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Systems as Physical Objects

• Have inputs, states and outputs

• Can be interconnected

• Distinguish as plants, controllers, filters,

reference signal generators, data convert-

ers, etc

• Wide variety of technological, biological,

logistical and economic examples fit this

perspective
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Systems as Mathematical Objects

– A family of transformations (depending on

input signals) of states

– A family of read-out maps (depending on

input signals)

Causal models derived from ordinary and par-

tial differential equations.

ẋ(t) = f(x(t), u(t))

y(t) = h(x(t), u(t))

x(t) ∈ X state space

u(t) ∈ U input space

y(t) ∈ Y output space

3



Systems as Mathematical Objects

Structure in models

ẋ(t) = f0(x(t)) +
m
∑

i=1

ui(t)fi(x(t))

y(t) = h(x(t))

Here fi, i = 0,1,2, ..., m are vector fields on

state space

Linearity:

ẋ(t) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t) + D(t)u(t)

Stationarity: A, B, C, D time invariant.
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Descriptions of Systems (Internal)

Parameters: A, B, C, D

Input-state response:

x(t) = ΦA(t, t0)x(t0) +
∫ t

t0
ΦA(t, σ)B(σ)u(σ)dσ,

where ΦA(·, ·), the transition matrix, satisfies

Φ̇A(t, t0) = A(t)ΦA(t, t0)

and ΦA(t0, t0) = 1l, the identity matrix.

Easy to verify

ΦA(t, t0) = 1l +

∫ t

t0
A(σ)dσ

+

∫ t

t0

∫ σ1

t0
A(σ1)A(σ2)dσ2dσ1 + ...
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Descriptions of Systems (External)

Input-Output response:

y(t) = C(t)ΦA(t, t0)x(t0)

+

∫ t

t0
C(t)ΦA(t, σ)B(σ)u(σ)dσ

+D(t)u(t)

= y0(t) +

∫ t

t0
W (t, σ)u(σ)dσ

+D(t)u(t)

Weighting pattern:

W (t, σ) = C(t)ΦA(t, σ)B(σ).

Drift = y0(t)

depends only on initial conditions.
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Specializing to Time-invariant Setting

ΦA(t, t0) = eA·(t−t0)

W (t, t0) = CeA·(t−t0)B

Impulse response

= CeAtB + Dδ(t)

Transfer function

G(s) = C(s1l − A)−1B + D
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Descriptions of Systems (Internal vs

External)

Change of variables

z(t) = P(t)x(t)

changes the internal description but not the

external one.

In the time-invariant setting, two internal de-

scriptions with parameters [A, B, C, D] and

[PAP−1, PB, CP−1, D] have the same transfer

function.

Transfer functions are proper, and if D = 0,

strictly proper (i.e., G(s) → 0 as s → ∞)
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Reachability Problem

Given x0 = state at time t0, does there

exist a control u(·) defined on the time

interval [t0, t1] that drives the system

to x1 at time t1?

Define R
t1
(x0,t0)

set of such x1.

R(x0,t0)
=

⋃

t1>0

R
t1
(x0,t0)

We say that the system is reachable from (x0, t0)

if R(x0,t0)
= state space
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Reachability Problem

For linear systems with X = Rn, U = Rm ,

Y = Rp solve

(x0 − ΦA(t0, t1)x1) = −
∫ t1

t0
ΦA(t0, σ)B(σ)u(σ)dσ

= L(u)

System is reachable from (x0, t0) if

R(L) = range space of L = Rn

Define reachability gramian W (t0, t1) = LL∗,

where

L∗ : R
n → Cm[t0, t1]

η 7→ −B′(·)Φ′
A(t0, ·)η,

where ′ denotes transpose of a matrix.

Then R(L) = R(W )
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Reachability Problem

Suppose there exists η ∈ Rn such that

(x0 − ΦA(t0, t1)x1) = W (t0, t1)η.

Then, control defined by

u0(t) = −B′(t)Φ′
A(t0, t)η

drives the system from (x0, t0) to (x1, t1).

System is reachable iff W is invertible.

