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I. Abstract 
 
 The purpose of our project is to 
develop technology to translate 
electromyography (EMG) electrode 
measurements into reliable analog control 
signals.  We designed a system that consists 
of a method to easily set up EMG 
electrodes, to perform analog filtering, to 
amplify EMG signals, and software 
algorithms to extract analog control signals 
from the filtered signals.  Specific 
requirements for the system were the 
simultaneous use of multiple electrode 
channels at sufficient speed to eliminate any 
perceptible delay between EMG activity and 
the production of the analog control signal.  
The final form of the project consists of a 
demonstration using EMG readings to 
control a pointing device with two degrees 
of freedom. 
 

II. Introduction 
 

Electromyography (EMG), the 
electrical recording of muscle activity, is a 
relatively simple method to obtain a control 
signal directly from the body.  While this 
has a number of potential applications ([1], 
[2]), the accuracy of the control that can be 
obtained is limited by the characteristics of 
EMG signals.  Much research has gone into 
the best methods to accurately classify 
actions using an EMG signal, but these 
methods generally provide only ON/OFF 
digital control [1], [2], [3], [4].  Our project 
sought to explore different methods of 
processing EMG signals to provide full 
analog control.  In addition to the 
investigation of signal processing methods, 
our project involved the design of software 
and hardware to demonstrate this analog 
control with EMG signals.  This project was 
inspired by work performed at the 2004 
Telluride Workshop on Neuromorphic 
Engineering [5]. 

III. Materials and Setup 
 
 In order to read in EMG signals, 
standard wet-cell adhesive electrodes were 
used in a differential 
pair configuration.  
One common ground 
electrode was shared 
by all of the 
differential pairs.  
Amplification of the 
EMG signals was 
performed by a band-
pass amplifier circuit 
previously designed 
by a previous member 
of the laboratory [6].  The amplifier has a 
maximum gain of approximately 100 and 
cutoff frequencies of 10 Hz and 1 kHz 
respectively as shown in figure 2.   

Figure 1: Amplifier 
Circuit board in Position

 

 
          Figure 2: Amplifier Characteristics 
 
 To maximize the signal to noise ratio 
of EMG signals, amplification is performed 
as close to the electrodes as possible.  
Differential electrode pairs plug directly into 
the amplification circuit board, which is 
small enough to be easily supported by the 
electrodes’ adhesive.  A PMD-1208FS 
(Measurement Computing) USB-interfaced 
data acquisition tool was used to convert the 
amplified EMG into digital values.  The 
analog to digital conversion has a range of 
±1V and a resolution of approximately 
0.5mV.  Using the device in this 
configuration it is possible to sample from 
one to four separate channels at frequencies 
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up to 12.5 kHz.  For the purposes of this 
project each channel was sampled at a 
frequency of 1 kHz.  This frequency was 
chosen as a compromise between signal 
information loss and computational 
slowdown due to a large number of samples. 
 Digital processing of the EMG 
signals was performed on a standard laptop 
by a Windows application written in C++.  
The application generates control signals 
that are converted into analog voltages by 
the PMD. This analog voltage signal was fed 
into our test device, which consisted of a 
laser pointer mounted on two servo motors.  
A PIC12CE674 (Microchip Inc.) 
microcontroller chip was also used to covert 
the analog control signals into absolute 
positions commands for the motors.  The 
motorized test device is pictured below.  The 
large motor in the bottom-right of the 
picture controls horizontal movement, while 
a smaller motor obscured behind the metal 
bracket provides up-down motion.  The laser 
pointer is attached to the metal bracket with 
black electrical tape. 
 

 
Figure 3: Motorized Test Device 

 
Prior to beginning continuous 

operation of the analog control system, 
several sets of preliminary data must be 
recorded.  The first set of data needed is a 
sample with no movement by the user; this 
data allows the system to determine the 
baseline noise present in each channel and to 
set noise thresholds below which no actions 
will be recognized.  The noise threshold is 

based on a multiple of the standard deviation 
of this data after it has been rectified and 
filtered via a low pass filter.  The multiple 
can be varied depending on the degree of 
input sensitivity desired by the user.  After 
this, sets of training data must be recorded 
for each action that is to be recognized by 
the system.  The appropriate training 
procedure must be run on this training data 
according to the action classification method 
that will be used (see section V).  This 
training establishes a link between each 
action and the EMG signals that accompany 
them. 
 

