
FLEXIBLE USB 2.0-BASED ADDRESS-
EVENT REPRESENTATION ROUTER

Matthew Carlberg
Department of Electrical Engineering

Columbia University
New York, NY 10027

mac2115@columbia.edu

Marc Goldman
Department of Electrical and Computer

Engineering
University of Maryland

College Park, MD 20742
jrtykohn@umd.edu

Research Advisor: Timothy K. Horiuchi

1. Abstract

A flexible address-event
representation (AER) router system was
designed, constructed, and tested for
use in various research projects in the
Computational Sensorimotor Systems
Laboratory (University of Maryland).
AER is an asynchronous communication
protocol for transferring neural spikes in
networked neuromorphic VLSI chip
systems. By representing spikes as
addresses, AER can functionally mimic
the high parallel interconnectivity of
neuronal systems. A CIP-51
microcontroller with two AER input ports
and two AER output ports has been
used to implement mapping, projecting,
splitting and merging of AER spike
streams. Controlled with MATLAB™
through USB 2.0, the system also allows
for on-the-fly changes in functionality
and real-time monitoring of input and
output spikes.

2. Introduction

 Nearly all neurons in the brains of
animals form communication networks
through the propagation of voltage
spikes (or action potentials). It has long
been believed that the average firing
rate of voltage spikes, known as a rate
code, is the means of encoding
information within a neural network;
however, further study has shown that
the timing of a single spike can also
contain significant quantities of
information [1]. For this reason, many
researchers have focused on spiking
neural networks and the computational
power they could provide. Since
biological neural networks are so
efficient at data processing, the study of
neuromorphic VLSI, an attempt to build
circuits that can mimic the “organizing
principles used by the nervous system”
[2], has become an important topic of
bioengineering.

Figure 1. A Neural Network Spanning
Multiple Chips: Address Event Representation
(AER) protocol is used to replace this direct
point to point wiring with “virtual wires”.

With current silicon technology,
tens of thousands of neuron equivalent
circuits can be placed onto a chip;
however, gate capacitance limits fan-in
and fan-out to only about ten in CMOS
technology. Since a single neuron in
the brain can be connected to hundreds
of other neurons, it is impractical to
directly implement the brain’s high
connectivity on a silicon chip [10]. A
“virtual wiring” scheme called address-
event representation (AER) has been
introduced for transmitting spikes
between neurons [3], [4]. Instead of
transmitting the actual spike, the digital
identity (address) of a spiking neuron is
transmitted over a single bus through
the use of time-division multiplexing,
mimicking the connectivity of neurons in
near real-time.
 AER uses an active-low, four-
phase asynchronous protocol for
transmitting events. Figure 2 shows
how this protocol works. A sender
initiates a transfer by first asserting the
data bits to be sent (in this case, an
address) and then pulling the request
line (REQ\) low. This indicates to the
receiver that new data is valid and
initiates the data capture sequence.

Figure 2. Asynchronous Protocol: The falling
edge of the REQ\ line creates a falling edge on
the ACK\ line. Data is valid while the REQ\ line
is low.

When the receiver no longer needs the
data lines asserted, it pulls the
acknowledge line (ACK\) low. At this
point, the data lines no longer have to
be asserted. The sender raises REQ\,
followed by the receiver raising ACK\.
This sequence of events for transferring
information is known as an
asynchronous handshake.
 AER is used extensively in
projects at the Computational
Sensorimotor Systems Laboratory
(CSSL) at the University of Maryland. A
device that can monitor events over the
convenient USB interface and route
events flexibly between neuron chips is
anticipated to be a powerful tool in
laboratory projects. It will be used for
ongoing modeling work on the neural
circuits in the bat echolocation system
(such as the Lateral Superior Olive or
the Dorsal Nucleus of the Lateral
Lemniscus [5], [6]) for processing
acoustic echo information for
localization. In particular, the online
modification feature will be used for
studying the process of learning
algorithms and developmental
processes.

