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Abstract 
 

The importance of trusted computing has become more prevalent due to 
the amount of increasing computer security threats. As this trend continues, 
there has become a push for modifying the underlying architectural base of a 
computer to directly aide in the creation of a secure computing environment. 
Early work has shown that it is possible to hide information at the instruction 
set level and use the extracted data for security and authentication purpose.  
The goal of this project is to conduct a proof-of-concept design to validate this 
approach. Specifically, we have designed and simulated a small footprint chip 
add-on that can extract the hidden information and remap the instructions 
back to the original form for seamless architectural integration. The FPGA 
based prototype shows that the design requires about 0.2% hardware of a 
modern single core processor and drains only 0.07% of its power. We are 
currently looking at further changes to improve the speed of the design. 
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1 Introduction 
 
 

1.1 Background 
The instruction Set Architecture (ISA) of a processor dictates the final form 

in which a compiled computer program takes for interpretation by the cpu. This 
allows high-level computer languages to be abstracted to a much smaller 
predetermined set of instructions that can be fed to the CPU.  With this level of 
abstraction in place the ability to generate multiplatform code becomes much 
easier. An instruction set comprising of fixed width instructions is one of the 
key aspects in Reduced Instruction Set Computing (RISC) architecture principles. 
RISC is a commonly used architecture because it allows quicker processing due 
to its fixed width instructions. Along with these performance gains comes 
minimal ability to modify or encode data to add side information. Because many 
of today’s high-performance processors are striving for security gains, this 
strict architecture limits the possible ways in which a software/hardware 
security implementation can be instantiated. 
 

1.2 Prior Research 
In the past it has been shown that there is slight flexibility to embed 

information in instructions to aide in security.  Recent research by Swaminathan 
et al.1 looked further into the possibility of data hiding in a fixed framework 
such as RISC. The emphasis of the research focused on evaluating the feasibility 
of encoding extra data into the 26-bit operand of an instruction on the RISC 
architecture. It was determined that by remapping bit positions to smaller bit 
spaces, hidden information could be stored in the unused bits. Remapped bit 
positions were found using search algorithms tailored to this type of data. This 
lossless encoding scheme allows for full recovery of the original instruction 
therefore no underlying change to the architecture is needed. 
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Figure 1: Encoding/Decoding Architecture 

 
The diagram in figure 1 shows the framework proposed by Swaminathan 

et al. (2005). In software, the instructions for a given compiled binary are first 
broken into opcode and operand. The operand field of the instruction is much 
larger, and therefore is the target of compression. The process of compressing 
the data involves three different search algorithms that evaluate all of the bits 
contained in each of the instruction’s operands and determine which positions 
are the most optimal for remapping. By finding the individual combinations for 
these positions a lookup table can be created that stores the original bit 
combinations and the new streamlined mapping. 
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Figure 2:High Performance Trusted Processor 
 
 
A high-performance trusted processor architecture has also been 

proposed based on previously stated information hiding technique (see figure 
2). In this approach, the hidden information, after being extracted by the on-
chip decoder, can be used to facilitate trustworthy computing by, for example, 
checking the integrity, reliability, and authenticating the source of the code 
before execution. Under such framework, it becomes critical to implement both 
the decoder and the admission controller in hardware. 

With this prior research in mind, the next step is to evaluate possible 
implementation strategies. The diagram in figure 1 shows a proposed High-
Performance Trusted Processor framework. For this type of architecture to be 
feasible the implementation must be transparent to the Central Processing Unit 
(CPU). Even with this lossless encoding there must be a way to recover the 
encoded data. The encoder can be implemented in a modified compiler that 
does the remapping after creating the program. However, the decoder cannot 
be implemented in software because there is no advantage to this and the 
framework becomes a mirror of other common software solutions. To 
circumvent this problem the decoder can be implemented in hardware and 
perform the decoding inline with the CPU. Not only does this create a much 
more secure architectural base, but it is also faster than a possible software 
solution. 

