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Abstract— Numerical method is developed to calculate the
electromagnetic modes of anisotropic waveguides using the finite
difference method. Many materials used in integrated optical
waveguides exhibit birefringence or anisotropy, yet most of the
available numerical method is unable to accurately calculate the
electromagnetic modes of anisotropic waveguides, especially in
the general case when the principle axes of the material do not
coincide with the waveguide axes. This project builds upon an
earlier software package that handles the case of waveguides

comprised of isotropic materials.

I. INTRODUCTION

S optics is growing more rapidly in this era, more micro-

structures are becoming optical in various fields of
technology, from communications to sensing. More devices
are built of anisotropic crystals to serve as optical waveguides;
thus, the need for an efficient method of simulating these
devices is more crucial. In order to make a more reliable
design, more reliable methods are required to simulate various
effects. Finite-difference method in solving for effective index
of refraction has been proven to be one of the most efficient
and accurate way to simulate waveguide. This paper is an
improvement on such method to solve for electromagnetic
modes of an anisotropic waveguide. Since most of the finite
difference methods are only capable of simulating isotropic
waveguide [1], [2]; changes have been made so that the
method facilitates anisotropic materials as well.

II. THEORY

Propagation of electromagnetic waves in dielectric
waveguide depends intrinsically on size, dimensions, and the
material that the waveguide is made of. Optical waveguides
are made in form of different structures. One general common
form of waveguide is ridge waveguide that is shown in figure
1. The structure, put to the computation window, is divided
into grids in order to approximate differential operators.
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Fig. 1 — Discretization of a ridge

In some specific cases, the core could be made of an
anisotropic crystal, such as Lithium Niobate. These materials
have a different permittivity in the direction of each axis. This
intrinsic property can be represented by a permittivity tensor in
the following form:
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x’, y’, and z’ are the principle axes of the crystal. When a
waveguide is made of such material, the axes of the material
may not always align with the axes of the waveguide. Thus, the
epsilon matrix in the following equation would have nine non-
zero elements.
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Nevertheless, in most of the cases, the longitudinal axis of
the waveguide is lined up with one axis of the material (i.e. z’
and z are aligned) in the construction of the waveguide.
Therefore, epsilon matrix goes through a rotation around z-
axis operation in (4).
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As a result, the equation for D will have the form of (5).
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In order to get the eigenmode equations for propagation of
electromagnetic fields in the waveguide, the electric and
magnetic fields have been assume to have the following form:
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We can show that, by knowing only two components, Hy

and Hy, all the components of electric and magnetic field can
be derived from Maxwell equations:
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With these assumptions, there would be two linearly
polarized waves. From the transverse components of the
equation (14) below, the wave equations (15) and (16) are
obtained in the form of the eigensystem for the transverse
magnetic field.
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The method essentially solves for B in (17) and thus the
effective index of refraction in the direction of propagation.
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A’s are differential operators that are approximated by the
finite-difference method from equation (15) and (16).
In regard of obtaining the finite-difference equations, an
arbitrary point P in the mesh, to which the computation
window is divided, is shown below with its neighboring points.
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Fig. 2 — P and its neighboring point in a mesh

For any point P in the computation window, such grid could
be constructed. Each of the four regions around the point is
treated to have a different epsilon tensor. P is separated by

V’H = —ja)VxD (14)  distances n, e, s, and w from its neighboring points N, NE, E,
SE, S, SW, W, and NW. The derivatives at the point P are
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two-by-two system. Regarding the boundary conditions, the
longitudinal components of fields, H, and E,, are continuous at
the horizontal and vertical boundaries [2]. They are calculated
from the equations (22) and (23) of transverse components:
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For every infinitesimally close point above and below the
horizontal, boundary continuity of H, gives
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And, for every infinitesimally close point to right or left of
the vertical boundary along the vertical boundary, it gives
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Continuity of the E, on the horizontal boundary gives
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and on the vertical boundary, it similarly gives

These six boundary conditions reduce four equations (18) —
(21) to one equation for H, and similarly for H,. Each of which
would contain two derivatives that are then approximated by
the following central finite-difference equivalents.
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As a result, the values of the transverse magnetic field at any
point P would be written in terms of the value of the field at
the neighboring points. In other words, all the coefficients of
the A’s in (17) would become numerical values. The
coefficient of H” and the field at every neighboring point
around P is shown in the appendix in order to avoid lengthy
equations in the paper.

III. RESULTS

As mentioned above, one of the axes of the material is
assumed to be in the same direction as the direction of
propagation. And, the other two axes are rotated through an
angle 4 to indicate the effect of an anisotropic material. Due to



the non-symmetric property of the material, the whole
structure of the waveguide is simulated. For all of our
simulations here, the wavelength used is 1.55 pm.

