ho(6) 
h0(7) 0.162510 

0.085330 ho(8) 
ho(9) - 0.099666 
ho(10) -0.042965 

h0(3) 

h d l l )  0.060044 
ho(12) 0.015233 
h O ( W  -0.032323 
h d 4 )  -0.001634 
h O ( W  0.014 199 

- 0.002305 h d  16) 
ho( 17) -0.004433 
ho(18) 0.00 1808 
ho( 19) 0.000646 
ho(20) -0.000577 

0.0001 11 ho(2 1 ) 

Fig. 19. Locus of the movement of the roots of (80) in the z plane for a E 

1-2, 21. 

VI. CONCLUSION 
The relationships between wavelets, multiresolution 

signal analysis, and filter banks have been developed, em- 
phasizing the equivalence between the fundamental ideas 
of each of these fields, which is that functions or signals 
be broken down into component signals at different reso- 
lutions. In addition, strong similarities between the de- 
tails of these techniques have been pointed out, and the 
interplay of ideas has enabled us to indicate new results 
in each of the areas. 

In particular, we derived biorthogonal compactly sup- 
ported wavelets bases with symmetries using regular FIR 

PRFB's. If compact support is not desired, similar tech- 
niques, using IIR filters generate orthogonal wavelet bases 
with symmetries [25], [51]. 

APPENDIX A 
1. Biorthogonal Pyramid 

This Appendix extends the result of Section 11-D to the 
biorthogonal case (see also Section 111-C). In this case, 
the approximation X is equal to 

3 = GoHo * X. 

The difference signal becomes 

d = ( I  - GoHo)x = GlHl . X. 

Because we have perfect reconstruction: 

GoHo + GI HI = I .  

That is, we can filter the difference signal with hl(n)  and 
subsample by 2, because 

Hi GI HI = HI 

from which d can be reconstructed by upsampling and in- 
terpolation with G I ,  following the fact that 

GI HI GI HI = GI HI 

and the reconstructed signal, obtained by adding X to d ,  
is equal to the original. That is, the biorthonormal pyra- 
mid is equivalent to a critically sampled biorthogonal fil- 
ter bank. Note that linear processing has been assumed 
throughout, which would not be the case in coding appli- 
cations. 

2. Proof of Proposition 3.3 
Proof: Since Ho(z) and H I (  - z )  have linear phase so 

does P(z). If P(z) has odd length, then both filters have 
odd length or both have even length. Note that 

2N 

P(z) - P(-z) = r = O  ,z p;z- ' [ l  - (-1)7 

N -  I 

Since P(z) is of odd length, both P(z) and P( - z )  are sym- 
metric or antisymmetric about the point i = N .  Hence, 
P(z) - P( - z )  is symmetric about this point; so the single 
nonzero coefficient is pN,  the central one. Hence P(z) is 
symmetric and not antisymmetric; which implies that 
Ho(z) and H I (  - z )  are both symmetric or antisymmetric. 

a) Lo and LI both odd. Now Lo + L1 - 1 is odd. The 
center of symmetry, which is (Lo + L l ) / 2  - 1 samples 
away from the end points, has to be odd. Thus (Lo + 
L l ) / 2  = Lo + (Lo - L l ) / 2  has to be even. Thus (Lo - 
L1)/2 is odd, and the length difference Lo - L ,  is an odd 
multiple of 2. In particular, there are no same length so- 
lutions. Suppose that Ho(z) and H I (  - z )  can be both sym- 
metric or both antisymmetric. The latter possibility is 
ruled out, however, because the two polyphase compo- 

I 
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nents are also antisymmetric when the length is  odd, and 
are therefore not coprime. Perfect reconstruction is then 
impossible following proposition 4.2. 