To complement the software side of the design, a hardware-based 
decoder is created to reverse the encoding process. The software process 
generates a lookup table and the positions of the remapped bits. These two 
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sources of information alone are enough to attempt the reverse mapping 
process and can be stored on the chip. Along with storing this information, the 
hardware device must take in an already remapped operand, recover the secret 
information, and remap the operand back to its original form for processing by 
the CPU.  

 

1.3 Goal 
 

The goal of this project is to validate the concept of implementing 
decoder in hardware. In addition to showing that the design is capable of 
extracting the hidden information, we need to answer the following 
fundamental questions: how much hardware will be required, how much power 
it will consume, how flexible is the design, and can it keep pace with the 
modern high-performance processors? We provide a design that meets these 
requirements and simulate the design through FPGA based prototyping. 

2 Challenges, Feasibility and Methods 
 

In this section the challenges and possible design solutions for this type of 
hardware prototyping are investigated. Also, addressed is the feasibility of 
implementing such a design inline with already established architecture. 

2.1 Challenges and Feasibility 
 
Because of the complexity involved in abstraction of logic to a physical 

gate based representation, many complications arise when implementing 
algorithms in hardware. The goal is to determine the simplest design model 
that can easily be transformed into purely sequential and combinational logic. 
However, when implementing hardware-based solutions a large number of 
constraints and parameters have to be evaluated. This is especially true when 
designing a device that has to conform to an existing architecture, because 
many parameters are dictated by previously created standards. Ideally, the 
optimal design for this project will build off of existing high performance 
computing architecture and not hinder performance in any way; therefore some 
constraints must be addressed before proposing the design 

2.1.1 Power 
 Power consumption is an important parameter due to the limited power 
availability on a modern high performance computer. With clock speeds 
increasing, common single core processors can use up to 100W2 of power.  Too 
much power consumption would make the design of the chip less feasible to 
implement and force the use of an external power supply. Additionally, the 
inclusion of a power supply forces a much larger chip footprint.  
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2.1.2 Gate Count 
 Another important parameter to minimize is gate count. Removal of 
complex logic and the reuse of existing memory structures aids in the 
transistor gate reduction.  Within the architectural footprint, where a high-
performance processor resides, there is limited space and a larger chip size will 
make implementation less feasible. Today’s current single core processors have 
a transistor count of nearly 40 million3. The goal is to create a design that 
dwarfs the CPU in gate count, therefore minimizing implementation issues 
when moved to actual application in the given architecture 

2.1.3 Gate Delay 
 Minimized gate delay is important when working in the high-performance 
processor domain. The processor is the fastest component in the architecture 
and it is frequently waiting on data to be sent therefore, the goal is to create a 
design that does not cause the CPU to wait longer. Performance loss will be 
noticeable if the chip delays incoming operands by a large amount. As with the 
other challenges, the best way to address this issue is by minimizing the design 
complexity. 
 
 Minimizing power, gate count and gate delay guarantees a proposed 
design that is tailored for the target platform. It is important to address these 
issues before the design process to frame the architectural limitations. 

2.2 Design Methods 

2.2.1 High Level Design 
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Figure 3: High level Design 

 
 

After evaluating the decoding process specifics, a design consisting of 2 
input buses and 2 output buses was formulated (see figure 3). These four buses 
will allow full functionality yet minimize the amount of connections that need to 
be made to the existing architecture.  To accomplish this minimalist port 
design, the data-in bus must be used for receiving information from the 
encoding process and pass-through data. To accommodate this design, multi-
state logic must be used. 
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 The first operation state of the design is the configuration state where 
the chip takes configuration information through the data-in bus. Enabling this 
state is achieved by setting the input value of the configuration bus to a 
nonzero number. The data-in bus takes three different types of configuration 
settings while in this mode. The first is the Bit Remapping bit mask, in which 1s 
are used to represent the bits that have been found to be the most optimal for 
remapping. The second is the Secret Information bit mask. This bit mask 
represents the bits that will be used for the information hiding. Rather than 
determining these bits by evaluating the amount of mappings, to reduce 
complexity, this information is retrieved from the encoding side of the design. 
Finally, the data in bus takes information about the individual lookup table 
values. These mappings are sent in sequentially according to the value that the 
actual index maps back to. For example if 8 maps to the value 0 then it is the 
first bit combination to be sent in. 
 Using these configuration settings, the individual components of the 
design are setup. After configuration, is the hardware device acts as a pass-
through for the input operand. The goal is to have seamless transition from the 
data-in bus to the data-out bus with minimal delay.  
 

