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Abstract:

This paper investigates the manner in which wireless network capacity scales as a function of the number of users under different communication schemes. The work concerns three major models – the pure-ad hoc network model with stationary nodes outlined in the cornerstone Gupta-Kumar paper, a pure ad-hoc model with node mobility, and a hybrid wired-wireless network model. The models are first implemented using MatLab, and the established theoretical capacity-scaling results are validated. Improvements such as MIMO communication and multiple-relay routing are then proposed for each scheme and appropriately tested.

I. Introduction & Motivation


Wireless networks are becoming increasingly prevalent. Universities, public buildings, café’s and other establishments offer a wireless connection to the internet. Cellular phones are nearly ubiquitous, and almost all populated areas have wireless access to a relay tower. Bluetooth allows one to connect peripheral devices such as printers and cell phones wirelessly to a computer. All of these applications are centralized, meaning all of the devices communicate wirelessly to central hubs which then provide a wired connection to other destinations. A new class of networks headed for widespread use is the wireless ad-hoc network. This network is decentralized, meaning that the users communicate to each other without a wired hub. The users are permitted to cooperate with each other in any fashion to ensure that the data packets reach their destinations. These networks have enormous potential, and possible future applications include civilian and military wireless sensor arrays, able to gather information on the battlefield or embedded in structures to provide assessment of structural stability. 


Centralized wireless networks have been the subject of an enormous amount of research in the last two decades. Consequently, their behavior and capacity are well understood. The presence of wired access points and the ability to dictate their topology allows one to use symmetry arguments in capacity calculations. In contrast, the random nature and lack of structure of ad-hoc networks prevents the use of many symmetry arguments, making any theoretical results difficult to obtain.


The fundamental question to be addressed in analyzing ad-hoc networks is this: how does the information throughput of the individual user scale as the number users in a given area becomes extremely large? This question has first been comprehensively answered by Piyush Gupta and Dr. P.R. Kumar in their seminal paper titled “The Capacity of Wireless Networks” [1]. The authors devised a scheme for reliable ad-hoc communication and showed that the individual user capacity tends to zero as the number of users in the network approaches infinity. Furthermore, the rate of capacity decrease was shown to be proportional to [image: image240.emf]-4 -3 -2 -1 0 1 2 3 4
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The paper, published in 2000, has inspired a flurry of research activity in recent years. Communication models taking advantage of node mobility [2], network coding [7] and MIMO communication [8] have been proposed, and their capacity-scaling laws derived. In addition, Dr. Kumar and several other authors have explored the concept of a hybrid network, which allows for ad-hoc inter-node communication as well as communication between nodes and a network of wired towers.  

 
Since research dealing with ad-hoc network capacity is still cutting edge, there are few publications summarizing it and virtually none at the introductory level. One purpose of this paper is to fill that gap, explaining and analyzing three of the most important among current ad-hoc network models. In each case, the author will attempt to provide an intuitive derivation of the capacity scaling laws, including any necessary background material and as much mathematical rigor as possible. The other purpose of this paper is to explore the models from a hands-on perspective. Accordingly, simulations from MatLab validating each of these models will then be presented. Additionally, changes to the models attempting to improve upon the initial capacity results will be proposed and validated through MatLab simulation.  
This paper is organized as follows: Section II details Gupta and Kumar’s work - a pure-ad hoc network model with stationary nodes. Section III discusses some of the recent research in the field of ad-hoc networks. Section IV concerns pure ad-hoc networks with mobile nodes, and section V discusses hybrid networks. Section VI concludes. 
II. Pure Ad-Hoc Network with Stationary Nodes


1. Motivation:


How is the capacity of an ad-hoc network calculated, and how should individual nodes communicate with each other? An obvious answer is that every node should communicate directly to its destination. Let us examine why this is highly inefficient.  


Let S be a disk of unit area and radius of [image: image2.wmf]1

p

. Place n stationary nodes with coordinates Xi on S in such a manner that they are uniformly distributed on the surface of the disk
, as shown in Figure 9b. Have each node choose a random destination amongst n-1 other nodes. Now, consider two models for determining whether a direct transmission will be successful:


I. The Protocol Model:

If node Xi transmits to node Xj, the transmission is successfully received by node Xj if
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for every other node Xk transmitting over the same channel. [image: image4.wmf]D

 is the guard band coefficient

II. The Physical Model:
Let [image: image5.wmf]{;}
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 be the subset of nodes simultaneously transmitting at the same time instant. Let Pk be the power level chosen by the node [image: image6.wmf],
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where 
[image: image9.wmf]b

 is the minimum signal-to-interference ratio (SIR), N is the ambient noise power level, and [image: image10.wmf]a

is the fading coefficient.

The Protocol Model states that the distance between the two successfully communicating nodes (scaled by the guard-band factor [image: image11.wmf]D

 to provide reliability) should be less than or equal to the distance from the receiver to any other node in S. The Physical Model establishes a more general requirement, in that the ratio of the received power (Pi at a distance [image: image12.wmf]ij
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) to interference power (noise power N plus the sum of received powers from all other nodes) should be greater than some constant in order to guarantee a successful transmission. 


The Protocol and Physical models are equivalent, so the Protocol Model will be used for the direct communication example. Since the Xi’s are uniformly distributed, the distance between any Sender-Destination (S-D) pair is a uniform random variable d, with [image: image14.wmf]02
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and expectation value [image: image15.wmf]1
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. Each successfully communicating pair will then create an interference circle of radius d around the receiver in which no other nodes may transmit. Because the interference radius does not decrease with n, the number of circles that can be contained (or partially contained) in S remains approximately constant for all n. This means that a constant capacity will need to be divided between n users, yielding a [image: image16.wmf]c
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throughput for some arbitrary constant c. It can be stated that
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This is a rather pessimistic scaling law, one wonders whether there exists a transmission scheme which can offer better individual throughput. Piyush Gupta and Dr. P.R. Kumar have devised just such a scheme in [1]. The rest of the chapter is devoted to explaining and examining their work. 

