Applied Dynamics Seminar: Derek Paley, "Bifurcations in dynamical control systems"

Thursday, October 18, 2018
12:30 p.m.
1207 Engineering Research Facility
Taylor Prendergast
tprender@umd.edu

IREAP Applied Dynamics Seminar

Bifurcations in dynamical control systems for aerospace applications

Derek Paley
Willis H. Young Jr. Professor of Aerospace Engineering Education
Department of Aerospace Engineering
Institute for Systems Research

Abstract
This talk will discuss bifurcations in several dynamical control systems that arise in aerospace engineering applications. First, I will present the swimming dynamics and control of a flexible underwater robot based on closed-loop control of an internal reaction wheel. The feedback law stabilizes a limit cycle about the desired heading angle and produces forward swimming motion. Analysis of a global bifurcation in the dynamics under feedback control reveals the set of control gains that yields the desired limit cycle. Second, I will discuss a nonlinear control system consisting of a single vortex in a freestream near an actuated cylinder that represents an airfoil under a conformal mapping. Using heaving and/or surging of the cylinder as input stabilizes the vortex position relative to the cylinder. The closed-loop system utilizes a linear state-feedback control law, which gives rise to several bifurcations by varying the control gains. Lastly, time permitting, I will discuss a state-space model for representing the lift of an airfoil at high angles of attack. A feedback controller stabilizes a limit cycle in the angle of attack that provides greater (average) lift than a static pitch angle. In all three examples, incorporating dynamical systems theory complements the state-space modeling and control design.

remind we with google calendar

 

March 2024

SU MO TU WE TH FR SA
25 26 27 28 29 1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31 1 2 3 4 5 6
Submit an Event