If u is any other control that drives (x0, t0) to

(x1, t1), then

∫ t1

t0
u′(σ)u(σ)dσ >

∫ t1

t0
u′
0(σ)u0(σ)dσ
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Observability Problem

Is it possible to determine the initial state x(t0)

from an input-output pair known over a time

interval [t0, t1]? If yes, we say the system is

observable. For linear systems, define the drift

map

P : R
n → Cp[t0, t1]

x0 7→ C(·)ΦA(·, t0)x0

Define observability gramian

M(t0, t1) = P ∗P

=

∫ t1

t0
Φ′

A(σ, t0)C
′(σ)C(σ)ΦA(σ, t0)dσ

Since null space N (P) = N (M(to, t1)), it fol-

lows that the system is observable iff M(t0, t1)

is invertible.
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Gramians and the Time-invariant

Setting

For time-invariant linear systems

W (t0, t1) is invertible for t1 > t0

↔ [B, AB, ...An−1B] has rank n

↔ [s1l − A|B] has constant rank n

for all s ∈ C

M(t0, t1) is invertible for t1 > t0
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↔











C
CA
:

CAn−1











has rank n

↔

[

C

s1l − A

]

has constant rank n

for all s ∈ C



Realization Problem

We have already seen that internal represen-

tations are not uniquely defined by an external

representation – the change of variables idea.

It can be shown that any weighting pattern

W (t, σ) that is factorizable in the form

W (t, σ) = Q(t)R(σ)

where Q(t) is p×n1 and R(σ) is n1×m, admits

a finite dimensional representation

W (t, σ) = C(t)ΦA(t, σ)B(σ)
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Realization Problem

The finite dimensional representation (realiza-

tion) above, is of the lowest possible (state

space) dimension = n, iff it is both reachable

and observable.

All minimal state space realizations are related

by the (possibly time-dependent) change of

variables formula.

In the time-invariant setting realizability is equiv-

alent to the condition that the transfer func-

tion G(s) is a p × m matrix of strictly proper,

rational functions.
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Realization Problem

For a time-invariant linear system, let the trans-

fer function be given by a Laurent series

G(s) =
∞
∑

i=0

Li

si+1
.

Li are called Markov parameters.

Clearly G(s) is strictly proper. It is rational iff

the infinite Hankel matrix










L0 L1 L2 · · ·
L1 L2 L3 · · ·
L2 L3 L4 · · ·
...











is of finite rank = n, called the McMillan de-

gree.

A classic realization algorithm (Ho-Kalman),

constructs a minimal realization from Markov

parameter data.
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Minimality, Poles and Zeros

For m = p = 1 a strictly proper

G(s) =
q(s)

p(s)

=
qn−1sn−1 + ... + q0

sn + pn−1sn−1 + ... + p0

q(s) and p(s) relatively prime,

Poles {G(s)} = roots of p(s)

Zeros {G(s)} = roots of q(s)

If G(s) = C(s1l − A)−1B, then

Poles {G(s)} ⊂ spectrum (A).
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Minimality, Poles and Zeros, cont’d

Poles {G(s)} = spectrum (A)

iff [A, B, C] is minimal.

In that case

McMillan degree = degree of p(s)
= dimension of state space
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Remark on System Identification

The realization problem (passing from the se-

quence {Li}
∞
i=1 to a minimal triple [A, B, C])

was viewed as an idealized form of the identi-

fication problem.

In practice, pre-processing of data from input-

output experiments into the sequence {Li}
∞
i=0

is not the preferred way. There are alternatives

founded on statistical methodologies, e.g., the

canonical correlation analysis dues to Akaike

(1977).
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Remark on System Identification

System identification algorithms may be viewed

as dynamical systems on spaces of transfer

functions. For m = p = 1, the space Rat(n) of

strictly proper rational functions of McMillan

degree n was identified as an object of study

by Brockett(1976). Rat(n) has very interesting

topological and geometric structures. It ad-

mits interesting dynamics - e.g., a flow equiv-

alent to the famous integrable system of Toda.
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Gramians and Reduction

For time-invariant linear systems [A, B, C], with

spectrum (A) ⊆ C−, let

Wc =
∫ ∞

0
exp (tA)BB′ exp (tA′)dt

and

Wo =

∫ ∞

0
exp (tA′)C′Cexp (tA)dt

A minimal triple [A, B, C] is balanced iff

Wc = Wo =
∑

= diag (σ1, σ2, ..., σn) where the

Hankel singular values

σi = (λi(WcWo))
1/2 i = 1,2, ..., n
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Gramians and Reduction, cont’d

and are ordered such that

σi ≥ σi+1

Balancing + truncation → reduction.