2. Big Theta Notation:


Before we proceed further, it is necessary to define a tool for describing network capacity. Due to the random nature of the ad-hoc network, this capacity is not a smooth function of the number of nodes. Random node locations lead to random traffic patterns in each realization of the network, and consequently per-node capacity tends to fluctuate. However, in some instances it is possible to derive upper and lower bounds which hold for any n. An analytic function which can serve as both an upper and lower bound is given the designation [image: image18.wmf](())
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The capacity function [image: image19.wmf]()
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3. Brief Introduction to the Algorithm


Gupta and Kumar’s scheduling algorithm calls for dividing the surface S2 of a sphere into a number of cells whose size decreases with n. The Protocol Model is employed, and transmission radius is adjusted so that a user in a particular cell can communicate with any user in any adjacent cell. Cells are ‘colored’ (assigned transmission time slots) so that no cell interferes with any other simultaneously transmitting cell under the Protocol Model. Thus, clusters of cells can transmit simultaneously. 
A sender in a given cell wishing to communicate with some receiver sends information to an adjacent cell which intersects the straight line path from the receiver to the transmitter. That cell in turn transmits to a cell further along the route in its own time slot, and so on until the packet reaches the destination. The cell capacity is divided (through time division) between the traffic generated by the cell’s nodes and any relay traffic the cell needs to handle. 
This algorithm allows for a per-node throughput of [image: image23.wmf]1
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 - a clear improvement over the direct transmission scheme. Let us now examine the algorithm in detail.
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3. Network Structure


A. Voronoi Cells


The first step in the algorithm is the division of a surface S2 into cells, also called a tessellation. Gupta and Kumar use a Voronoi tessellation, in which m generator points are placed on S2 and a cell is defined as a set of points which are closer to a specific generator point than any other. More precisely, let [image: image26.wmf]12
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 be the set of m generator points on a surface S2. The Voronoi cell [image: image27.wmf]()
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Examples of Voronoi Tessellations on both a disk and the surface of a sphere can be seen in Figure 1. Dots represent the generator points of each cell. 

It is important to note that in the subsequent derivations, the spherical environment is used instead of the disk. This is done because the surface of a sphere does not have edges, allowing for a uniform traffic distribution. The same is not true for a disk, where a route from any disk edge to an opposite disk edge must necessarily pass close to the center of the disk, creating a heavy traffic ‘hot spot’. According to [1] however, the capacity scaling results derived for an ad-hoc network on a sphere hold for an ad-hoc network on a disk, making the two realizations equivalent from a simulation standpoint. With this fact in mind, a disk is used for all further illustrations and simulations. This is done for two reasons. First, a sphere does not have a well-defined coordinate system, making practical implementation difficult. Additionally, it is impossible to observe the entire spherical network at once, making more it difficult to understand than a network on a flat surface S.
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By dividing a surface S2 of an ad-hoc network into Voronoi cells one can divide the available time into a constant number of slots, allowing increasingly large clusters of cells to transmit simultaneously. The construction of just such a scheduling scheme is the eventual goal of the following sequence of derivations.

Firstly, it is desired that all of the Voronoi cells in the tessellation have similar area. Bounds on the area will guarantee similar numbers of users are placed in each cell - a uniformity which is absolutely necessary in deriving capacity bounds. Gupta and Kumar achieve this similarity with the following theorem:

Thm 2.1: For every [image: image31.wmf]0
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there is a Voronoi tessellation of S2 with the property that every Voronoi cell contains a disk of radius [image: image32.wmf]e

and is contained in a disk of radius [image: image33.wmf]2
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Proof: The proof of this theorem is constructive. Denote by [image: image34.wmf](,)
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 This scheme ensures that all generators are at least [image: image41.wmf]2
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apart, and all other points on S2are within a distance of [image: image42.wmf]2
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from the nearest generator. Otherwise, it would be possible to insert an additional disk of radius [image: image43.wmf]e

, which is impossible after the algorithm has completed. 

Figure 2 illustrates the process. Fig 2a shows an addition of a sphere, while Fig 2b shows the disk placement at the end of the algorithm.
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The next step is to determine how [image: image45.wmf]e

scales with the number of nodes. Gupta and Kumar choose [image: image46.wmf]e
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This ensures that a disk of unit area contains [image: image49.wmf]log()
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 disks/Voronoi cells. The user nodes are distributed uniformly throughout the disk, ensuring that each cell contains  [image: image50.wmf]/(log())
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 user nodes. This fact becomes important later in the derivation.

B. Transmission Radius 

With the size of the cells established, it is necessary to choose an appropriate user transmission radius r(n) . In order to for a user in a given cell to communicate  with any other user in any adjacent cell, r(n) must be large enough to reach any part of the adjacent

cell. As seen in Figure 3a, users in adjacent cells can be separated by a distance of up to [image: image51.wmf]4
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. Consequently, 

[image: image52.wmf]()8()

rnpn

=



 MACROBUTTON MTPlaceRef \* MERGEFORMAT (2.6)


C. Interfering Neighbors & Coloring

A well-defined transmission radius allows one to determine the number of cells a transmitting user interferes with. According to the Protocol Model, if the transmission radii of two users overlap then the receivers may not successfully receive the message. Therefore, two cells are defined as interfering 
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neighbors if there is a point in one cell which is a distance [image: image55.wmf](2)()
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 from some point in the second cell. The number of interfering neighbors for a given cell is stated in the following theorem:

Thm2.2: Every cell V(ai) has no more than c1 interfering neighbors, where the constant c1 depends only on [image: image56.wmf]D
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Proof: Cells are interfering neighbors if they contain two points which are no more than [image: image57.wmf](2)()
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units apart. Figure 3b shows an extreme case – an interfering cell touches the interference radius at exactly one point - users X1 and X2 positioned as shown are separated by [image: image58.wmf](2)()
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 units. From the diagram, it is apparent that a disk of radius [image: image59.wmf]6()(2)()
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 must contain every interfering cell. Since every cell contains a disk of radius p(n), the number of cells in the interference disk is upper bounded by
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The bounded number of interfering neighbors means that the transmission capacity can be divided into a constant number of time slots, allowing the users in each cell a constant amount of time to transmit. This scheduling policy, constructed through the use of arguments from graph theory, is formally stated in the following theorem:


Thm2.3: In the Protocol Model there is a schedule for transmitting packets such that in every (1+c1) slots, each cell in the tessellation gets one slot to transmit, such that all transmissions are successfully received within a distance r(n) of their transmitters.


Proof: The collection of Voronoi cells on S2 can be represented by a graph G(E,V), with a set of vertices V representing the generator points of each cell and a set of edges E connecting each cell to its interfering neighbors. An example of such a graph is shown in Figure 4a. Note that for clarity of presentation, each cell interferes with only the adjacent cells. A graph generated according to Gupta and Kumar’s algorithm is shown in Figure 4b.

A vertex in G(E,V) connected to c1  other vertices is said to have a degree of c1. If k is the largest degree of any vertex in G(E,V), the graph G(E,V) is also said to have a degree of c1. 
A theorem from graph theory [12] states that a graph of degree no more than c1 can have its vertices colored (labeled) by using no more than (1+ c1) colors such that no two adjacent vertices have the same color. It is proved by induction: for a graph with n = 2 vertices each vertex has a degree 1, so the graph can be colored with two colors. Now, let G be an arbitrary graph with n > 2 and suppose that the proposition is valid for all graphs with n-1 vertices.  Take a vertex v from G and delete it, along with any edges incident on it. This leaves a subgraph H with n-1 vertices, for with the proposition is valid. Add a vertex of degree less than or equal to c1. Since the new vertex is connected to at most c1 others, the resulting graph can be colored with at most [image: image61.wmf]1
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 colors. The theorem is thus proved.


It is easy to draw an analogy to temporal scheduling in an ad-hoc network. If every cell on S2 has at most [image: image62.wmf]1
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 interfering neighbors, the Capacity can be divided into [image: image63.wmf]1

(1)

c

+

 slots. Since the number of interfering neighbors has been shown to be upper bounded, the number of time slots is not a function of n.  
Figure 5b shows a coloring scheme based on the interference graph in Fig. 5a (reproduced from Fig. 4a). Note the degree of spatial reuse that the coloring allows – All of the cells having the same color may transmit at the same time with guaranteed success.  
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3. Users, Routing

With the network structure in place, n users are randomly and identically distributed on the surface S2 of a sphere. Each node Xi wishes to communicate to the node Xdest nearest to a random location Yi. Since both and Xi and Yi are independently and identically distributed (i.i.d.) on S2, the sequence [image: image66.wmf]1
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 is also i.i.d. Let Li be a straight line segment on S2 connecting Xi to Xdest. The i.i.d. property can then also be applied to the sequence of lines Li :
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This property is extremely important, since it ensures that every cell on the sphere has an approximately equal traffic load and enables one to characterize the throughput capacity of every cell at once.
A user within the bounds of a Voronoi cell V is said to belong to that cell. Transmission time is divided amongst the cells, with each cluster of cells (those having the same color) having its own time slot in which to transmit. Within a given cell, time is further subdivided to allow individual nodes to transmit. Every node in the network generates and transmits data at a rate of[image: image68.wmf]()

n

l

. Additionally, a cell must relay any of the traffic received from other cells. The manner in which these relays occur is assumed (but not required) to be between a single node and a receiver. Alternative schemes are proposed and tested in Section 6. 

As an aside, the Voronoi cells are not physically present in the network, and therefore each cell needs at least one user node in it in order to be able to function as a relay. Earlier, it was shown that the number of nodes in a given cell scales as[image: image69.wmf](log())

n

Q

. This trend suggests that as the number of users tends to infinity, each cell will contain at least one node with high probability. Gupta and Kumar prove this result more rigorously in section F of [1]. The reader is encouraged to examine their derivation for more details.

4. Bounds on Network Capacity 

Figure 6 shows the setup so far. S is divided into Voronoi cells, and users are represented by x marks. Sender-Receiver pairs connected by straight lines are shown in 6a and 6b. A setup with 100 users is shown in 6a for clarity of presentation, while 6b contains 1000 users. Two sequences of cells to relaying a message along an-approximately straight path is shown in 6c. Finally, 6d shows routes of all the packets transmitted in a particular time slot. Note that within a cell, a time is further subdivided into as many time slots as necessary to carry both user generated and relay traffic.
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Characterizing per-node capacity requires the knowledge of the traffic load handled by each cell. To find it, it is first necessary to determine the mean number of straight-line Source-Destination routes which intersect each cell. The following theorem expresses the relationship:


Thm 2.4: For every line Li and every cell V in the tessellation

Prob(Line Li intersects V)[image: image74.wmf]2

log()

n

c

n

£



 MACROBUTTON MTPlaceRef \* MERGEFORMAT (2.9)

Proof: Every cell in the tessellation is contained in a disk of radius [image: image75.wmf]2
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or equivalently [image: image76.wmf]20log()
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p

