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1.  Abstract  
 

A flexible address-event 
representation (AER) router system was 
designed, constructed, and tested for 
use in various research projects in the 
Computational Sensorimotor Systems 
Laboratory (University of Maryland).  
AER is an asynchronous communication 
protocol for transferring neural spikes in 
networked neuromorphic VLSI chip 
systems.  By representing spikes as 
addresses, AER can functionally mimic 
the high parallel interconnectivity of 
neuronal systems.  A CIP-51 
microcontroller with two AER input ports 
and two AER output ports has been 
used to implement mapping, projecting, 
splitting and merging of AER spike 
streams.  Controlled with MATLAB™ 
through USB 2.0, the system also allows 
for on-the-fly changes in functionality 
and real-time monitoring of input and 
output spikes.      
 
 
 

2.  Introduction 
 
 Nearly all neurons in the brains of 
animals form communication networks 
through the propagation of voltage 
spikes (or action potentials).  It has long 
been believed that the average firing 
rate of voltage spikes, known as a rate 
code, is the means of encoding 
information within a neural network; 
however, further study has shown that 
the timing of a single spike can also 
contain significant quantities of 
information [1].  For this reason, many 
researchers have focused on spiking 
neural networks and the computational 
power they could provide.  Since 
biological neural networks are so 
efficient at data processing, the study of 
neuromorphic VLSI, an attempt to build 
circuits that can mimic the “organizing 
principles used by the nervous system” 
[2], has become an important topic of 
bioengineering. 



 

 
Figure 1.  A Neural Network Spanning 
Multiple Chips:  Address Event Representation 
(AER) protocol is used to replace this direct 
point to point wiring with “virtual wires”. 
 

With current silicon technology, 
tens of thousands of neuron equivalent 
circuits can be placed onto a chip; 
however, gate capacitance limits fan-in 
and fan-out to only about ten in CMOS 
technology.  Since a single neuron in 
the brain can be connected to hundreds 
of other neurons, it is impractical to 
directly implement the brain’s high 
connectivity on a silicon chip [10].  A 
“virtual wiring” scheme called address-
event representation (AER) has been 
introduced for transmitting spikes 
between neurons [3], [4].  Instead of 
transmitting the actual spike, the digital 
identity (address) of a spiking neuron is 
transmitted over a single bus through 
the use of time-division multiplexing, 
mimicking the connectivity of neurons in 
near real-time.   
 AER uses an active-low, four-
phase asynchronous protocol for 
transmitting events.  Figure 2 shows 
how this protocol works.  A sender 
initiates a transfer by first asserting the 
data bits to be sent (in this case, an 
address) and then pulling the request 
line (REQ\) low.  This indicates to the 
receiver that new data is valid and 
initiates the data capture sequence.   

 

 
Figure 2. Asynchronous Protocol:  The falling 
edge of the REQ\ line creates a falling edge on 
the ACK\ line.  Data is valid while the REQ\ line 
is low. 
 
When the receiver no longer needs the 
data lines asserted, it pulls the 
acknowledge line (ACK\) low.  At this 
point, the data lines no longer have to 
be asserted.  The sender raises REQ\, 
followed by the receiver raising ACK\.  
This sequence of events for transferring 
information is known as an 
asynchronous handshake.   
 AER is used extensively in 
projects at the Computational 
Sensorimotor Systems Laboratory 
(CSSL) at the University of Maryland.  A 
device that can monitor events over the 
convenient USB interface and route 
events flexibly between neuron chips is 
anticipated to be a powerful tool in 
laboratory projects. It will be used for 
ongoing modeling work on the neural 
circuits in the bat echolocation system 
(such as the Lateral Superior Olive or 
the Dorsal Nucleus of the Lateral 
Lemniscus [5], [6]) for processing 
acoustic echo information for 
localization.  In particular, the online 
modification feature will be used for 
studying the process of learning 
algorithms and developmental 
processes. 
 



