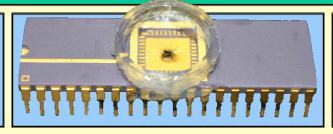


# Extensions upon the Versatile BioLab-On-A-Chip


Eric Chen, Harneet Khurana

Marc Dandin, Alfred Haas, Nicole Nelson, Somashekar Prakash, Pamela Abshire

# **Overview**

The ongoing cell clinics project at the University of Maryland strives to replace the infrastructure of a cell-biology laboratory with highly functional lab-on-chip devices – the single chip pictured at center monitors extracellular signals from electrically active cells.

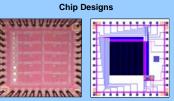
>Many applications including physiology, whole cell studies, environmental monitoring and remote biosensing will be enabled by CMOS bioamplifiers integrated with microelectromechanical systems forming lidded microvials to contain cells.



# **Future Work**

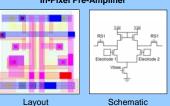
- Analysis of data obtained through monitoring of BAOSMC and PC12
- > Validation of extracellular potentials acquired using bioamplifier versus standard electrophysiological means such as the whole-cell patch clamp
- Testing of chips designed for neurite outgrowth monitoring upon receipt in Fall 2006

# Sensor Design and Applications


## Legacy Amplifier Design

Array of ten 1:1 electrode-to-bioamplifier units used to record extracellular potentials

 $\succ Low$  voltage and low noise differential bioamplification with 40dB gain with 3kHz cutoff frequency


#### Neurite Outgrowth Sensor Design

- > Vastly increased spatial resolution allowing greater precision and new applications, e.g. monitoring developing cell processes
- > 128 x 128 array of pixels electrodes with pre-amplification units
- > Nine different chips designed and submitted for fabrication for various circuit configurations and process constraint combinations
- In-pixel pre-amplification configurations
  - > Single-transistor common-source amplifier
  - > NMOS-only differential amplifier with local and global references
- > Designs use 2 or 3 metal layers with electrodes defined using commercial or in-house window cuts
- > Fabrication in commercially available 0.5 µm CMOS process



## In-Pixel Pre-Amplifier

Legacy



# **Packaging and Encapsulation**


#### **Historical Procedure**

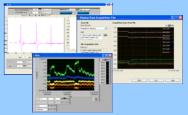
- Pre-packaged in 40-pin DIP chip package
- > Electrolessly plate AI electrodes with Au to decrease noise, prevent corrosion from cell media, and enhance electrochemical compatibility
- ➢ Employ 2-step UV-curing process with Loctite™ 3340 to attain 2-level encapsulation of bond wires for electrical and chemical isolation
- > Attach well to contain medium using biocompatible commercial RTV

#### Encapsulation Exploration

> Existing materials exhibit degradation over time that compromises cell viability in addition to undesired aqueous absorption that compromises packaging over extended periods under cell culture conditions

- ➢ Replace Loctite™ encapsulation by placing SU-8 perimeter outside electrode area and backflow encapsulating material onto bond wires
- Masks of variable lateral thickness and shape have




# **Data Acquisition**

Legacy MATLAB program written using MathWorks Data Acquisition Toolbox used for long-term monitoring of PC12 cells

Drawbacks of legacy software include lack of simultaneous file I/O (buffered write-back) to store continuous data without information loss and absence of real-time readout for monitoring ongoing experiments

Recently explored National Instruments NI-DAQmx Tools package for online sampling of BAOSMC's activity in order to address these issues





# Hardware Setup

- > Place cells and media into chip well
- Mount chip onto test board within Faraday cage
- Place shielded setup inside incubator
- Acquire data using data acquisition card and record to storage disk

# **Cell Culture on Chip**

#### Multiple Cell Lines

- > Bovine Aortic Smooth Muscle Cells (BAOSMC)
- Rat Pheochromocytoma Cell Line (PC12)

# **Pre-chip Cultivation & Care**

- ▶ Incubation at 37°C, 5% CO<sub>2</sub>
- ➤ Routine subculture at 60-80% confluence

# **Mutation and Stimulus**

> Nerve Growth Factor (NGF) added to PC12 cells to enable differentiation of neuronal processes using collagen as adhesion promoter

Sodium Nitroprusside (SNP) introduced to modulate membrane potential of BAOSMC

# **Current Issues**

➤ Loctite™ 3340, presently used for biocompatible packaging has limited reliability, necessitating further exploration into encapsulation materials and biocompatibility testing



New

- - Investigation of biocompatible SU-8 photoresist due to low aqueous absorption

been designed

Software Methodology