. Suppose a user node Xi lies a distance d from the disk, as illustrated in Figure 7.
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. Since the line Li beginning at Xi has a uniform radial distribution (it can point in any direction), making [image: image83.wmf]a

 proportional to the probability that it intersects V. Additionally d is a random variable not depending on n with a value of no more than [image: image84.wmf]sphere
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 and the theorem is proven.
This theorem finally makes it possible to state the amount of traffic handled on average by each cell. If there n communication lines [image: image86.wmf]1
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 of intersecting a particular cell, the mean number of lines passing through each cell is:
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The throughput of an individual node follows directly. Let W be the overall capacity of the network, in bits/second. An individual cell has a constant capacity of [image: image90.wmf]1
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available to it, according to Thm 2.3 . According to (2.10)

 however, a given cell needs to transmit 
 bits per second, with 
 chosen so that the quantity does not exceed capacity. The relationship 
, dictates the following bound on individual node send rate:
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This is the most important relation presented in “The Capacity of Wireless Networks”. Using the bound on[image: image95.wmf]()
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5. MatLab Implementation

Gupta and Kumar’s theoretical capacity scaling law has been conclusively proven – in fact, all current papers dealing with ad-hoc network capacity include it as a cornerstone result. However to the best of the author’s knowledge, no paper has as of yet the obtained the result through numerical simulation. This section discusses two realizations of just such a simulation - a rapid ‘Line Counting’ version and a more thorough ‘Structural’ version. Results of the Line Counting simulation are presented, and the Structural simulation is shown to converge to its Line Counting counterpart after a sufficient number of iterations. The problems of bounding a Voronoi tessellation to a unit disk and generating a uniform user distribution are also discussed.   

A. Line Counting Simulation


The Line Counting simulation of Gupta and Kumar’s network model takes advantage of the fact that the amount of traffic a cell needs to relay is proportional to the number of lines crossing it. The network is first constructed as described in Section 4. Each cell has number of straight line paths Li intersecting it plus some number of users contained within it. Every user in the network has a common rate[image: image102.wmf]()
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, so the cell allocates equal transmit time to each source packet and relay packet. Since [image: image103.wmf]()
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 is the same for all nodes, it has to be defined by the cell with the highest number of intersections (the most source & relay traffic). If RV is the number of lines Li passing through the cell V and SV is the number of source nodes contained in the cell V, the common rate of the network is
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Note that under this scheme, one cell operates at capacity while others operate below capacity. With the constraint of a common rate[image: image105.wmf]()
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, it is not possible to do better. An alternative is suggested in Section 6.

The results of the Line Counting simulation are presented in Figure 8a. For each n, the simulation is run 20 over random cell topologies with 10 iterations (random node placements) per topology. The resulting experimental [image: image106.wmf]()
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’s are clustered thus in bands. It is important to note that the width of the bands decreases as the number of nodes becomes larger. The red line connects the average[image: image107.wmf]()
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’s for each n. It is bounded on both sides by curves of the form [image: image108.wmf]log()
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, validating the scaling law stated in (2.12)
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B. Structural Simulation
The Structural simulation actually models inter-cell communication. All cells start with [image: image111.wmf](
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 , i.e. a rate determined purely by the number of nodes they contain. In each time slot, the nodes of each cell cluster relay packets of information to the cells along the routes Li. Each cell must be able to transmit all of its source and relay traffic during its timeslot. Otherwise, it lowers the common rate[image: image112.wmf]()
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 by a number proportional to the excess traffic it has accumulated.  It is not surprising that after a finite number of iterations,[image: image113.wmf]()
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 converges to the value predicted by the Line Counting realization (as shown in Figure 8b). The Line Counting realization is therefore validated.
C. Generating a Random User Distribution
While it is easy to state that the user nodes Xi are uniformly distributed on the unit disk, actually generating the distribution presents somewhat of a challenge. One method is to generate points with uniformly distributed rectangular coordinates [image: image114.wmf][1/,1/]

x

pp

Î-

 and [image: image115.wmf][1/,1/]

y

pp

Î-

, discarding any points outside of the unit disk (i.e. [image: image116.wmf]22
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) .  This procedure is computationally wasteful, and the process of discarding points may destroy the uniformity of the distribution. Instead, points should be generated using polar coordinates.

Using polar coordinates presents additional problems. If [image: image117.wmf]r
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 are drawn from uniform distributions and converted into rectangular coordinates according to 
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an incorrect distribution shown in Figure 9a results. This occurs because every radial band [image: image120.wmf]dr

on average has the same number of users generated on it. Thus, progressively smaller bands closer to the center produce a greater user density. According to [3], the solution is to modify the conversion in (2.14)

. It can be shown that a conversion
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yields a uniform polar distribution. It is shown in Figure 9b. 
 [image: image122.png]
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D. Bounding the Voronoi Cells to the unit disk.

 
The generation of Voronoi cells from a set of generator points is a well-documented procedure. In fact, a function in MatLab can generate a Voronoi tessellation and provide the user with the resulting cell topology. However, the function is not readily adaptable for the Gupta-Kumar model. Since the procedure tessellates the entire infinite plane, some Voronoi cells may have an infinite area. The bounds on these cells can not be drawn, as evident from Figure 10a. Additionally, even if the generator points are within the unit disk, some cells may extend beyond its bounds (again, see Figure 10a). 
A corrective algorithm has to binding both of these cell types to the unit disk. In addition, it needs to preserve cell topology (adjacent cells share vertices and edges) and neighbor-maps of individual cells. It proceeds thus: first, a border cell Vi is found. Two 
[image: image124.png]
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other border cells [image: image126.wmf]r

V

and [image: image127.wmf]l

V

 which are right and left neighbors of the current cell are then found. Two lines are drawn connecting Vi’s generator point [image: image128.wmf]i

a

 to [image: image129.wmf]r

V

and [image: image130.wmf]l

V

’s generator points [image: image131.wmf]r

a

and [image: image132.wmf]l

a

. The perpendicular bisectors of these lines form the cell boundaries. It now remains to find the intersections between the bisectors and the unit disk. The intersections define the two corners of a cell. Additional edges may be added to the cell topology to form the outside arc. The algorithm proceeds around the circle, correcting border cells until it arrives at the original corrected cell. The results of a completed bounding procedure are shown in Figure 10b.