 3.  Project Description 
 

An AER router that can monitor 
ongoing spike activity at the output of 
neuron chips, pass events to other chips 
with or without remapping, and 
implement complex connectivity 
patterns between chips is described.  
The router is implemented with a 
C8051F340 Development Kit from 
Silicon Laboratories™.  A picture of the 
board is shown in Figure 3.  The 
development kit includes a PC board 
containing a core CIP-51 
microprocessor, a USB 2.0 compliant 
transceiver, a USB connector, and five 
8-bit I/O ports.  The CIP-51 
microprocessor runs at 48 million 
instructions per second (MIPS) from a 
48MHz clock signal (12MHZ on board 
oscillator with a 4X clock multiplier).  
Two I/O ports are used as 8-bit input 
addresses, two ports are used as 8-bit 
output addresses, and the fifth port is 
used for the request/acknowledge pairs 
required to perform asynchronous 
address transfers.  The board also 
includes 256 bytes of local RAM, 4k of 
external RAM (XRAM), and 64k of flash 
memory. 

  The firmware of the router is 
programmed in C and is compiled with 
the PK51 Development Kit from Keil™.  
The router is programmed to implement 
the following functionalities that attempt 
to mimic the complex connectivity of an 
actual neural network: mapping, 
projecting, merging, and splitting.   

Mapping takes one address from 
the output of a single neuron chip and 
translates it (based on a look-up table in 
the XRAM of the router) to an address 
that is passed to the input of another 
neuron chip.  Projection takes one input 
address and translates it to as many as 
three addresses, which are transmitted 

 

 
Figure 3. Overhead view of router:  The input 
ports are at the bottom left of the device, the two 
output ports are in the top left.  The handshake 
port is scene above the Red LED, the USB Port 
is seen at the middle of the right edge of the 
device. All I/O pins may be accessed from the 
target board connector at the left. 

 
sequentially to the input of a single 
neuron chip.  Merging takes addresses 
from two different AER ports and 
merges them into a single AER output 
port.  Splitting takes one input address 
and translates each input event into two 
different addresses each sent to a 
separate neuron chip.  These 
functionalities are demonstrated in 
Figure 4.  

 

 
Figure 4.  Demonstration of Router 
Functionality: Monitoring, Mapping, Projection, 
Splitting, and Merging are demonstrated in a 
neural system. 

 
Within each of these four different 

biologically-inspired modes, the router 
can perform input monitoring.  In the 
monitoring mode, an input address 
along with a 32-bit timestamp accurate 



to 21 nanoseconds is stored in a buffer 
in XRAM.  This XRAM buffer is variable 
in size, able to hold a maximum of 660 
events.  When the buffer is full, all 
addresses and timestamps are 
transferred over USB to the computer, 
where MATLAB™ can process the 
received data.   

USB communication is 
implemented using the USBXpress™ 
development kit from Silicon 
Laboratories™.  This development kit 
provides a set of library functions in C 
for the microcontroller, a Windows-
based driver, and a set of library 
functions in Visual C++ for Windows 
applications that are attempting to get 
information from the router.  The library 
functions assist in enumeration (the 
process of Windows recognizing the 
router) and data transfer on both the 
device (router) and host (computer) 
side.  USBXpress™ fulfills the USB 2.0 
specification, employing bulk mode 
transfers such that data is exchanged 
reliably at 12Mb/s (full-speed mode) 
through the use of error detection and 
numerous resending attempts [7].  

MATLAB™ is used to initiate data 
transfers to and from the device.  For 
USBXpress library functions to be called 
from MATLAB™, the use of a MEX-file 
is required.  A MEX-file contains 
external code (in this case in Visual 
C++) that can be compiled and 
executed through MATLAB™.  Three 
MEX-files were created for use by the 