b) Lo and LI both even. Again (Lo + L , ) / 2  - 1 has to 
be odd so that the center term is not in the same set as the 
end terms. Then Lo + (Lo - L 1 ) / 2  has to be even, and 
since Lo is even, this means that the length difference Lo 
- L1 is an even multiple of 2;  and, for example, same 
length solutions do exist. Also it was assumed that Ho(z) 
and H l ( - z )  were both symmetric, but since Erl( - z )  has 
opposite symmetry to H l ( z )  when the length is even, the 
even length solution leads to a symmetric/anti symmetric 
pair. 

c) If P(z) has even length, then one filter has even 
length, and one odd. Now we get 

2 N -  1 

P(z) - P(-z) = ,z p;Z-'[l  - (- 1 ) 7  
1 = 0  

N -  1 

P(z) has only a single nonzero odd-indexed coefficient; 
but note that pi = fp2,- , N - 1 .  So odd- 
indexed coefficients are paired with even-indexed-ones. It 
follows that P(z) also has only one nonzero even-indexed 
coefficient, and is of the form 

i = 0 ,  * * 

~ ( ~ 1  = p j z - J ( l  k z 2 N - I - * j  1. ( 8 1 )  
Since P(z) has all its zeros on the unit circle (at the 2(N 
- j )  - 1 roots of -t l ) ,  Ho(z) and H I (  - z )  also have all 
zeros on unit circle. If Ho(z) and H l ( z )  are both to be an- 
tisymmetric, both must have zeros at z = 1 .  This will 
force H I (  - z )  to have a zero at z = 1 or z = - 1 depending 
on whether it is of odd or even length, respectively. This 
implies that P(z) has either a double zero at z = 1, or a 
pair at z = 1 and z = - 1 .  Since P(z) contains only the 
2(N - j )  - 1 roots of k 1 both possibilities are ruled out. 

0 Hence the filters must have opposite symmetry. 

3. Lattice Structures Generating the Binomial Filter 
and its Complementary Filter 

Proposition A. I :  Let the polyphase components of Ho (z) 
and H I  (z) be generated by the following lattice structure: 

then the choice 

(a19 ff2, * 9 ff,) 

= ((2N + 1)/(2N - l ) ,  (2N - 1)/(2N - 3) ,  * , 

2N + 1 )  

leads to 

Ho(z) = ( 1  + z - 1 ) 2 N + 1 .  

An elegant proof of this proposition was pointed out to us 

by Gopinath [52].  It is clear that the complementary filter 
has only rational coefficients. 

Now P(z) can be written as 

P(z) = Ho(z)Hl(-z) = (1 + z - ' ) ~ ~ R ~ ~ ( z ) .  

Since RZk (re") is linear phase it can be converted into 
a polynomial of degree k - 1 in cos (0 - j In r) .  Thus 
the size of the factorization to be performed is halved, and 
the accuracy of the solution is improved. If the exact ra- 
tional coefficients of Rik(z) are used and this is factored 
in cos z ,  the solution can be considerably more accurate 
than if a standard linear equation solver is used and direct 
factorization is performed. We will consider k = 6 to give 
an example of the importance of these considerations. De- 
note P&) which is exact, PA(z) which is found by multi- 
plying out after using the lattice outputs given by propo- 
sition A . l  and the efficient factorization; P t ( z )  is found 
by multiplying out after using an ordinary linear equation 
solver, and direct factorization. We find 11 p6(n) - 
p;(n)/lm = 0.00892 while 11 p6(n) - p;(n)ll, = 17.83739. 

4. Restrictions on Complementary Filter Forms 
Proposition A.2: A length N j l t e r  has at most N - 2 

complementaryjlters of length N - 2; and at most one 
of length N - 1. 

Proof: If H l ( t )  has length N - 2 then P(z) = 
Ho(z )Hl ( - z )  has length 2N - 3;  hence it has N - 2 odd- 
indexed coefficients. Thus we solve a square system of 
linear equations of size N - 2. The nonzero odd-indexed 
coefficient can be placed in any of N - 2 positions. 