5. Proposed Improvements


The random network topology as defined in sections 4 and 5 achieves the [image: image133.wmf]log()

W

nn

æö

Q

ç÷

èø

 scaling law. The author has wandered whether it is possible to improve upon performance of Gupta and Kumar’s network by introducing variations to the communication protocols. This section proposes and discusses several of these variations. 

A. Local Maxima
A spherical ad-hoc network has a uniform traffic distribution. However, the edge effects of the disk environment create traffic ‘hot spots’, as stated in Section 3. A traffic distribution in the disk environment is shown in Figure 11a. It is apparent that the center of the disk has the highest traffic burden, while the peripheries generally have a low
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load. The rate[image: image136.wmf]()
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 is common to all nodes and generated according to (2.13)

, which means that most peripheral cells will be operating below capacity. Thus, assigning the rate 
 is suboptimum. Instead, An individual rate
should be assigned to each Source-Destination Pair. 
 is based on the cell intersected by Li with the heaviest traffic load. It is defined as:
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Figure 11b shows the individual user rates [image: image141.wmf]()
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 is lower bounded by routes Li encountering the cell with the heaviest traffic burden. However, many cells achieve a significantly better rate. For a disk with 500 users, 
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This improvement of 70% is presumed not to depend on n, since the traffic distribution pattern (Fig 11a) does not change with the number of users.

B. Simultaneous Transmission

Another potential improvement upon Gupta and Kumar’s scheme concerns how capacity is allocated within a given cell. The assumed algorithm is Time Division Multiple Access (TDMA). Equation (2.10)

 states that the average amount of traffic handled by a cell is 
.  According to Shannon’s classic result for point-to point communication in a noisy Gaussian channel, the capacity is given by 
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where BW is the total bandwidth of the channel, S is the signal power, and N is the power of the white Gaussian noise process. For a total cell capacity C, the per-user capacity can then be expressed as: 
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Now, consider a scheme where all nodes transmit simultaneously. Each transmitter uses the entire time slot (and therefore the entire channel capacity C), and each receiver treats all other transmissions as noise. In order to express the per-node capacity of this scheme, it is necessary to consider the traffic generated by the other nodes. Every source node Xi generates a random message ri drawn from either a discrete or a continuous alphabet with a uniform probability distribution. For example, for a binary alphabet, a user has an equal probability of generating a 0 or a 1. Furthermore, probability distributions of all the transmissions ri in the cell are i.i.d. By the Law of Large Numbers [4], the sum of the random variables ri is a Gaussian random variable. We may now use Shannon’s formula to describe the capacity. Figure 12a shows the basic communication scheme. Routes relayed from V1 to V2 may be approximated as originating at generator point a1 and ending at a2 (and thus subject to the same fading effects). The fraction of the total cell traffic from V1 to V2 may also be approximated as a constant c2. The capacity of an individual user may now be stated as:
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Figure 12b shows the total cell throughput as a function of the number of users. The total capacity under the TDMA scheme remains fixed, while the Simultaneous Transmission capacity asymptotically approaches a constant. For typical values of Bandwidth and Signal Power (>1), simultaneous transmission yields a constant advantage over TDMA. Note that while the users will no longer need to establish time slots, they will have to use increasingly redundant error-correction codes in order to achieve capacity.
B. MIMO Communication


Multiple Input Multiple Output (MIMO) communication involves the use multiple transmit and receive antennas, taking advantage of space diversity to achieve significant capacity gains. In the case of
 SHAPE  \* MERGEFORMAT 



the wireless ad-hoc network, users in one cell may act as a set of transmit antennas, while users another cell may act as a set of receive antennas. This section investigates two particular arrangements – relay of a single message by multiple nodes and relay of many messages by multiple receivers using cooperative decoding. 



Figure 13a demonstrates the basic principle of the multiple-transmitter single-receiver (MISO) setup. Time within a cell is still divided between source and relay traffic. A node in cell V1 transmits the message r, and every node in V2 receives the message      [image: image151.wmf]ii
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, where gi is the individual channel gain and ni is the noise. When there comes a time for V2 to relay V1’s message, all of the nodes transmit the message r. As Figure 13b shows, every node in V3 receives the message [image: image152.wmf]2
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 . By using Maximum Ratio Combining (MRC), each node in V3 can achieve an SNR of [image: image153.wmf](
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 which is the sum of SNR’s from each of the communication links
.The SNR achievable along the relay path is then effectively limited by the cell with the minimum number of nodes [image: image154.wmf]min(;intersects)
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 along the path Li. The average SNR (and thus capacity) is improved considerably over node-to-node relaying.

MISO communication improves capacity of every transmission along the path Li except for the first. The Min-Cut Max Flow law for information theory [4] states that capacity of a graph is restricted to the cut (inter-cell communication) with the lowest capacity. Thus, information can not flow through this improved relay network faster than through the original. However, MISO relaying helps guard against noise by significantly improving SNR of the relaying stages, making it a practical addition to Gupta and Kumar’s scheme.
MIMO communication is accomplished as follows. The nodes in V2 simultaneously send a sequence of n2 messages, written in vector notation as [image: image155.wmf]S
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. The nodes in V3 collectively receive a sequence of messages [image: image156.wmf]XHSW
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, where H is the channel gain matrix and [image: image157.wmf]W
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is the noise vector. With knowledge of the channel conditions, V3 may perform the operation [image: image158.wmf]1
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 to recover the n2 original messages. The capacity of this system scales almost linearly as the minimum of transmit and receive antennas (nodes).