 3. Project Description

An AER router that can monitor
ongoing spike activity at the output of
neuron chips, pass events to other chips
with or without remapping, and
implement complex connectivity
patterns between chips is described.
The router is implemented with a
C8051F340 Development Kit from
Silicon Laboratories™. A picture of the
board is shown in Figure 3. The
development kit includes a PC board
containing a core CIP-51
microprocessor, a USB 2.0 compliant
transceiver, a USB connector, and five
8-bit I/O ports. The CIP-51
microprocessor runs at 48 million
instructions per second (MIPS) from a
48MHz clock signal (12MHZ on board
oscillator with a 4X clock multiplier).
Two I/O ports are used as 8-bit input
addresses, two ports are used as 8-bit
output addresses, and the fifth port is
used for the request/acknowledge pairs
required to perform asynchronous
address transfers. The board also
includes 256 bytes of local RAM, 4k of
external RAM (XRAM), and 64k of flash
memory.

 The firmware of the router is
programmed in C and is compiled with
the PK51 Development Kit from Keil™.
The router is programmed to implement
the following functionalities that attempt
to mimic the complex connectivity of an
actual neural network: mapping,
projecting, merging, and splitting.

Mapping takes one address from
the output of a single neuron chip and
translates it (based on a look-up table in
the XRAM of the router) to an address
that is passed to the input of another
neuron chip. Projection takes one input
address and translates it to as many as
three addresses, which are transmitted

Figure 3. Overhead view of router: The input
ports are at the bottom left of the device, the two
output ports are in the top left. The handshake
port is scene above the Red LED, the USB Port
is seen at the middle of the right edge of the
device. All I/O pins may be accessed from the
target board connector at the left.

sequentially to the input of a single
neuron chip. Merging takes addresses
from two different AER ports and
merges them into a single AER output
port. Splitting takes one input address
and translates each input event into two
different addresses each sent to a
separate neuron chip. These
functionalities are demonstrated in
Figure 4.

Figure 4. Demonstration of Router
Functionality: Monitoring, Mapping, Projection,
Splitting, and Merging are demonstrated in a
neural system.

Within each of these four different

biologically-inspired modes, the router
can perform input monitoring. In the
monitoring mode, an input address
along with a 32-bit timestamp accurate

to 21 nanoseconds is stored in a buffer
in XRAM. This XRAM buffer is variable
in size, able to hold a maximum of 660
events. When the buffer is full, all
addresses and timestamps are
transferred over USB to the computer,
where MATLAB™ can process the
received data.

USB communication is
implemented using the USBXpress™
development kit from Silicon
Laboratories™. This development kit
provides a set of library functions in C
for the microcontroller, a Windows-
based driver, and a set of library
functions in Visual C++ for Windows
applications that are attempting to get
information from the router. The library
functions assist in enumeration (the
process of Windows recognizing the
router) and data transfer on both the
device (router) and host (computer)
side. USBXpress™ fulfills the USB 2.0
specification, employing bulk mode
transfers such that data is exchanged
reliably at 12Mb/s (full-speed mode)
through the use of error detection and
numerous resending attempts [7].

MATLAB™ is used to initiate data
transfers to and from the device. For
USBXpress library functions to be called
from MATLAB™, the use of a MEX-file
is required. A MEX-file contains
external code (in this case in Visual
C++) that can be compiled and
executed through MATLAB™. Three
MEX-files were created for use by the

graphical user interface (GUI) front-end
to configure the device and obtain data
from it. Configuration and data
acquisition may also be executed from
the MATLAB™ command prompt. The
first MEX-file opens the device, sets its
functionality (i.e. mapping, projecting,
etc.), writes a 256, 412, or 768 byte
look-up table to XRAM according to an
input MATLAB™ matrix, and
immediately closes the device. The
second MEX-file opens the device,
repeatedly obtains any available events
for a discrete amount of time (specified
by the user in a 1x1 matrix), and closes
the device when the specified time is
over. It outputs all timestamps and
addresses obtained during the run in
two matrices. Based on an input
argument, the third MEX-file can:
perform a single acquisition of available
events from the device, change a single
entry in the look-up table of the device,
or close the device. It was designed for
use with a Run/Stop button in the GUI
and as a means of simulations of the
rewiring that occurs in neural circuits
during brain development. Each of
these three MEX-files is used by the
GUI front-end in different ways to
implement the required functionality.