One of the results is compared with the result obtained from
Lusse [3]. The effective refractive index of the waveguide with
width 3 um and height 2pm, isotropic cladding n. = 3.4 and an
anisotropic material n, = n,- = 3.5, ny- =3.45 is 3.48063 under
the grid size 250 by 250 (50 points per micron), which agrees
with Lusse’s result.

Fig. 3 shows the cross-section of a square waveguide with
dimension 2um. The material is uniaxial LiNbO;3; with n, =
2.20, ny = n, = 2.29 [4]. The medium outside the waveguide
is air and no rotation is made in this case. The simulated
effective refractive index in this case is 2.23178. 250 by 250
grid is used (50 points per micron). The contour lines in figure
3 represent the contour 3-dB fall diagram.
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Fig. 3 — Cross-section of a square waveguide with dimension
2um with anisotropic material n, = 2.20, n, = n, = 2.29

Fig. 4 shows exactly the same dimension and material with a
rotation 45° around z-axis. The simulated effective refractive
index is 2.18661. The grid used in the program is also 50
points per micron. The results show a non-symmetric magnetic
wave inside the waveguide.

With the above waveguide with n, = 2.20, n, = n, = 2.29,
the program is repeated using different angles. The point mesh
is reduced to 20 per micron. The result is tabulate in Table
1.The result show a decrease of effective refractive index from
0° to 45°. Figure 6 shows the cross-section of the fundamental
mode of the waveguide corresponding to each angle change in
table 1.
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Fig. 4 — Cross-section of a square waveguide with dimension
2um with anisotropic material n, = 2.20, ny, = n, = 2.29 and a
rotations angle of 45°

angle (degree) Neff
0 2.23167
9 2.22949
18 2.22313
27 2.21324
36 2.20078
45 2.18740
54 2.20078
63 2.21324
72 2.22313
81 2.22949
90 2.23167

Table 1 — Effective refractive index with different angle of
rotation in x-y plane
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Fig. 5 — Effective refractive index vs. relative angle of x-y
plane
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Fig. 6 — Cross-section of an anisotropic waveguide with a
rotation from 0° to 90°
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Fig. 7 — Cross-section of a ridge waveguide with anisotropic
material n, = 3.40, ny = 3.45 and n, = 3.50. An isotropic
cladding below it where n. = 3.34 and air above the waveguide

A ridge waveguide is also simulated with core height of 2.0
um, side height of 0.7 um, and ridge width of 2.0 um. Also,
there are 20 mesh points per micron in computation window.
The waveguide is anisotropic with n, = 3.40, n,> = 3.45 and n,
= 3.50. The waveguide is cover by air and the cladding below
is isotropic with n, = 3.44. The effective refractive index is
3.39237. Figure 7 shows the cross-section of the waveguide. A
non-symmetric magnetic wave is again shown inside the
waveguide.

IV. CoNCLUSION

In conclusion, a more general way of simulating waveguide
is implemented for anisotropic materials. Under the
assumption that one of the axis of the material is pointing
towards the direction of propagation, the method is capable of
resolving the effective refractive index of an anisotropic
material by calculating its eigenmode using finite difference
method. The results of the effective refractive index of an
anisotropic material with O degree rotations are compared to
the previous published data. Anisotropic materials with rotated
axes are also simulated. With this routine, different waveguide
with an anisotropic material can be simulated.
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APPENDIX

The finite different eigenequations and its coefficients are presented in this appendix:
Equation for H,:
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We define R, and R, just to make the coefficients easier to read:

e e e o e

n exx xx4 exe )0( x;x2 ex;x3 ex;xl exx4
R = e (g e

€ w3 eyy4 eyyl eyy2 w eyy2 eyyl eyy3 eyy4
Equation for Hx - coefficient of Hx:
SV N SNV R S S (2 G
( R )(((e)(eyy3 + . ))(eyy1 (Wz + (e (W))+ o (Wz (e)s) (W))))
e My S (2 e 2 e
RN+ NGt o (o)
1 1. s n S 2 €., e 3 €3
V(= + Sl YA xy2 S YA A | YA yy y
GG+ (D= & )( em»( »3(( 2)( A

St S VO VL et V0 SR L
(—)((( )(;+a))(j(( )( ZZl)+( ZZI( )( ))))+(( )( yy2+eyy1))( - (= )(%4) ZZ4(n)(e))))
1 1. s
(R_x)(((z)(a a))(a (——(6771 0 )
(—)(((_ (O ()
€, €, e, (e )n)e)

Lol s s O
(R—X)(((;)(a"'a))(ew3 = (ezz3)(s)(€))))