 Note that since the nodes are not separate entities, they need to communicate with each other in order to obtain the system of equations [image: image159.wmf]X
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. This may be done in the cell’s ‘off time’, when another cluster of cells is transmitting. Since the nodes need only to reach the other nodes in the cell
, the transmission range may be much smaller than stated in (2.6)

. Let Gj be the graph formed by cells which do not interfere with the cells transmitting during the time slot j. Conceivably, there may exist a coloring of the graph such that all cells are able to share their information during the ‘off time’. 

Unfortunately, this scheme is bound to fail as [image: image160.wmf]n
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, since more and more information will need to be communicated between the nodes of a given cell in a constant amount of time. Thus, under the MIMO scheme, the capacity of a network may increase only by a constant amount. Given the amount of complexity added, this scheme seems impractical.

III. Recent Developments In the Field

As mentioned earlier, Gupta and Kumar’s original paper has generated much new interest in the field. As a consequence, there have been many recent publications establishing the capacity-scaling laws of ad-hoc networks under different setups. This Chapter presents a non-exhaustive list of papers on the subject.

Among the first to advance the work in [1] are M. Grossglauser and D. Tse. In 2001 they proposed a scheme using the mobility of nodes to provide an asymptotic throughput of [image: image161.wmf](1)
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at the cost of infinite delay and infinite queues [2]. Their work is studied in detail in Chapter IV.  
S. Toumpis and A. Goldsmith build the work in [2], bounding the delay and investigating the affect of fading. In [6], they derive show that per-node capacity scales as[image: image162.wmf]12
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 under both fading conditions and node mobility. They further show that for packet delays upper bounded by nd, the per-node capacity increases to  [image: image164.wmf]12
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M. Gaspar and M. Vetterli move in a different direction, using the network defined in [1] but considering only one S-D pair at a time [7]. Under this scheme, n-2 nodes are used as relays and arbitrarily complex network coding (the recombination of data at intermediate nodes) is allowed. This relay traffic pattern produces a per node throughput of [image: image166.wmf]log()

n

n

æö

Q

ç÷

èø

, improving on Gupta and Kumar’s original result. 
Another interesting paper by R. Nabar et. al. [8] proposes a MIMO communication scheme. As in [7], only one pair of users communicate at a time, the others serving as relay stations.  All nodes are assumed to have multiple transmit and receive antennas, and use spatial-multiplexing along with space time codes (see [5] for an introduction). The overall network capacity of [image: image167.wmf]/2log()(1)
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 (where M is number of antennas on the transmitter and receiver and N is the number of antennas on each of the relay terminals) is achieved as as the number of relay terminals K approaches infinity. Thus the overall per-user throughput is equivalent to that of Gaspar and Vetterli. 
Finally, hybrid networks have been the subject of particularly intense research. These networks combine traditional cellular architecture with decentralized ad-hoc communication to achieve capacities impossible with the pure-ad hoc setting. Three important contributors to this area are the authors of [9], [10] and [11]. In [9], B. Liu et. al. cover an ad-hoc network presented in [1] with [image: image168.wmf]()
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 hexagonal cells containing wired terminals and derive optimum communication schemes for different [image: image169.wmf]a

. [10] examines a more specific case – the behavior of the network when the number of randomly placed wired terminals grows as [image: image170.wmf]()
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. With the use of wired infrastructure, authors of [10] are able derive a per-node throughput of [image: image171.wmf]log()
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. Finally in [11], A. Agarwal and P.R. Kumar extend the work in [10]. They show that under a similar scheme with  [image: image172.wmf]()
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, some constant fraction of nodes can be guaranteed a throughput of [image: image173.wmf](1)
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. It is their work that will be studied in detail in Chapter V.
IV. Pure Ad-Hoc Network with Mobile Nodes

1. Brief Overview

In the Gupta-Kumar static network scheme, two aspects assure that per-node throughput goes to zero. First, the constant-length time slot allocated to each cell is divided amongst an increasing number of users. Second, the number of cells that need to be traversed in order to reach destination grows approximately as [image: image174.wmf]2
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. In [2], M. Grossglauser and D. Tse elegantly sidestep both of these problems by adding mobility to the basic setup of [1]. In their setup the nodes may move to any point on the disk, and the transfer of information is done in a two-stage relay process. During the first stage n/c randomly chosen users act as senders and (1-n/c) nodes serve as relays. Each sender transmits a packet to the closest relay node. During the second stage, each relay transmits to its closest node if it has a packet for that particular node. In the next time slot, a n/c nodes are again randomly chosen as senders and the two stage cycle is repeated. 
After an appropriate number of iterations, the system approaches steady state. In steady state, every node has packets queued for every other node. Thus, n/c’ nodes are delivered during every iteration, producing a constant throughput [image: image176.wmf](
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independent of the number of nodes. 
2. Network Model


In this section a more rigorous description of the network is presented. Similarly to [1], n users are again distributed on the disk of unit area. However, each node has a time-dependant location Xi(t).  Xi(t) is a stationary random process, meaning its probability-density distribution does not change with time (i.e. at any given time instant it has an equal probability of being anywhere on the disk, regardless of t) . 