The GUI allows the user to
interact with the router, for monitoring
and loading look up tables. It is
programmed using the development
environment GUIDE in MATLAB™.
GUIDE allows the programmer to build

Figure 5. GUI Screenshot: The GUI allows for monitoring, graphing, and loading tables.

skeleton code based on the placement
of objects (buttons, text boxes, pull
down menus, etc.) in a figure. A
screenshot of the GUI is shown in
Figure 5.

The user has two options for
monitoring—a Run-For-Set-Time and a
Run/Stop function. The Run/Stop
function allows the user to monitor input
data for an indefinite amount of time.
The Quick Fix Table function can only
be accessed while in this indefinite time
mode. A single value in the look-up
table of the device can be modified by
entering an input address, column
number, and new output address. This
function makes the look-up table
changeable on-the-fly. The Run-For-
Set-Time function allows the user to
monitor AER input spikes for a duration
specified in milliseconds.

Once monitoring is completed, a
small amount of data processing can be
performed on the data arrays.
Timestamps are converted to time in
seconds with an offset such that the first
event occurs at 0 s. The selected value
from the Number of Input Bits pull-down
menu chooses the number of address
bits to be plotted. Data is then graphed
as a raster plot. The plot displays time
in seconds on the x-axis and the
corresponding address on the y-axis.
A look-up table may be loaded using the
GUI from either a Microsoft™ Excel
spreadsheet or a MATLAB™ matrix.
When uploading a look-up table, the
user chooses an option from the “Mode”
pull-down menu. The selected mode
and the multi-dimensional array are
formatted into a one-dimensional array
that is sent to the router. The router will
shift from its current mode, to

Figure 6. Mapping Mode Waveforms: Top (A) shows (i) the input request line (ii) LSB of input address
(iii) the output request line and (iv) LSB of output address for three handshakes without monitoring.
Bottom (B) shows the same signals (i-iv) with monitoring.

the mode specified by the new look-up
table. A full look-up table cannot be
uploaded when the router is actively
monitoring.

4. Results

A Microchip™ PIC 18F2520
microcontroller that generates a regular
pattern of AER events was used to test
the router. The address of each new
event is repeatedly decremented
starting with address 255 and ending at
0. With this regularity, the accuracy of
the router can be tested at numerous
speeds. The PIC does not complete a
full handshake, generating a fixed
duration REQ\ signal without monitoring
the ACK\ line. This introduces the
possibility of missed events rather than
stalled events. All figures presented
were created when the PIC was
generating new events every 6.8μs.

4.1 Mapping

Figure 6A shows a sequence of
three input events with the router in
mapping mode without monitoring. The
input REQ\ line goes low at
approximately 2.5μs, indicating that a
valid address is available at the input
port. The input address is read and an
output address is determined from a
look-up table on the device. Once the
output address has been set, the output
REQ\ is dropped at approximately
3.0μs, indicating the successful
servicing of an input event within 500ns.
This example illustrates an input
address with 0 in the LSB mapped to an
output address with 1 in the LSB.
Figure 6B shows another mapping
sequence when the router is also
performing monitoring. The main
difference in the waveforms is the time

required to service each event, due to
the extra time required to store new
addresses and timestamps in the XRAM
of the router. In this case, the input
address becomes valid at 1.5μs and the
output address becomes valid at 4.0μs,
indicating the successful servicing of an
input event within 2.5μs.

4.2 Projection

Figure 7A shows a sequence of
input events with the monitor in
projection mode without monitoring. In
this case, the look-up table has been
programmed to output zero, one, two, or
three projections based on the two
lowest significant bits of the input
address. In projection mode, the router
waits for the input handshake to be fully
completed, before any projections are
output. The case of three projections is
the worst case timing scenario and is
therefore analyzed for processing time.
As depicted, an input event becomes
valid at 18.1μs. The first projection is
output at 19.6μs, the second at 20.1μs,
and the third at 20.7μs, indicating a total
service time of 2.6μs. In monitoring
mode (shown in Figure 7B), an input
event becomes valid at 15.9μs. The first
projection is output at 19.6μs, the
second at 20.2μs, and the third at
20.8μs, indicating a total service time of
4.9μs.