graphical user interface (GUI) front-end 
to configure the device and obtain data 
from it.  Configuration and data 
acquisition may also be executed from 
the MATLAB™ command prompt.  The 
first MEX-file opens the device, sets its 
functionality (i.e. mapping, projecting, 
etc.), writes a 256, 412, or 768 byte 
look-up table to XRAM according to an 
input MATLAB™ matrix, and 
immediately closes the device.  The 
second MEX-file opens the device, 
repeatedly obtains any available events 
for a discrete amount of time (specified 
by the user in a 1x1 matrix), and closes 
the device when the specified time is 
over.  It outputs all timestamps and 
addresses obtained during the run in 
two matrices.  Based on an input 
argument, the third MEX-file can:   
perform a single acquisition of available 
events from the device, change a single 
entry in the look-up table of the device, 
or close the device.  It was designed for 
use with a Run/Stop button in the GUI 
and as a means of simulations of the 
rewiring that occurs in neural circuits 
during brain development.  Each of 
these three MEX-files is used by the 
GUI front-end in different ways to 
implement the required functionality.     

The GUI allows the user to 
interact with the router, for monitoring 
and loading look up tables.  It is 
programmed using the development 
environment GUIDE in MATLAB™.  
GUIDE allows the programmer to build  



 
Figure 5.  GUI Screenshot:  The GUI allows for monitoring, graphing, and loading tables. 

 
skeleton code based on the placement 
of objects (buttons, text boxes, pull 
down menus, etc.) in a figure.  A 
screenshot of the GUI is shown in 
Figure 5. 

The user has two options for 
monitoring—a Run-For-Set-Time and a 
Run/Stop function.   The Run/Stop 
function allows the user to monitor input 
data for an indefinite amount of time.  
The Quick Fix Table function can only 
be accessed while in this indefinite time 
mode. A single value in the look-up 
table of the device can be modified by 
entering an input address, column 
number, and new output address.  This 
function makes the look-up table 
changeable on-the-fly.  The Run-For-
Set-Time function allows the user to 
monitor AER input spikes for a duration 
specified in milliseconds. 

Once monitoring is completed, a 
small amount of data processing can be 
performed on the data arrays.  
Timestamps are converted to time in 
seconds with an offset such that the first 
event occurs at 0 s.  The selected value 
from the Number of Input Bits pull-down 
menu chooses the number of address 
bits to be plotted.  Data is then graphed 
as a raster plot.  The plot displays time 
in seconds on the x-axis and the 
corresponding address on the y-axis. 
A look-up table may be loaded using the 
GUI from either a Microsoft™ Excel 
spreadsheet or a MATLAB™ matrix.  
When uploading a look-up table, the 
user chooses an option from the “Mode” 
pull-down menu.  The selected mode 
and the multi-dimensional array are 
formatted into a one-dimensional array 
that is sent to the router.  The router will 
shift from its current mode, to 



 

 
Figure 6. Mapping Mode Waveforms:  Top (A) shows (i) the input request line (ii) LSB of input address 
(iii) the output request line and (iv) LSB of output address for three handshakes without monitoring.  
Bottom (B) shows the same signals (i-iv) with monitoring. 



the mode specified by the new look-up 
table. A full look-up table cannot be 
uploaded when the router is actively 
monitoring. 
 
 
4.  Results 
 

A Microchip™ PIC 18F2520 
microcontroller that generates a regular 
pattern of AER events was used to test 
the router.  The address of each new 
event is repeatedly decremented 
starting with address 255 and ending at 
0.  With this regularity, the accuracy of 
the router can be tested at numerous 
speeds.  The PIC does not complete a 
full handshake, generating a fixed 
duration REQ\ signal without monitoring 
the ACK\ line.  This introduces the 
possibility of missed events rather than 
stalled events.  All figures presented 
were created when the PIC was 
generating new events every 6.8μs. 