IV. Signal Processing 
 
 With the exception of the band-pass 
amplification circuit, all of the processing 
performed on the EMG signal was 
performed digitally using a laptop computer.  
Data was collected in windows of 31 
samples; this number was chosen as it was 
the minimum window size for which the 
PMD could perform continuous sampling.  
This window size indicates that over 30 
windows per second would be analyzed at a 
sampling rate of 1 kHz on each channel.  On 
the 1.4 GHz Pentium M laptop used during 
testing, the computational work done 
imposed almost zero additional delay into 
the system for all of our processing done at a 
1 kHz sampling rate with four channels.  
However the same configuration sampled at 
2 kHz about 2.5% of the sampled data was 
lost as the processing could not keep up.  
Optimization of the processing program 
could likely increase the maximum lossless 
sampling frequency. 
 Processing of the EMG signal took 
place in six major steps.  The first of these 
steps, (1) analog processing, consisted of the 
amplification and filtering of the raw EMG 
signal before it was sent to the PMD.  The 
next five steps were (2) digital 
preprocessing, (3) low pass filtering, (4) 
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thresholding, (5) action classification, and 
(6) analog calibration.  The first four steps 
are described in detail below and the final 
two steps are described in sections V and VI 
of the paper.  The first three steps improve 
the results of action classification [3]. 
 Figure 4 is a representative diagram 
of the major changes a signal undergoes 
during processing.  In the figure the light 
and dark lines represent two separate 
recording channels from two different 
electrode pairs.  The thresholding step is not 
shown separately in this figure. 
 

 
Figure 4: Simplified Signal Processing Steps 

 
 Digital preprocessing involved 
subtracting out the mean of the EMG signal 
and full-wave rectification to produce non-
negative signals.  Low-pass filtering was 
then performed using one or more passes of 
a moving average filter over the signal.  In 
general, more smoothing produced a cleaner 
signal that better represented the physical 
movement that was recorded.  On the other 
hand, more smoothing produced a time 
delay between physical movement and the 
processed signal, which made discrimination 
of shorter, faster movements more difficult.  
A default value of 30 samples was chosen in 

order to be compatible with the method in 
which the C++ application received 
incoming data; this value is quite low and 
imposes a minimum time delay or distortion 
of fast signals. 
 Thresholding is performed after 
smoothing of the signal.  The thresholding 
process moves through each time instance of 
the signal and looks at all of the channels.  If 
none of the channels are above their 
previously determined noise levels, all 
channel values are set to zero.  If any of the 
channels are above their noise level, all 
channel values are retained.  In this way the 
control system insures that noise and very 
minor muscle activity produces zero analog 
output. At this point, downsampling is an 
optional step that can be performed if 
computational speed and/or memory are at a 
premium, such as in an embedded system.  
Since the signal has been put through a low-
pass filter, it is possible to downsample to 
much lower frequencies without losing 
significant information.  Downsampling will 
speed up the action classification phase of 
the signal processing significantly.  Since 
the laptop used for our testing was not 
slowed down by the additional computation, 
no downsampling was performed during our 
testing. 

 
V. Action Classification 

 
 There are a number of different 
algorithms available for action 
classification.  While the choice of 
algorithm will determine the accuracy of the 
system’s classifications, the final analog 
calibration step is independent of the 
classification method used.  For our work 
we tested a support vector machine (SVM) 
classification method (inspired by its use in 
[4]), a Gaussian distance function, and a 
simple Euclidean distance function.   
 For each of the classification 
methods, some form of training must be 
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performed for each of the actions to be 
recognized.  Training data for each action is 
recorded after noise data has been collected 
and before placing the system in continuous 
classification mode.   

The SVM method used was the 
LIBSVM package [7].  Though experiments 
using it in MATLAB with recorded data 
were successful, we were not able to 
successfully implement the package in our 
C++ application.  The Gaussian distance 
was tried as it was believed to be a 
compromise between complexity and 
accuracy.  This method also worked well in 
MATLAB with recorded data; it was 
implemented in the C++ application but did 
not perform as well as expected.  As of this 
time the reason for this poor performance 
has not been determined.  The Euclidean 
distance function, chosen for its lack of 
complexity, was successfully implemented 
in the C++ application.  Regardless of the 
method of classification used, only one 
action can be classified at each point in time. 

For any classification algorithm 
used, each sample of data is sent to the 
algorithm to determine the action which best 
matches the data.  Action classification is 
performed over windows of data: the action 
with the greatest number of classification 
matches in each window determines the 
classification of that window.  The system 
also determines the action with the second 
greatest number of classification matches in 
the window.  At this point, the system 
decides whether to use the classification 
assigned to the new window of data or to 
retain the classification assigned to the 
previous window.  In order to make this 
decision, the system compares the number 
of classification matches for the first and 
second-most likely actions that it has 
recorded for that window.  If the difference 
in their respective number of classifications 
does not exceed a specified separation, the 
classification of the previous window is 

retained.  If the previous window was 
classified as an action (i.e. not “no action”) 
then the separation needed to adopt a new 
classification is increased.  This results in 
system behavior in which an action 
classification has inertia proportional to the 
separation value.  A higher separation value 
results in more stable action classifications 
that are easier for the user of the system to 
control; a lower separation value increases 
the system’s sensitivity to changes in 
actions. 
 