4.3 Splitting and Merging
 Data is not yet available for
splitting and merging modes. At the
projects completion, these modes will be
further tested and more information will
be made available.

4.4 Monitoring

Two raster plots of address
events versus time are shown in Figure
8A and 8B. Figure 8A has a buffer size

Figure 7. Projection Mode Waveforms: Top (A) shows (i) the input request line (ii) LSB of input
address (iii) the output request line and (iv) LSB of output address for six handshakes without monitoring.
Bottom (B) shows the same signals (i-iv) with monitoring.

set by firmware of 600 events, while
Figure 8B has a buffer size of 200
events. The expected regularity of the
input address events is seen in both
plots. Time gaps are seen in the
monitored data in both cases, due to
USB transfers. This is the time interval
during which a full buffer empties its
contents to the computer. This transfer
time depends on the buffer size used in
the device as shown in Figure 8C. The
minimum point on the plot corresponds
to the largest USB endpoint on the
device. Further explanation of the

tradeoffs in buffersize is included in the
“Discussion” section.

The histogram in Figure 9 shows
the distribution of the time intervals
between events obtained by the router.
Assuming that the PIC is generating a
new event exactly every 6.8μs, this plot
provides information about the accuracy
of the router as it monitors input events.
While most events were captured at
intervals of 6.8µs, a small number of
events were captured late, producing a
long interval and a corresponding short
interval.

Transfer Speed of Buffer

0

0.5

1

1.5

2

2.5

3

0 100 200 300 400 500 600 700

Buffer Size (Events)

Tr
an

sf
er

 T
im

e
(m

s)

Figure 8. Effects of Changing Buffer Size: Top Left (A) Raster plot with buffer size of 600 events. Top
Right (B) Raster plot with buffer size of 200 events. Bottom (C) Plot of transfer time of buffer versus buffer
size.

Figure 9. Frequency of Event Intervals:
Shows the distribution of time between when
events are detected.

5. Discussion

 The router successfully
implements the required monitoring and
connectivity functions; however, there
are a number of issues that a user must
know about when attempting to use the
router. Some of these issues are
inherent to any microcontroller
programmed for a similar purpose and
some are because the router is still in
the process of being developed.
Examples of both are discussed next.
 During USB transfers, the router
is unable to detect new events.
Depending on how quickly events are
sent into the router, gaps can appear
over time in the monitored data. As the
buffer size is increased the size of the
gaps are also increased, however, they
occur less frequently. Based on an
estimate of the frequency of incoming
spikes, the best buffer size can be
optimized for a particular situation. For
example, if a user is interested in
monitoring a burst of high frequency of
events for a short period of time, a large
buffer size is desirable.

In MATLAB™, there are certain
tradeoffs between the Run-For-Set-Time

and the Run/Stop functions. The Run-
For-Set-Time function is a better choice
for monitoring input events that occur
regularly in the microseconds range. If
this type of input is used with the
Run/Stop function, the user would not
be able to stop monitoring before
millions of data events have been
obtained causing the computer to slow
down. The Run-For-Set-Time function
also seems more reliable. Since the
Run/Stop function repeatedly transfers
computational control back and forth
between compiled Visual C++ code and
MATLAB™ code, the probability for
missed data points appears to be
greater. The Run/Stop function,
however, does provide the user with an
extra degree of flexibility by allowing for
single location modifications in the look-
up table and the ability to halt operation
at any time.

Certain timing issues are also still
being resolved in the device. Single
spikes are missed or stalled after
sending a buffer full of spikes over USB.
Since the PIC test device does not
actually perform a full handshake,
events are missed rather than stalled. It
is conceivable that USBXpress™
commands in the MEX-file that
communicate with the router following a
send could be responsible for causing
an interrupt that could be the source of
these holes in the data.