Connections to PCA.
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Closing the Loop

v -
+

-��
��

-
u

plant -
y

�Controller

6

[A, B, C, ] → [A − BKC, B, C]

ẋ = Ax + Bu
y = Cx

→
ẋ = (A − BKC)x + Bv
y = Cx

W (t, σ) → W f(t, σ)

where

W f(t, t0) = W (t, t0)−
∫ t

t0
W (t, σ)K(σ)W f(σ, t0)dσ
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Closing the Loop, cont’d

In the time-invariant case

Gf(s) = G(s) − G(s)KGf(s)

↔ Gf = (1l + GK)−1G
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Closing the Loop

Feedback alters the system response. But there
are severe limits to how much can be done with
a constant gain controller.

Example:

m = p = 1
g(s) with pole-zero pattern

X o X

Output feedback cannot move the r.h.p.
pole to the left.

Root-locus calculations tell us why.
Dynamic compensators help.

25



State Feedback

Consider the linear time invariant system

ẋ = Ax + Bu

y = Cx

Under state feedback

u = −Kx + v

[A, B, C] → [A − BK, B, C].

State feedback preserves reachability proper-

ties (set of attainable state trajectories is un-

changed), but not observability properties.

26



State Feedback

In the single input setting, there is a change of

variables such that

A =











0 1 0 ·· 0
0 .
0 · . . 1

−p0 −p1 ·· ·· −pn−1











B =











0
0
:
1











the control canonical form. In this case letting

χA(s) denote the characteristic polynomial of

A, there is K = (k0, k1, ..., kn−1)s.t.

χA−BL(s) = sn + βn−1sn−1 + · · · + β0

= β(s)

for any polynomial β.
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State Feedback

Essentially, the same idea can be used to show

Theorem (Pole Placement)

Let [A, B] be a controllable pair. Then there

exists a state feedback K s.t.

χA−BK(s) = β(s)

for any desired polynomial β(s) of degree n =

dimension of state space.

Remark There is a famous canonical form as-

sociated with P. Brunovsky for controllable pairs

[A, B], under the feedback group

A → PAP−1 B → PB
A → A − BK B → B
A → A B → BQ
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State Feedback

One application of the pole placement theorem

is to find a feedback law u = −Kx + v such

that all eigenvalues of (A − BK) are in C− the

open l.h.p. The theorem guarantees such a K.

There are a number of approaches to finding

such stabilizing feedback laws. See lectures of

Khaneja.
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A Difficulty with State Feedback

• State variables are typically not directly mea-

surable.

• A set of linear combinations of state vari-

ables may be all that is available.

• Is there a way to stabilize the system?

Idea: Use output variables to estimate the

state (asymptotically). Then substitute esti-

mates for actual state.
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Observer/Estimator

Consider

ẋ = Ax + Bu

y = Cx

a time invariant system.

Assume that [A, B, C] is minimal. Consider the

associated system

˙̂x = (A − ΓC)x̂ + Bu + Γy

(This new system accepts as inputs, the orig-

inal inputs u together with the outputs of the

original system.)
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Observer/Estimator, cont’d

Let e = x − x̂.

Then ė = (A − ΓC)e.

Observability of [A, C]

↔ Reachability of [A′, C ′]

↔ spectrum assignability of (A′ − C′Γ′)

↔ spectrum assignability of (A − ΓC)

(by pole placement theorem)
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Observer/Estimator

Choose Γ so that all eigenvalues of (A − ΓC)

are in C−.

Then, as t → ∞,

e(t) → 0

x(t) → x̂(t)

Thus the state x̂(t) asymptotically estimates

x(t).

Suppose K is such that (A−BK) has spectrum

⊂ C−. Consider the closed loop system

ẋ = Ax + B(−Kx̂ + v)

obtained by using the state estimate x̂ in place

of x.
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Observer/Estimator/Controller

Then the combinaton of observer, plant and

controller takes the form

ẋ = Ax − BK(x − e) + Bv

= (A − BK)x + BKe + Bv

ė = (A − ΓC)e

The overall dynamics is governed by the matrix

Aoverall =

[

A − BK BK
0 A − ΓC

]

choice of K and Γ as above ensures that

spectrum (Aoverall) ⊆ C−
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Separation Theorem

The control system structure above takes the

form

v -
+

-��
��
∑

-
u

plant -
y

- x̂Observer

6

Controller �

? ?

This is a powerful prototype for control system

design in which the choices of controller and

observer parameters can be made in a sepa-

rated/independent manner.
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Separation Theorem

We return to this idea in later lectures of Khaneja

and James from a variety of perspectives.
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