 
4.1 Mapping 

Figure 6A shows a sequence of 
three input events with the router in 
mapping mode without monitoring.  The 
input REQ\ line goes low at 
approximately 2.5μs, indicating that a 
valid address is available at the input 
port.  The input address is read and an 
output address is determined from a 
look-up table on the device.  Once the 
output address has been set, the output 
REQ\ is dropped at approximately 
3.0μs, indicating the successful 
servicing of an input event within 500ns.  
This example illustrates an input 
address with 0 in the LSB mapped to an 
output address with 1 in the LSB.  
Figure 6B shows another mapping 
sequence when the router is also 
performing monitoring.  The main 
difference in the waveforms is the time 

required to service each event, due to 
the extra time required to store new 
addresses and timestamps in the XRAM 
of the router.  In this case, the input 
address becomes valid at 1.5μs and the 
output address becomes valid at 4.0μs, 
indicating the successful servicing of an 
input event within 2.5μs.   
 
4.2 Projection 

Figure 7A shows a sequence of 
input events with the monitor in 
projection mode without monitoring.  In 
this case, the look-up table has been 
programmed to output zero, one, two, or 
three projections based on the two 
lowest significant bits of the input 
address.  In projection mode, the router 
waits for the input handshake to be fully 
completed, before any projections are 
output.  The case of three projections is 
the worst case timing scenario and is 
therefore analyzed for processing time.  
As depicted, an input event becomes 
valid at 18.1μs.  The first projection is 
output at 19.6μs, the second at 20.1μs, 
and the third at 20.7μs, indicating a total 
service time of 2.6μs.  In monitoring 
mode (shown in Figure 7B), an input 
event becomes valid at 15.9μs.  The first 
projection is output at 19.6μs, the 
second at 20.2μs, and the third at 
20.8μs, indicating a total service time of 
4.9μs. 
 
4.3 Splitting and Merging 
 Data is not yet available for 
splitting and merging modes.  At the 
projects completion, these modes will be 
further tested and more information will 
be made available. 
 
4.4 Monitoring 

Two raster plots of address 
events versus time are shown in Figure 
8A and 8B.  Figure 8A has a buffer size



 

 
Figure 7. Projection Mode Waveforms:  Top (A) shows (i) the input request line (ii) LSB of input 
address (iii) the output request line and (iv) LSB of output address for six handshakes without monitoring.  
Bottom (B) shows the same signals (i-iv) with monitoring. 
 



set by firmware of 600 events, while 
Figure 8B has a buffer size of 200 
events.  The expected regularity of the 
input address events is seen in both 
plots.  Time gaps are seen in the 
monitored data in both cases, due to 
USB transfers.  This is the time interval 
during which a full buffer empties its 
contents to the computer.  This transfer 
time depends on the buffer size used in 
the device as shown in Figure 8C.   The 
minimum point on the plot corresponds 
to the largest USB endpoint on the 
device.  Further explanation of the 

tradeoffs in buffersize is included in the 
“Discussion” section. 

The histogram in Figure 9 shows 
the distribution of the time intervals 
between events obtained by the router.  
Assuming that the PIC is generating a 
new event exactly every 6.8μs, this plot 
provides information about the accuracy 
of the router as it monitors input events.  
While most events were captured at 
intervals of 6.8µs, a small number of 
events were captured late, producing a 
long interval and a corresponding short 
interval. 
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Figure 8.  Effects of Changing Buffer Size:  Top Left (A) Raster plot with buffer size of 600 events.  Top 
Right (B) Raster plot with buffer size of 200 events. Bottom (C) Plot of transfer time of buffer versus buffer 
size. 
 
 
 

 
 
 



 
Figure 9.  Frequency of Event Intervals:  
Shows the distribution of time between when 
events are detected. 
 
 
5.  Discussion 
 
 The router successfully 
implements the required monitoring and 
connectivity functions; however, there 
are a number of issues that a user must 
know about when attempting to use the 
router.  Some of these issues are 
inherent to any microcontroller 
programmed for a similar purpose and 
some are because the router is still in 
the process of being developed.  
Examples of both are discussed next.    
 During USB transfers, the router 
is unable to detect new events.  
Depending on how quickly events are 
sent into the router, gaps can appear 
over time in the monitored data.  As the 
buffer size is increased the size of the 
gaps are also increased, however, they 
occur less frequently.  Based on an 
estimate of the frequency of incoming 
spikes, the best buffer size can be 
optimized for a particular situation.  For 
example, if a user is interested in 
monitoring a burst of high frequency of 
events for a short period of time, a large 
buffer size is desirable. 