Translating clock cycles into time
creates several opportunities for errors.
The timer only measures from 0 to 90 s,
however it does not start at zero on any
particular run, so the device can wrap
around from 90s to 0s anytime. The full
four bytes of the timestamp cannot be
stored in memory simultaneously, so it
is possible that while the previous byte
of a time stamp is being stored, the next
byte is incrementing. These problems

are solved by taking into account the
time it takes for each byte to be stored.
By looking at the hexadecimal
timestamp, it can be determined if such
an event has occurred.
 Another problem is staying aware
of the voltage constraints on the router
board. The router uses a 3 V supply.
Using an input of 5 V can cause the
board to overheat and malfunction.
Properly setting the input ports and
output ports in firmware is extremely
important for proper functionality.
 Certain routing modes also have
limitations. Address 255 cannot be
mapped to in Projection and Splitting
modes. It is reserved for when no
address should be routed to an output
port. In merging mode with monitoring,
the most significant bit of the timestamp
is used to indicate the port on which the
spike was generated. This operation is
accounted for in the MATLAB™ code
and does not greatly affect the operation
of the circuit.
 Flexibility and future
improvements are an important goal of
the device. Expanded look-up tables
are one desirable improvement. There
is not enough memory space, however,
for both the event buffer and larger look-
up tables in XRAM. By moving the look-
up table to flash memory, more space
for the look-up table will be made
available and the amount of data in a
block write to the computer can
increase, so the gaps of data loss would
be less frequent. Other uses for a larger
look-up table space may include a
scheme where the two input ports could
be combined and the two output ports
could be combined to create a 16-bit
AER router mainly for single-input to
single-output mapping. Additionally,
multiple look-up tables could be loaded
and switched between with the use of a

potentiometer or jumper pin. Even
without moving the look-up table to
flash, one could load three mapping
tables at once and access a particular
one with the potentiometer. Such
functionality, however, would come at
the cost of reducing the number of
available I/O pins.

6. Conclusion

 The AER router, built in this
project, will be used in circuits emulating
neural networks in the Computational
Sensorimotor Systems Laboratory at the
University of Maryland. Researchers
will be able to use the router to
implement the mapping, projection, split,
and merge functions. They will be able
to change the look-up table using the
GUI. Additionally they will be able to
see what addresses are being received
at what times by the monitoring function.

Acknowledgements

 A special thanks to Professor
Timothy K. Horiuchi our research
advisor for support, guidance, and
knowledge. Thanks to Rock Z. Shi,
Hisham Abdalla, and Tarek Massoud of
the Computational Sensorimotor
Systems Laboratory. Thanks to the
2006 MERIT program and the National
Science Foundation for creating such
undergraduate research opportunities.

References

[1] W. Maass, “Fast Sigmoidal Networks

via Spiking Neurons,” Neural
Computation, vol. 9, pp. 279-304,
1997.

[2] C.A. Mead, “Neuromorphic
Electronic Systems,” Proc. IEEE, vol.
78, pp. 1629-1636, 1990.

[3] M. Mahowald, “VLSI analogs of
neuronal visual processing: A
synthesis of form and function,”
Ph.D. dissertation, California Institute
of Technology, Pasadena, CA, 1992.

[4] M. Sivilotti, “Wiring considerations in
analog VLSI systems, with
application to field-programmable
networks,” Ph.D. dissertation,
California Institute of Technology,
Pasadena, CA, 1991.

[5] R. Z. Shi and T.K. Horiuchi, “A VLSI
Model of the Bat Dorsal Nucleus of
the Lateral Lemniscus for Azimuthal
Echolocation,” 2005 IEEE
International Symposium on Circuits
and Systems (ISCAS05) , May 23-
26, 2005.

[6] R. Z. Shi and T. K. Horiuchi, “A VLSI
model of the bat lateral superior olive
for azimuthal echolocation,”
Proceedings of the 2004
International Symposium on Circuits
and Systems (ISCAS'04), 900–903,
May 23-26, 2004.

[7] Universal Serial Bus Specification,
Revision 2.0, 2000.

 <http://www.usb.org>
[8] T. Delbruck, “Simple Monitor

USBXpress User Guide,” 2005.
<https://svn.ini.unizh.ch/repos/avlsi/
CAVIAR/wp5/USBAER/SimpleMonit
orUSBXPress>

[9] MATLAB™ [computer program].
Version 7.1, Mathworks, Nantick,
MA, 2005.

[10] K. A. Boahen, “Point-to-point
connectivity between neuromorphic
chips using address-events,” IEEE
Trans. Circuits Syst. II, vol.
47, no. 5, pp.416–434, 2000.