According to the network model, time is divided into slots. At each timeslot t [image: image177.wmf]n
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 random nodes are chosen as receivers, with the parameter [image: image178.wmf](
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 being the sender density.  The set of n nodes is then partitioned into a set of senders S and a set of relays R. Each sender in S broadcasts with a unit power Pi = 1 to the closest relay node. More precisely, 

A sender node 
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Since both Xs(t) and Xr(s)(t)  are i.i.d. on the unit disk, the pairs (s,r(s)) and the routes  (Xs(t) , Xr(s)(t)) are i.i.d.  
The limiting factor in the performance of the network is interference. Whether or not a source-relay transmission is successful is determined through a modified version of the Physical Model presented in Chapter II. Namely, a node i can successfully transmit to node j if 
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Here, 
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 represents the scaled, time-dependant distance from one node to another. 

Figure 15 shows the network model so far. Current senders are marked with a square while current receivers are marked with a circle. Figure 15a shows the straight line connections of the sender-receiver pairs. Figure 15b shows the first phase of communication – senders with sufficient SNR communicate to their closest receivers. Let us now derive the per-node throughput of this scheme. 

Intuitively, the amount of interference 
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 increases to infinity as the number of interfering nodes (n-2) grows larger. However, the scaled source-relay power 
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 also grows with the number of nodes. This occurs because the distance between nearest-neighbor nodes becomes increasingly smaller as 
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. Assuming the n nodes are uniformly distributed (and thus equally spaced) on the unit disk, each node has approximately a disk of area 1/n around it. The radius of this disk is 
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. Grossglauser and Tse show with rigor that the ratio of the received power to the total interference does not go to zero, but rather remains constant. They are thus able to prove the following theorem:

Thm 3.1: The expected number E[Nt] of successful sender-relay pairs is 
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Since the second phase of the algorithm operates much like the first, it is possible to prove the equivalent of Thm 3.1 for relay-receiver pairs.  

The per-node throughput is established as follows – let the relay node r be the queue between a node s and a destination r(s). The sender node s is able to schedule a packet for some node r(s) once in 
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time slots. The message gets delivered after 
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iterations, since the probability that r(s) is the closest neighbor of r scales as 
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. However, in the time that the queue is serviced, s is able to schedule 
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 transmissions to other nodes. The total per-node throughput thus becomes 
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. The following theorem summarizes the argument:

Thm 3.2: The two-phased algorithm achieves a throughput per S-D pair of  
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Figure 16 shows the results of the numerical simulation of Grossglauser and Tse’s Network Model. It is apparent from the graph that the throughput stays approximately constant in the steady state.
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3. Proposed Improvements Modifications

Grossglauser and Tse’s scheme is both elegant and simple to understand. This relative simplicity suggests that some variations to the algorithm might improve performance. Several such modifications and improvements are presented below

A. Contention Resolution

Under Grossglauser and Tse’s original scheme, every one of the [image: image204.wmf]n

q

 sender nodes transmits to its closest node. Such a communication scheme is highly suboptimum if two or more sender nodes have the same node as their closest relay. Since all of the transmissions have a similar power at the receiver, none of the senders achieve a good enough Signal Interference Ratio (SIR) and every transmission is unsuccessful. As the sender density 
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 grows, so does the fraction of nodes that are in contention for a relay node. This contention becomes the limiting factor in per-node throughput, reducing it to zero when sender density approaches (see Figure 17a).  
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An alternative to Grossglauser and Tse’s original scheme is to use a contention resolution algorithm. Under contention resolution, the relay node grants one of the competing senders the right to transmit. The losing senders are silent for the duration of the timeslot and do not contribute to the interference power at any of the relays. Since the maximum number of senders competing for the same relay node is upper-bounded by 6 [11], at least 
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of all nodes are able to transmit in a given time slot and per-node throughput approaches a constant value as 
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 (Fig17b). 
The contention resolution algorithm allows every user to transmit at once, with an upper-bounded probability of success. Since the individual per-node throughput is guaranteed to be
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, we can state the following result:

The contention Resolution algorithm increases

Total network throughput by  
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B. Multiple-Hop Relaying

Another interesting variation on Grossglauser and Tse’s scheme is the use of multiple-hop relaying. A multiple-hop relaying scheme distributes source traffic more efficiently by taking advantage of unused time during the second phase of communication. The original algorithm calls for a relay r to transmit to its closest node d only if r has a packet to deliver to d. While this is almost always the case in the steady state (once r has a packet to deliver to every node), it takes on the order of 
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 iterations to converge to the steady state.


A better use of a second phase timeslot would be for r to transmit some random packet p from its queue to d if there is no packet specifically for d. This action increases the probability that the destination node d’ receives p from 
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to 
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, slashing the waiting time by approximately half (As an aside, once a packet p is delivered, all nodes with a copy of p which come in contact with d’ remove p from their queue). Consequently, the network approaches steady state at a faster rate.

The numerical simulation of the Multiple-Hop Relaying scheme’s performance is the subject of future work.


C. Random Walk


According to Grossglauser and Tse’s paper, a wireless node (in a given time interval t ) may be found at any point on the disk with equal probability. While the stationary random process Xi (t) grants uniformity useful in the derivations, it is not a realistic model for user movement. 


Instead, the author proposes to have the users move according to a random walk process. A user undergoing a random walk moves a certain random distance di, deviating from its previous direction 
[image: image215.wmf]q

 by some random quantity
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. Two models are tested – the Uniform Random Walk and the Gaussian Random Walk

The Uniform Random Walk model has di’s probability density distributed according to 
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, with Rand uniformly distributed between 0 and 1. 
[image: image218.wmf]d

q

 is distributed uniformly between 
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, as shown in Figure 18a. Figure 18b shows the trajectory of a single user after 5000 movements. The user moves in any direction with equal  probability, yielding a mean displacement 
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 from the original position. Also, because the probability of moving 
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in one direction decreases with the magnitude of 
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, the node tends to stay close to its original point. This behavior is apparent from the greater trajectory density in the upper left hand corner of 18a.
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The Gaussian Random Walk model attempts to provide a more uniform traversal of the disk. Travel distance di is still determined as stated above, but 
[image: image224.wmf]d
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has a zero-mean Gaussian pdf truncated at 
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(Figure 19a). A single user’s trajectory after 5000 movements is shown in Figure 19b. One can see that the trajectory covers the disk in a more uniform manner than the Uniform Random Walk trajectory.
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While both random walk models are valid for the simulation, the Gaussian model is both better suited for the purposes of simulation and more realistic (a user does not abruptly change direction at every time instance). It is therefore incorporated into the Grossglauser-Tse simulation as the new movement model.