VI. Analog Output 
 
 Forming a stable analog output from 
the EMG signal consists of using the action 
classification results to intelligently shape 
the smoothed signal produced by low-pass 
filtering.  When training data is recorded for 
each of the classifiable actions prior to 
continuous operation of the EMG system, 
maximum EMG signal intensities are also 
recorded for each of the actions.  During 
continuous operation, mean signal 
intensities are determined for each window 
of data.  These averaged intensities are then 
normalized to a 0.0-1.0 scale relative to the 
maximum signal intensity previously 
recorded for that action during training.  For 
the purposes of calculating the signal 
intensities, the intensity at a given point in 
time is the average intensity of all of the 
individual channel intensities at that time. 
 After the signal intensity has been 
normalized for a window of data, this 
intensity is then averaged with the last n 
window intensities.  The value of n depends 
on the application of the EMG control 
system: higher values of n make the output 
more stable but also decrease the speed with 
which it responds to changes in the system 
user’s muscle activity. 
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VII. Results 
 
 The EMG control system described 
above has been able to successfully 
demonstrate analog control with two degrees 
of freedom using three differential electrode 
pairs placed on the forearm.  The weakest 
aspect of the system is its action-
classification component: the highest 
accuracy that can be achieved is roughly 
two-thirds correct classifications.  
Furthermore, the accuracy is highly variable 
depending on the position of the arm and 
tends to degrade over time since the training 
data was recorded.  The most obvious 
improvement to the system’s classification 
ability would be to replace the system’s 
simple Euclidean algorithm with one of the 
more sophisticated methods available. 
 Data recordings for two different 
user tasks are located in the Appendix.  
Several observations can be made from 
these recordings.  First, it can be seen that 
having a shorter sampling window can lead 
to oscillations between action classifications 
in borderline situations.  Increasing the size 
of the classification window ameliorates this 
effect and also slightly increases the relative 
smoothness of the output signal.  However, 
increasing the window size also results in a 
loss of time-based precision, though the 
larger value used in the recordings is still 
small enough to successfully capture almost 
all of the high-speed motions.  A larger 
output averaging length (the value n in 
section IV) increases the accuracy to which 
the user can maintain a fixed value from 
approximately +10% to +5% though it also 
introduces a tendency to overshoot a fixed 
value that the user must be conscious of.  
The output strength is also much slower to 
adapt to user changes.  On the other hand, 
the lower adaptation speed results in less 
fluctuation of the output strength. 
 In its primary research goal, the 
demonstration of analog control, the system 

has achieved moderate success.  The system 
is clearly capable of producing different 
levels of output strength that can be 
consciously controlled by the user of the 
system.  The relative stability and precision 
of this control can be varied by adjusting 
system parameters as is described above. 

Two secondary goals for the analog 
control system were to successfully operate 
with multiple electrode channels and to 
exhibit very rapid response to the user’s 
muscle activity.  Regarding the first of these 
goals, the control system is capable of 
working off of four electrode channels 
simultaneously.  Unfortunately, the 
effectiveness of the system in terms of 
classification accuracy degrades as more 
electrode channels are added, making the 
system less reliable.  Conversely, with only 
two electrode channels the system can be 
very accurate in making classifications.  The 
four channel maximum is a limitation of the 
PMD used for data acquisition.  Eight 
channels, the absolute maximum the PMD 
can support, could likely be used with a 
signal amplifier with a gain of at least 1000x 
(an order of magnitude larger than the 
current amplifier) or with a more sensitive 
data acquisition tool. 
 The speed of response of the system 
is generally quite good; sudden muscle 
actions typically produce output with no 
noticeable delay beyond that of the 
mechanical system being controlled.  In the 
recordings of fast user motion located in the 
appendix, only one parameter setting 
resulted in any missed user movements.  
This case represents the most rapid user 
movement possible and it is unlikely that 
such reaction speeds would be required in 
any real application.  The speed of 
transitions between actions is influenced by 
the degree to which the separation required 
to adopt a new action classification has been 
set to.  While a higher value tends to make 
user control more stable, it also slightly 
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X. Appendix 
 

Data recordings for two different user tasks are located below.  Two different system 
parameters were tested with two values each in order to produce four sets of recordings for each 
task.  The first parameter varied was the sampling window size used to collect data: both the 
default size of 31 and a larger size or 93 were used with low pass filter sizes of 30 and 90 
respectively.  The second parameter was the number of sampling windows over which the output 
strength was averaged (n); this was varied between 20 and 40 windows. 

 
Recording set 1: Slow movement control with two actions (light and dark lines) 

For this set of recordings, the wearer of the electrodes attempted to slowly adjust the 
system’s output strength to 0.7 and hold it at that level, using a continuously updated display of 
the output as feedback.  This test was undertaken using two electrodes and two directions, each 
recording shows this task first right and then left.    Some intermittent activity due to shifting by 
the user between the task movements has been classified as actions. 
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Recording set 2: Rapid movement control with two actions (light and dark lines) 
 

 
For this set of recordings, the wearer of the electrodes waved their hand back and forth 

for a period of several seconds.  Each recording contains waving at three speeds: the first is 
waving at approximately 1-2 direction changes per second, the next is at approximately 4 
direction changes per second, and the third is at the maximum rate the user could wave their 
hand (approximately 8 direction changes per second).   

It should be noted that when smoothing over multiple output windows only windows 
with the same action classification are considered.  This results in each separate action following 
a different smoothed curve in the figures above. 
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