In MATLAB™, there are certain 
tradeoffs between the Run-For-Set-Time 

and the Run/Stop functions.  The Run-
For-Set-Time function is a better choice 
for monitoring input events that occur 
regularly in the microseconds range.  If 
this type of input is used with the 
Run/Stop function, the user would not 
be able to stop monitoring before 
millions of data events have been 
obtained causing the computer to slow 
down.  The Run-For-Set-Time function 
also seems more reliable.  Since the 
Run/Stop function repeatedly transfers 
computational control back and forth 
between compiled Visual C++ code and 
MATLAB™ code, the probability for 
missed data points appears to be 
greater.  The Run/Stop function, 
however, does provide the user with an 
extra degree of flexibility by allowing for 
single location modifications in the look-
up table and the ability to halt operation 
at any time. 

Certain timing issues are also still 
being resolved in the device.  Single 
spikes are missed or stalled after 
sending a buffer full of spikes over USB.  
Since the PIC test device does not 
actually perform a full handshake, 
events are missed rather than stalled.  It 
is conceivable that USBXpress™ 
commands in the MEX-file that 
communicate with the router following a 
send could be responsible for causing 
an interrupt that could be the source of 
these holes in the data. 

Translating clock cycles into time 
creates several opportunities for errors.  
The timer only measures from 0 to 90 s, 
however it does not start at zero on any 
particular run, so the device can wrap 
around from 90s to 0s anytime.  The full 
four bytes of the timestamp cannot be 
stored in memory simultaneously, so it 
is possible that while the previous byte 
of a time stamp is being stored, the next 
byte is incrementing.  These problems 



are solved by taking into account the 
time it takes for each byte to be stored.  
By looking at the hexadecimal 
timestamp, it can be determined if such 
an event has occurred.   
 Another problem is staying aware 
of the voltage constraints on the router 
board.  The router uses a 3 V supply.  
Using an input of 5 V can cause the 
board to overheat and malfunction.  
Properly setting the input ports and 
output ports in firmware is extremely 
important for proper functionality. 
 Certain routing modes also have 
limitations.  Address 255 cannot be 
mapped to in Projection and Splitting 
modes.  It is reserved for when no 
address should be routed to an output 
port.  In merging mode with monitoring, 
the most significant bit of the timestamp 
is used to indicate the port on which the 
spike was generated.  This operation is 
accounted for in the MATLAB™ code 
and does not greatly affect the operation 
of the circuit. 
 Flexibility and future 
improvements are an important goal of 
the device.  Expanded look-up tables 
are one desirable improvement.  There 
is not enough memory space, however, 
for both the event buffer and larger look-
up tables in XRAM.  By moving the look-
up table to flash memory, more space 
for the look-up table will be made 
available and the amount of data in a 
block write to the computer can 
increase, so the gaps of data loss would 
be less frequent.  Other uses for a larger 
look-up table space may include a 
scheme where the two input ports could 
be combined and the two output ports 
could be combined to create a 16-bit 
AER router mainly for single-input to 
single-output mapping.  Additionally, 
multiple look-up tables could be loaded 
and switched between with the use of a 

potentiometer or jumper pin.  Even 
without moving the look-up table to 
flash, one could load three mapping 
tables at once and access a particular 
one with the potentiometer.  Such 
functionality, however, would come at 
the cost of reducing the number of 
available I/O pins. 
 
 
6.  Conclusion   
 
 The AER router, built in this 
project, will be used in circuits emulating 
neural networks in the Computational 
Sensorimotor Systems Laboratory at the 
University of Maryland.  Researchers 
will be able to use the router to 
implement the mapping, projection, split, 
and merge functions.  They will be able 
to change the look-up table using the 
GUI.  Additionally they will be able to 
see what addresses are being received 
at what times by the monitoring function. 
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