The author predicts that the Gaussian movement model will increase queue-service times only slightly in the steady state, but convergence to steady state will be significantly slower than with the original movement model. Comparison between convergence times is the subject of future work.
V. Hybrid Wired-Wireless Network


Hybrid Wired-Wireless Networks are arguably the most practical of all the ad-hoc models - it seems logical to overlay a random grid of small wireless nodes with a sparse wired infrastructure. The authors of [9], [10], and [11] show that such an investment can greatly improve the capacity of an ad-hoc network.
Once completed, this Chapter will build on the previous wireless models by adding 
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 wireless nodes, for different values of a and b. It will be shown that the behavior of the ad-hoc network is fundamentally different for different ranges of 
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, and optimal routing schemes will be derived for each case. 
Due to time constraints, numerical simulations for this chapter have yet to be built. Presentation of background mathematics and improvement suggestions will be postponed until the simulations are finished.
VI. Future Work and Conclusions


1. Future work


The theory of ad-hoc communication is constantly evolving, so in a sense it’s impossible for this paper to either provide a comprehensive coverage of the subject. Neither is it possible to claim that all of the presented models form the complete foundation for work in the field. The original vision behind this paper is to present the most influential models thus far, such as [1] and [2], and suggest hybrid networks the most promising direction of research. 
To fulfill this vision, the paper needs to include several more topics. For instance, the topic of MIMO communication in Chapter II has not been completely addressed. Dr. Ulukus has proposed several additional communication models which may in fact provide an order increase in per-node throughput. Some numerical simulations in Chapter IV still need to be run. There may be an additional chapter added to explore the capacity of a hybrid network with mobile nodes. Most importantly, it has not yet been decided which model among [9],[10], or [11] will form the core of Chapter V. This material will be added during the 2005/2006 school year, and the finished work will become an undergraduate honors thesis.
Finally, it is worth mentioning that the capacity scaling results presented in this work are asymptotic – they deal with a number of wireless nodes which approaches infinity. While there may be future applications (such as micro/nano sensor arrays consisting of thousands of sensors), currently the all wireless networks have a relatively low number of nodes per unit area. Consequently, multiple access schemes like CDMA which fail as 
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 prove very useful for the current generation of ad-hoc networks. It is more than worth investigating them in further detail. 

2. Conclusions
It is the author’s hope that this paper has left the reader with a reasonably complete picture of the most recent efforts to derive capacity scaling laws in decentralized networks. It is also hoped that the subject matter has spurred the reader’s interest in a rapidly advancing and extremely promising area of wireless communication.
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Fig 1: a) The Voronoi Tessellation on the surface S2 of a sphere                 b) Voronoi Tessellation on the disk S





        Fig 2:   a) Addition of ak meeting the distance requirement   b)Completed disk placement
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Fig 3: a) Voronoi cells are contained in disks of radius �. Users in adjacent cells may therefore be separated by a distance of up to �. b)Maximum interference radius for Voronoi cells
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Fig 4: a) Interfering neighbor graph for r(n) = .01 	        b)  Interfering neighbor graph for r(n) = 8p(n)





Fig 5: a) Interfering neighbor graph for r(n) = .01 	     b)  Minimum coloring of the graph (5 colors)





      c) Cell Traversal Sequences for two random S-D pairs  d) Cell traffic during a time slot





   a) Network topology with 100 Transmitter/Receivers           b) Network topology with 1000 Transmitter/Receivers





      Fig 6: Network Topology and algorithm steps
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Fig 7: Geometrical relations between Xi and a disk
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  Fig 8: Numerical validation of the capacity scaling law





  a) Capacity Scaling                                                           b) Convergence of the Structural Sim. Results
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    a) Incorrectly Generated Distribution                     b) Uniform Polar Distribution





        Fig 9: Polar Distributions





    a) Partially Bounded Voronoi Cells                                    b) Completed bounding procedure





   Fig 10: Bounding a collection of Voronoi Cells to the unit disk





    a) Traffic Distribution                       	                               b) Individual User Send rates
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Fig 11: Local Maxima improvement





Fig 12: Simultaneous Transmission Principles and Results





a) Communication Diagram		                   b) Per-Node Capacity for TDMA & Simult. Tx. Schemes
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a) First Stage of MISO communication	                b) MIMO communication





Fig14: Multiple antenna schemes
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  a) Sender-Receiver Pairs				  b) First phase of the relay scheme





Fig15: Ad-hoc network with mobile nodes





    Fig17: User Density Vs. Throughput





a) No contention Resolution	  		b) With Contention Resolution





    a) Distribution of � EMBED Equation.DSMT4  ���	  		     b) Single User’s Trajectory (5000 movements)





    Fig18: Uniform Random Walk





    a) Distribution of � EMBED Equation.DSMT4  ���	  		     b) Single User’s Trajectory (5000 movements)





       Fig19: Uniform Random Walk





        Fig 16: Per-User Throughput for the Grossglausser-Tse Model








� See Section 5 for details on the method of uniform placement


� A detailed treatment of MIMO communication may be found in [5]





� Indeed, the only requirement is that the graph formed by the nodes be connected. Information may be distributed to the entire network by multiple hops within the cell.
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