2.2.2 Proposed Hardware Implementation 
 

 
Figure 4-1: Configuration Mode 

 
 

 
Figure 4-2: Pass-through mode 
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After evaluation of the proposed design goal a formal internal 
architectural layout was constructed (see Figure 4-1 and 4-2). The architecture 
is formed using the specified minimization parameters and the proposed high-
level design. Since this is a two state design there must be an architectural 
setup for both states. Additionally, components that can work without clock 
dependency in pass-through mode are needed because of the stringent timing 
goals of the overarching architecture. 

After a thorough evaluation of the decoding scheme, it is apparent that 
processing such a dynamic input creates a complex problem. When retrieving 
data in the lookup table, the actual table index can be pulled from anywhere in 
the operand due to the 226 possible combinations of the Bit Remapping 
Bitmask.  This cannot be avoided because the bit positions of the remapped 
bits are different depending on the combinations of instructions of the current 
program.  

To address this issue we determined that the use of a crossbar device 
was necessary. A crossbar is a device that can map any input to one or multiple 
outputs and can be configured multiple times in hardware.  The crossbar will 
interconnect the data in bus and the lookup table to create the address for data 
retrieval. Additionally, another crossbar must be used to remap the outgoing 
bits of the lookup table back to their original bit positions.  

Finally, some of the inputs must pass directly through the hardware 
device. To minimize the power dissipation these inputs need to be dynamically 
mapped to the outputs. Facilitation of this is possible through a simple bit 
selector component. This device is comprised of 26 2 to 1 bit multiplexers that 
can be programmed individually, therefore if a bit is not remapped the input for 
the given bit becomes the output. However, if the bit is remapped the output 
bit is selected from the second crossbar device. 
 

All of these components are configurable but also allow for pass-through 
functionality. This is the type of design needed for the two-state architecture 
that was initially proposed. Additionally none of the devices have clock 
dependencies in pass through mode therefore this piece of hardware should 
not create problems when integrated into existing high-speed processor 
architecture. 
 

2.2.3 Prototyping Platform 
To test the proposed design a prototyping platform had to be selected. For 

this a Field Programmable Gate Array (FPGA) would offer the most design 
flexibility. An FPGA allows for a hardware design process that is similar to that 
of a software design as it allows for multiple configurations and simple testing. 
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Figure 5: Opal KellyTM XEM3001v2 

 
 
The specific FPGA chosen is the Opal KellyTM XEM3001v2, shown in figure 5 

above. The XEM3001v2 is based around the XILINXTM Spartan 3 FPGA 
architecture however; Opal KellyTM has added easy an easy to interface USB 
connection.  The ability to send data to the design through the USB protocol 
allows for quick testing. Along with data input and output capabilities the USB 
connection is also used to for FPGA configuration. To configure the FPGA, 
Verilog HDL was used and synthesized to bit code in the XILINXTM Integrated 
Software Environment (ISE).   

3 Results  
After implementing the design on the XEM3001v2 the next step involves 

testing the hardware device with actual configuration and operand data. 
Additionally, measurement of the design minimization parameters occurred to 
determine if any design changes need to be made. 

3.1 Operational Test 
The original test was done within the XILINXTM ISE software through the use 

of a logic simulator. These tests did not implement the USB functionality 
therefore allowing uninhibited measurements of specific design parameters. 
Also, simple configuration and pass-through data was used to determine if the 
design worked as planned. These tests determined that the design successfully 
could take in configuration input and remap incoming operands. 