If H l ( z )  has length N - 2 then P(z)  = Ho(z)Hl(  -2) has 
length 2N - 2 ;  one of the end terms is odd indexed while 
the other is even. There are N - 1 odd-indexed terms. 
Thus we solve a size N - 1 square system, but there is 
only one possible position for the single nonzero odd-in- 

0 
Proposition A.3: For the linear phase case, if a $Iter 

of even length N has a same length complementaryjlter 
it is unique. For N odd if there is a length N - 2 comple- 
mentary j l t er  it is unique. 

Proof: N even gives N / 2  equations in N / 2  un- 
knowns; the nonzero coefficient must be in the center. 
Similarly, N odd gives (N - 1 ) / 2  equations in (N - 1 ) / 2  
unknowns. 0 

Note: An example of the equations to be solved in the 
linear phase case is given in Section V-A. In propositions 
A.2 and A.3 it is of course possible that the linear systems 
to be solved are singular, in which case the complemen- 
tary filter does not exist (see Section IV-A for necessary 
and sufficient conditions). It is also possible that on solv- 
ing the linear system one or more or the end terms of the 
complementary filter found are zero, in which case it fails 
to have the advertised length. For example, if we try to 
find the linear phase length 5 complement to the length 7 
filter Ho(z) = [ 1 ,  0 ,  0 ,  - 1, 0, 0, 11 we find H,(z)  = [0, 
0,  1 ,  0 ,  01. For the purposes of propositions 4.5 and 4.6 
this case, where the complementary filter has less than the 

dexed term, which must appear at an end. 

I 
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expected length, has no effect provided that the zero end 
terms are included. 

Of the three classes of linear phase FIR solutions given 
in proposition 3.3, we note that solutions of class b) can 
always be refactored to ones of class a). Suppose in a 
class b) solution H l ( z )  is the antisymmetric filter; it then 
necessarily has a zero 1 - z - l ,  which implies that H I (  - z )  
has a zero 1 + - I .  This zero can be given to H o ( t ) .  Both 
filters are now of odd length, and differ by an odd niultiple 
of 2.  Hence, we have a class a) solution. The converse is 
not in general true. 

5. Relation to Work of Daubechies 

4.5 and a result given in a different form in [12]. 

cept for a phase factor this gives 

We here establish the connection between proposition 

Daubechies writes: P‘l’(z) = (1 + z-1)2kQ(’),’z); ex- 

P(w) = 

Since Q(w) is symmetric it can be written as a polynomial 
in cos (w) = 1 /2( 1 - cos2 (w/2)) when restricted to the 
unit circle. So if we define y = cos2 (w/2) and we can 
rewrite the above as 

P(w) = [COS’ ( ~ / 2 ) ] ~ Q j / 2 ( 1  - COS‘ ( ~ / 2 ) )  

Using the results of proposition 4.5 we know that higher 
degree solutions are written 

Q’(-z) = z - ~ ” Q , / ~ ( - z )  + E(z)(l - z - - I ) * ’ . .  

Since this is symmetric it can be written as a function of 
cos (w): 

Q;/2(1 - cos2 (w/2)) 

= Q112(1 - cos2 (w/2)) + E 1 / 2 ( ~ ~ ~  (w))[sin2 (w/2)lk. 

Clearly, this gives 

Q ; / ~ ( Y )  = Q I / ~ ( Y )  + Y ~ E I / ~ ( Y )  
where our constraint E(z)  = E( - z )  translates to E l l 2 (  y) 
= E1/2(l  - y), giving that El l2(  y) is symmetric about 
the point 1/2.  The fact that E(z)  is of degree 4m - 2 
gives that Ell2(  y )  has degree 2m - 1. If we alter our 
notation to use zero phase polynomials throughout we 
would find E(z)  = - E ( - z )  or E l l 2 (  y) = -El  9 ( 1  - y), 
which is precisely the requirement given in [ 121. 

Further, Daubechies gives a closed form for y). 
In our notation this translates to the complementary filter 
to the binomial. 
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