1 1. s n s €
(R—X)(((;)(eyy3 + ‘. ))(eyy2 ((ezzz)(s)(w) ))
axxp =

1 1 N n n -2 2 eyyl _ exyl 2
(E)(((Z)(a + a))(a (—=- (?)(a) —em (n)(w)) +ke,,) ..

b Ry (22 ke )

eyy2 W2 S2 ezzZ ezzZ(S)(w)
(e (Do) - e )+ R e )
we, €, €5 € 5T e, e (s)e) €,y € n e, e,me)
Equation for Hx - coefficient of Hy:
n 1 N €n 2
Y —+—)N)(—— (=2 +(1- w . y 1— »
ew‘))( ( - ( )> (- ))(( )( )) em( 2(—22— o w )) (1-= ))(( )( ))))
+(( (e —en) — ( "-"2)(%)(1)—( 2Ly, )()) +( Yty —e )
67726771 eyy3 yv4 yy2 w eyyl w ezzSezz4W eyy2 e)yl b
+(E2 e, 4)(—) (“4)( 3>( N )
e‘)'* yy4 ( W)
axye =
1 N xx3 \)3 X)4 )‘4
————— +(1- -2 1- .
e,,,l))(e,,y}( 2A—t5 ote )> (== ))(( @ )> em( — 4( )) (- ))(( )( )»)
+(( B (e =) = (22, )~ (2 (e, )0 +( Nt ")y =)
6‘ 26 le E eyy4 eyy2 w 6‘yyl w ezz3ezz4w eyyZ 6‘yyl
(%)( 4)(—) ( e W)
axys =
1 1 e
() () +—N(—) (A =22 (= )))+< (—+—>><<—)((1 ”3>( )
Rx € yy3 yy4 yy2 722 y_v2 yyl y.v
axyn = (—)((( )(—+—))((—)((l ”1)( )))+(—(—+—))((—)((1 ”4)(—))))
nﬁ ew4 wl eal wZ wl w4 ew
axynw =
1
(—)(((—)(—+—))(—( 1- ”‘) —))
_vy3 e_v_v4 y_vl Zzl ( )( )
axyne =
1.1 e, 1
() ——+ (e (=25 ———))
R woe, e, e, e, (n)e)
axyse =
1.1 e . 1
(N (=1 =23 ——y)
Rx W €y € Gy €3 (s)(e)
axysw =
11 e, 1
() () ——+ ) (A —22) )
R, e e, €, €., e, (s)(w)

axyp =



1

n n exvl evvl 2 s ex
N2 = (1= (L) (—) = KPe,,) + (——)(2A )+(1— )
et’»? eyy4 eyyl ezzlw ezzl nw yy2 ezzz(w)
kzexn))ﬂ(—)( Sy -y ke, +
w eyy2 eyyl eyy3 ezzSe ezz3 se
@y 4 (1= ) - Koy )+ ()t — ) (22, )
eyy4 ezz4e ezz4 ne ezzZezzle e eyy4 yy2 w
~E2 e ) +( N —— ) (e — e)+ o3 )e m)() (M)(%)( )))(e
eyyl w €364 W eyy2 eyyl yy3 yy4
Equation for Hy - coefficient of Hy:
ayyw =
A VLA VLR e Nt )(— - )((—)( Cay oty
Ry n e)ocl exx4 xx2 W2 222 zz2( )( ) xx2 exx xx zzl zzl( )( ) =
(—)(((—)(— i))(—((—)(— — (= )<—+ NS )((%)(e”“) ) avvs
xxl exx4 xx3 Zz3 Zz3( )( ) Xx2 exx3 exx4 e 24
1 1 w 2 exy2 e 3_ xy4
(R—yx((;)(e—m m))(( M)(Sz - BT O PRETL
ayyn =
1 I, w e w2 € e 2 . ey
(R—yx((;)( N o AP e TR
ayynw =
oy +—))<(—)(—L»>
Ry 5 exx2 xx xxl zzl( )( )
ayyne =
oy N )
Ry s exx2 )oc3 xx ZZ4( )( )
ayyse =
oy NNy
R ne, e e, e (s)e)
ayysw =
1 1 w ex;2
(Ryx((n)( —+ m»« » P T )
ayyp =
(ix((l)( W +i>><ﬂ(_—f—<%>(e”2>+ ) ike,).
xxl )0(4 x;x 7222 eZZZ (S)(W)
— (L Cos g2 ).
m( (Zy(Ges ,,3) ( e o) ke
w e w . ) e -2 2 e, 2
+(—( +—))(—(( )(—)(L)— kexx1)+—(—2—(e—2)L )+ke ,))

S exe exx3 exxl Zzl 1( )( ) exx4 n

€24 4( )( )



Equation for Hy - coefficient of Hx:
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