The next step involved interfacing the design with the USB port on the 
Opal Kelly XEM3001v2. To test this actual implementation, a simple python 
program was created utilizing functions from the provided Opal Kelly API. 
Functions were created to reset, configure, and send data through the data-in 
bus. The data out bus was monitored to determine if the design was correctly 
processing the operands.  With 100 percent success the hardware device was 
able to store configuration information and decode the passed in operands.  

 
 



 
10 of 11 

 
 

3.2 Gate Count/Size 
The gate count of the implemented design totaled 95,456, which is 56% 

utilization of the Spartan 3 FPGA. This meets gate count minimization goals 
because 95,000 gates is ~0.2% of a modern single core processor. Adjusting 
the size of the lookup table, the amount of outputs on the first crossbar, and 
the amount of inputs on the second crossbar will minimize the gate count 
further however; these changes will adversely affect the ability to store hidden 
information.  

 The amount of gates is also directly related to component size. With this 
knowledge, an estimation of the components dimensions can be determined. 
The Spartan 3 FPGA used on the XEM3001v2 is packaged in a 456-ball fine-
pitch ball grid array of dimension 17x17 mm or 289 mm2. Assuming there is 
56% utilization, a device of the size ~13x13 mm or ~162 mm2 with the same 
underlying packaging could be created from the design. This is a very small 
add-on and will fit into existing high performance architectures. 
 

3.3 Gate Utilization 
With this working design 50% of the gates are used for logic while the 

other 50% is used for storage. These numbers are promising and illustrate that 
the lookup table is sized correctly for the proposed device implementation. 
Even with modifications to this design, this ratio will not change much due to 
the interdependency between logic and storage size. If fewer outputs are used 
on the first stage crossbar then the lookup table size will contain less values 
and vice versa.   

 
 

3.4 Power Consumption 
To determine the power consumption of the design, the XILINXTM Xpower 

program was used. Xpower can generate power statistics on a HDL described 
hardware device using real world statistics and input specifications from the 
user. The design sent to Xpower did not contain the USB interface because in 
actual implementation this would not exist. After sending the data to XPower 
statistics were generated. 

With the setup and clock speeds stated earlier, Xpower reported an 
average power consumption of 65 mW. This varies slightly depending on the 
operand input at a given time. 65 mW is well within the target power 
consumption goal and is only  ~0.07% of a current single core processor. 
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3.5 Gate Delay 
To determine the gate delay, the statistics generated by the logic 

synthesizer was used. After synthesizing, a list of overall gate delay is 
generated containing the worst case for the design. By evaluating this data, 
there shows a possible worst case 30 ns delay. For the current tests this is fine 
but for actual implementation and interface with a high-speed processor this 
may be too large of a delay.  

One of the main factors contributing to the delay is the lookup table. 
Currently the table is implemented as an asynchronous read, synchronous write 
block RAM. This is not the most efficient memory structure and in actual 
implementation it would most likely be instantiated as a high-speed cache. 
Actual fabrication of the design with this component would most likely remove 
a large amount of the delay. Another option is attempting this design on a 
speed optimized FPGA. XILINXTM produces a version of the Spartan 3 FPGA with 
a higher speed grade and this would possibly minimize a large majority of 
delay. 

4 Conclusion  
In this work we determined the feasibility of implementing lossless 

encoding based decoding module in hardware while conforming to the 
standards of the already existing architecture. Our design is able to easily 
decode operands that have been encoded with the previously proposed lossless 
scheme and should have minimal problems interfacing with a high-
performance processor. The design was also able to stay well within the 
minimization parameter goals while still being fast, efficient and lightweight. 
This research shows that a software/hardware co-design based security 
solution can be implemented with minimal hardware while still fully supporting 
the dynamic input generated by software encoding side of the framework. 
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